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A rigorous method to calculate the first-order self-energy in a model potential is presented. An
alternative straightforward way of renormalization is introduced to avoid the commonly used po-
tential expansion implying a large number of diagrams in higher-order QED effects. The divergent
mass term is defined in coordinate space and decomposed into a sum over finite partial-wave (I) con-
tributions. The unrenormalized bound self-energy is similarly decomposed into a partial-wave sum
and the renormalization is performed for each partial wave. The renormalized sum converges fairly
rapidly (the asymptotic behavior is I~3). The method is applied to lithiumlike uranium, for which
the electron self-energy in the potential of a point nucleus, as well as the effects of the finite nucleus
and of the screening by the remaining electrons on the self-energy, are obtained with an accuracy
better than 0.1 eV. The results are in very good agreement with experiment and with calculations

recently performed using other techniques.
PACS number(s): 31.10.4+z, 31.20.Di, 31.30.Jv

I. INTRODUCTION

The precise measurement of transition energies in
highly charged heavy ions, for instance the 2p; /2-251 /2
transition in lithiumlike uranium, recently performed by
Schweppe et al. [1], has stimulated new efforts to im-
prove the accuracy of QED calculations for such sys-
tems [2-5]. Since QED effects scale strongly with Z they
are comparable to correlation effects in these heavy sys-
tems. To further improve the accuracy on these systems
it is necessary to include higher-order QED effects. The
usual renormalization scheme would then be quite com-
plicated when considering, for instance, diagrams of the
two-photon self-energy type. It is therefore of great in-
terest to see if the standard methods of renormalization
can be changed or improved to also yield a realizable cal-
culation scheme for higher-order effects. In this paper we
show that the mass-renormalization scheme can be sim-
plified for first-order self-energy, which is the dominant
QED contribution. We are now working on extending
the procedure to evaluate higher-order contributions [6].

The first-order self-energy for a free electron in a mo-
mentum state p is described as the emission and reab-
sorption of the same virtual photon. This interaction
(6m) is already included in the observable mass of the
electron meops = Mpare + 6m. For a bound electron
the self-energy also gives rise to an additional observable
shift. The use of meps instead of Mmpare in the equations
leads to divergences. By subtracting off a mass term,
one corrects for the use of myps and the equations be-
come renormalized.

The early relativistic self-energy calculations (7, 8] were
based on an expansion in (Za) of the interaction with
the external field, a technique obviously restricted to low
or medium-high Z values. A method for computing the
bound-state self-energy to all orders in Za was intro-
duced by Brown, Langer, and Schaefer in 1959 [9,10], and
Desiderio and Johnson [11] implemented the method for
local potentials. The method was based on a potential
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expansion of the intermediate bound state into divergent
zero-potential and one-potential terms and a convergent
many-potential term (Fig. 1). The method suffers, how-
ever, from a slow asymptotic behavior (I=2) and is in
practice applicable only to high Z (Z > 70).

By using an analytic variant of the potential expan-
sion, Mohr [12-14] developed a method yielding a high
accuracy for Coulomb potentials. In 1991 Blundell and
Snyderman (15, 16] presented an alternative way of evalu-
ating the self-energy for local potentials. The finite con-
tributions (F14+F2 in Fig. 1) from the zero- and one-
potential terms were evaluated analytically and the con-
vergent many-potential term was successfully treated nu-
merically with basis-set techniques, and a comparably
rapid partial-wave convergence (I~3) was obtained.

In this Rapid Communication we report an alterna-
tive way of calculating the electron self-energy based on
a direct renormalization without employing the standard
potential expansion [17]. The basic idea is to decom-
pose both the unrenormalized bound-state self-energy
and the mass term into divergent sums over finite partial-
wave contributions. The renormalization subtraction is
then performed at the partial-wave level and a conver-
gent renormalized bound-state self-energy is obtained.

B M B1=F1+M+Q

FIG.1. The renormalized bound-state self-energy (B—M)
decomposed into a zero-potential (B1) term, a one-potential
(B2) term, and a many-potential (B3) term. M is the
mass term and Q a charge divergency which is introduced
in this potential expansion. (B—M) can also be written as
(F1+F2+F3).

B2=F2-Q B3=F3 M
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No regularization procedure is needed, since even before
the renormalization each partial-wave contribution is fi-
nite. The asymptotic behavior in terms of partial waves
is proportional to [~3.

J
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II. THEORY

The unrenormalized bound term (B in Fig. 1) can be
written as (units where me = ¢ = h = 1 are used)

ek 1 Z P! (x2)e™ 2 0y b (%2) 91, (x1 )t e~ R X10h, (x1)

Eyound(a) = a2w/d3x2d3zl @ k
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where the sum over m denotes a summation over positive- and negative-energy states. The bound state 1,(x) is a
solution of the Dirac equation with a potential V, and k is the virtual photon momentum. By performing the angular
part of the k integration and using a standard spherical wave expansion,

Eyound (a)

is obtained, where C! are angular tensors proportional to
the spherical harmonics. There is an implicit dot prod-
uct between the angular tensors. At this stage we make
an important observation. Equation (1) looks linearly
divergent in k but is actually reduced to a logarithmic
divergency because of a cancellation between positive-
and negative-energy states in the m sum. In Eq. (2) the
divergency is moved from the k integration to the outer
sum over partial waves. For each [ value the k integration
is convergent. The partial-wave expansion thus serves as
an effective cutoff in k space.

The mass term M (Fig. 1) is defined as the free-electron
self-energy with a momentum distribution determined by
the bound state |a). The standard way of treating the
|

M(a) =
T 1=0

No regulator is required since everything is finite for each
partial wave. This mass term looks similar to the one
used by French and Weisskopf [7]. Note that the zero-
potential term (B1 in Fig. 1) differs from this term in the
energy denominator where E,, should be replaced by E,.
In the renormalization procedure we employ the differ-
ence between Egs. (2) and (4) is taken for each partial
wave, and then the summation is performed.

The improvement in the convergence compared to ear-
lier methods arises, since we, instead of calculating sep-
arate finite contributions (F1 o< [72, F2 o [72, and F3
o 173 in Fig. 1) obtained by the potential expansion, cal-
culate the sum of these terms [(B—M) « =2 in Fig. 1]
for each partial wave.

It should be pointed out that the covariant mass term
defined in Eq. (3) is logarithmically divergent in the four-
dimensional k space. The only practical procedure for
cancelling out this mass term is to make a potential ex-
pansion of the unrenormalized bound-state self-energy.
When using the partial-wave form of the mass term [Eq.
(4)] every subtraction is made in the three-dimensional
k space.

E,—-En,

(2[ +1) /dk k z <a|au.71(krz)cl|mi('ls’r;|gé(EkT:1))kCla#|a) o

f
mass term is to introduce photon regulators which cut
off high-energy photon momenta,

M(@)= Jin_ [ & [ @5 apEE D))
= lim_6m(A)(alfla)
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where X(p) is the free-electron self-energy operator and
the integration over momenta includes summation over
spinor components. In our approach we express the mass
term in partial waves, in analogy with Eq. (2)

Z 2l+1)/d3 /d3 //d3 /dkk(a]p) @laﬂjl(krz)cllq><QIjl(kT1)ClaM1p’> (p’la)~ (4)
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III. NUMERICAL APPROACH

In order to generate the bound-state orbitals we use
a numerical finite basis-set approach developed by Sa-
lomonson and Oster [18]. The mass term can be calcu-
lated in two different ways. One way is to use a complete
numerical basis set that is generated using the bound-
state method in the limit Z — 0. The ultimate reason
for calculating the mass term completely numerically is
to take advantage of the strong cancellations that appear
when the renormalization is performed. By performing
the integrations in the bound and the mass terms in ex-
actly the same way we can make extensive use of the
similarities between the two terms to get a stable differ-
ence.

The radial free-electron matrix element can also be
evaluated analytically in an infinite continuous space, as
suggested by Quiney and Grant [19]. This leads to trian-
gular conditions for the momenta. An advantage of this
technique is that no poles appear in the mass term due
to the exact triangular conditions that are valid in the
infinite space (but not in a finite box). A disadvantage
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TABLEI. Electronic screening of the self-energy in Li-like TABLE II. Self-energy of 2s and 2p;; in Li-like U (eV).

uranium (in eV).

Phys. effect 2s Others 2p1/2 Others
Model potential 28172 2p1/2 2P1/2-25  Hydrogenic, 66.28(3)  66.205°  9.62(3)  9.625°
Optimized local —2.51(3) —0.84(3) 1.67(3) point nuc.
potential (OHFS) Nuclear -0.87(3)  -0.90(6)® -0.07(2) -0.10(5)°
DF, direct part —2.77(3) —0.99(3) 1.78(3) size effect
DF with Coul. —2.41(8) —0.79(3) 1.62(3) Screening
exchange (direct) -2.77(3)  -2.75(2)® -0.99(3) -0.97(2)°
DF with Coul. —2.61(3) —1.05(3) 1.56(3) (exchange) 0.21(5) 0.04(4)
and Breit exchange :

Total

self-energy 62.85(8) 8.60(8)

is that one cannot utilize the cancellations between the
mass term and the bound term for each grid. The most
beneficial way is a combination of both methods. By
subtracting a completely numerical zero-potential term
(a dummy term that scales as N3) from the unrenor-
malized bound term, we use the similarities in the high-
energy region to get a stable difference. We then add a
partly analytical zero-potential term, which is very ac-
curate. This gives a stable high-energy behavior to the
bound term, and after subtracting the partly analytical
mass term, the renormalized value will become very ac-
curate.

IV. NUMERICAL RESULTS

The self-energy has been evaluated for the 2s and 2p; /;
states of lithiumlike uranium. The partial-wave renor-
malization was performed up to lax=20. Since the con-
tributions for each partial wave decrease as 1=3, the I
tail was estimated with good accuracy. We have as a
test of our procedure tried to reproduce Mohr’s hydro-
genic point-nucleus results for uranium [20]. We obtain
66.28(3) eV for 2s and 9.62(3) eV for 2p, /2, which should
be compared with the values 66.295 and 9.625 eV of
Mohr. By comparing the results for the point-nucleus
hydrogenic system to the extended nucleus results in the
same r and k grids, an accurate estimate of the nuclear-
size effect is obtained. This difference is more accurate
than the individual results and they agree well with those
of Blundell [4, 21]. For the extended nucleus, a uniform
charge distribution, with the rms value (deduced from
experiment) of 5.8625 fm [22], is used. The effect of the

@ 1s 1s
1s
1s
(b) (c) 7 )

(a)

FIG. 2. Diagrams representing the lowest-order electron
screening of the self-energy. These diagrams are included, to-
gether with similar higher-order diagrams, by using orbitals
generated in a 1s2 core potential. Diagrams (a) and (b) rep-
resent the direct part and (c) and (d) the exchange part of
the interaction with the core.

*Mohr [20].
®Blundell 4, 21].

nuclear structure for the given rms lies within our limits
of error.

The effect of the electronic screening has been eval-
uated using four different central potentials: (a) a local
potential OHFS (optimized Hartree-Fock-Slater) {23, 24],
which reproduces the Dirac-Fock results very well; (b) the
direct part of the Dirac-Fock potential; (c) the full Dirac-
Fock (DF) potential with exchange; and (d) the DF po-
tential. with the Breit exchange The results obtained for
the electronic screening with the different potentials rela-
tive to a hydrogenic system with the same finite nucleus
are given in Table I. The self-energy procedure we use
is technically—in contrast to the earlier methods—easily
applicable to nonlocal potentials also. There are, how-
ever, conceptual theoretical problems for such potentials.
For instance, the use of a nonlocal potential violates the

TABLE III. Transition energy for the 2p;/2-2s,,; transi-
tion in Li-like uranium (in eV).

Physical effect This work Blundell
Relativistic MBPT 322.29(15)* 322.41%
Valence self-energy, direct -54.07(3) -54.09
Valence self-energy, exchange -0.17(5)® 0.36°
Core self-energy -0.08(8)>°  -0.51(2)°
Vacuum polarization 12.56(1)¢ 12.56(1)
Nuclear recoil and polarization 0.10° 0.10
Higher-order effects 0.01(4)
Total transition energy 280.63(20)  280.83(10)
Experimental 280.59(9)*

2The difference is mainly due to the inclusion of more than
one Breit interaction in our calculation, through the use of
Breit perturbed orbitals.

PNot directly comparable (see text).

°Our result was obtained using OHF'S potentials for 15*2s and
1522p, /2, respectively. Using potentials defined as the direct
interaction with one 1s and one valence electron, (2s,2py/2)
0.21 eV was obtained. This is in good agreement with Blun-
dell’s result for the direct interaction (0.23 eV).

4Blundell [4, 21].

®We have used —0.08(8) eV for nuclear recoil [4] and 0.18(5)
eV for nuclear polarization [30].

fSchweppe et al. [1].
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gauge invariance, since an incomplete set of higher-order
diagrams is indirectly included in the potential. How-
ever, we think it is worth reporting our results. The DF
potential with exchange gives the same result as the local
OHFS potential within 0.1 eV. The results for the direct
electronic screening [Figs. 2(a) and 2(b)] agree well with
those of Blundell. Our exchange effects [Figs. 2(c) and
2(d)] are not directly comparable to those of Blundell.
We have included the exchange effects in the potential
affecting both the internal and external lines, while Blun-
dell only modifies external lines perturbatively. In Table
II we have collected the results for the self-energy of the
two states. The values used for the electronic screening is
some weighted average of the results with different poten-
tials. The errors assigned include not only the numerical
uncertainty for a given potential but also an estimate of
the uncertainty due to the choice of potential. In order
to compare the self-energy results with the experimental
value for the 2s-2p;/, transition, a good estimate of the
non-QED part, i.e., the DF value and the many-body
contribution is needed. We have repeated and extended
the calculation done by Blundell, Johnson, and Sapirstein
[25] using the GRASP code of Grant and co-workers [26]
combined with our coupled-cluster code [18, 27-29] (Ta-
ble IIT). The many-body result differs somewhat, since
we have included the Breit interaction self-consistently
in the orbitals. Therefore our result contains certain
higher-order Breit interactions, which are not included in
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the calculation by Blundell. The agreement between the
calculated and experimental transition energies is good,
considering the fact that higher-order effects are included
only in an approximate way. The valence self-energy, in-
cluding the nuclear-size effect and the direct part of the
electronic screening, is accurate, and the agreement be-
tween different calculations is very good. The exchange
part of the screening is a true many-body effect and has
to be calculated in a more rigorous way in order to re-
duce the large uncertainty. This is also true for the core
self-energy, which is hard to estimate accurately.

From the numerical results reported here we can draw
the conclusion that the simple renormalization scheme we
have introduced works well for the first-order self-energy.
It is now our intention to apply a similar procedure to
evaluate higher-order QED contributions.
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