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Abstract

The differentiability of different functionals used in density-functional
theory (DFT) is investigated, and it is shown that the so-called Levy-
Lieb functional FLL[ρ] and the Lieb functional FL[ρ] are Gâteaux dif-
ferentiable at pure-state v-representable and ensemble v-representable
densities, respectively. The conditions for the Fréchet differentiability of
these functionals is also discussed. The Gâteaux differentiability of the
Lieb functional has been demonstrated by Englisch and Englisch (Phys.
Stat. Solidi 123, 711 and 124, 373 (1984)), but the differentiability of
the Levy-Lieb functional has not been shown before.
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1 Introduction

The differentiability of density functionals is of fundamental importance in
Density-Functional Theory (DFT) and forms the basis for models of Kohn-
Sham type

HK64,KS65
[1, 2]. In standard DFT an energy functional, E[ρ], is minimized

under the constraint that the density ρ(r) is normalized to the number of
electrons, which requires that the functional is differentiable with respect to
the density at the minimum. In the Kohn-Sham model an interacting sys-
tem is simulated by a system of noninteracting electrons moving in a local
potential, which requires that the derivative of the functionals involved can be
represented by a local function.

The locality of density-functional derivatives has been a controversial issue
for some time. It was demonstrated almost 20 years ago by Englisch and En-
glisch

EE84,EE84a
[3, 4], based upon works of Lieb

Li83
[5], that a very large class of functionals

is (Gâteaux) differentiable with the derivative in the form of a local function.
This result has been challenged by Nesbet

Ne98,NC99,Ne01,Ne03
[6, 7, 8, 9], who in a series of papers

claims that the energy-functional derivative cannot be represented by a local
potential even for a noninteracting system with more than two electrons. In
a recent Comment to the Physical Review

LS03a
[10] we claim that the results of

Nesbet are incorrect. There we have demonstrated in a simple way that such a
derivative does exist for noninteracting systems in general – in accordance with
the more general results of Englisch and Englisch – and, in addition, pointed
out where we believe the mistake of Nesbet has been made. In the present
work we shall extend our treatment in the Comment to systems of interacting
electrons and with a ground state that can also be degenerate.

Englisch and Englisch
EE84,EE84a
[3, 4] have demonstrated the Gâteaux differentia-

bility of the so-called Lieb functional, FL[ρ], utilizing the convexity of the
functional. The question of the differentiability of the so-called Levy-Lieb
functional, FLL[ρ], which is not necessarily convex, is left open in their work.
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The general situation concerning the differentiability of density functionals has
been reviewed by van Leeuwen in this volume

Lee03
[11], confirming the results of

Englisch and Englisch. In the present work we shall show that the FL[ρ] and
FLL[ρ] functionals are both Gâteaux differentiable at pure-state-v- (PS-v) and
ensemble-v- (E-v) representable densities, respectively. We shall also discuss
the conditions for the Fréchet differentiability of these functionals and show
that the possible difference between the Gâteaux and Fréchet differentiability
is quite subtle.

2 General concepts
sec:General

2.1 The space of wavefunctions and densities

We consider a system of N interacting electrons with the Hamiltonian (in
Hartree atomic units, i.e., m = e = ~ = 4πε0 = 1)

Ĥv = T̂ + Ŵ + V̂ =
N∑

i=1

−1
2
∇2

i +
N∑

i<j=1

1

rij

+
N∑

i=1

v(ri). (1) Ham

Here, T̂ =
∑

i−
1
2
∇2

i represents the kinetic energy, Ŵ =
∑

i<j 1/rij the inter-

action between the electrons and V̂ =
∑

i v(ri) the external (usually nuclear)
field. The wavefunctions are assumed to be normalizable (but not necessarily
normalized)1 ∫

dr1

∫
dr2 · · ·

∫
drN

∣∣Ψ(r1, r2 · · · rN)
∣∣2 < ∞. (2) Norm

The electron density is defined as the diagonal of the first-order density matrix,

ρ(r) = N

∫
dr2

∫
dr3 · · ·

∫
drN

∣∣Ψ(r, r2 · · · rN)
∣∣2, (3) Density

and we shall use this definition also for wavefunctions that are not normalized.
Integration of the density then leads to∫

dr ρ(r) = N〈Ψ|Ψ〉, (4) Dens

which shows that normalizing the density to N , automatically implies that the
wavefunction is normalized to unity. Regardless of normalization, we have the
relation

〈Ψ|V̂ |Ψ〉 =

∫
dr ρ(r) v(r). (5) Vint

1The integrals are generally assumed to be of Lebesgue type and normally include a sum
over spin coordinates.
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We shall also restrict the space of wavefunctions to those with finite kinetic
energy, which implies that∑

i

∫
dr1

∫
dr2 · · ·

∫
drN

∣∣∇iΨ(r1, r2 · · · rN)
∣∣2 < ∞. (6) FinKE

The wavefunctions then belong to the Sobolev space H1(R3N) 2. The densities
corresponding to these wavefunctions form the space

S =
{
ρ|ρ ≥ 0;

√
ρ ∈ H1(R3)

}
, (7) S

which is a subset of the intersection of the L1 and L3 spaces, S ⊂ X =
L1 ∩L3

Li83,Lee03
[5, 11]. All densities in S can be generated by at least one function in

H1(R3N). The S space has the property of being convex, which implies that
if ρ1, ρ2 ∈ S, then also λρ1 + (1− λ)ρ2 ∈ S with λ ∈ [0, 1].

For future reference we shall define the concept of pure-state v-representable
(PS-v-representable) densities, being the densities corresponding to a single
ground-state wavefunction of a Hamiltonian (

Ham
1) with the potential v, which is

in the dual space of X, i.e., v ∈ X∗ = L∞ + L3/2
Li83,DG90,Lee03
[5, 12, 11]. The ground state

can be degenerate or nondegenerate.

2.2 The Hohenberg-Kohn theorems

According to the Hohenberg-Kohn (HK) theorems
HK64
[1], the ground-state energy

(E0) of an electronic system (
Ham
1) is a functional of the ground-state density (ρ0),

E0 = EHK[ρ0], (8) E0

and the ground-state energy is obtained by minimizing the energy functional

E0 = min EHK[ρ] (9) HK2

over the set of v-representable normalized densities.
The energy functional can in the HK model be expressed

EHK[ρ0] = FHK[ρ0] +

∫
dr ρ0(r) v(r), (10) EHK

where
FHK[ρ0] = 〈Ψ0|T̂ + Ŵ |Ψ0〉 (11) FHK

2Some of the topological concepts used here are defined in the Appendix. See also the
review article by van Leeuwen in this volume

Lee03
[11], where some of these concepts are further

discussed.
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is the universal Hohenberg-Kohn functional, which is independent of the ex-
ternal potential v(r).

Originally, the HK theorem was derived only for nondegenerate ground
states, and the densities were restricted to v-representable densities of such
states. Later it has been shown that the theorems hold also if the ground-
state is degenerate. ρ0 can then be any of the ground-state densities and Ψ0

any ground-state wavefunction yielding this density
DG90
[12].

2.3 The minimization process

Often the variation of a functional F [ρ] at a density ρ0 due to a small density
change δρ can be expressed in the form

δF (ρ0, δρ) = F [ρ0+δρ]−F [ρ0] =

∫
dr

(δF [ρ]

δρ(r)

)
ρ=ρ0

δρ(r)+higher order terms.

(12) FuncDiff

Then we refer to
(

δF [ρ]
δρ(r)

)
ρ=ρ0

as the functional derivative at the density ρ0.

There are different definitions of this concept, as we shall discuss in the next
section. If the functional has an extremum (maximum or minimum) at the
density ρ0, then the functional derivative will vanish in that point.

In order to be able to perform the minimization, using standard variational
principles, it is necessary that we can make arbitrarily small variations of
the density. With the densities restricted by the v-representability condition,
this is not necessarily the case, and standard procedures cannot be generally
applied. Therefore, in order to find workable forms of the theory, the definition
of the functionals has to be generalized to a larger group of densities. This
will be discussed in section

sec:DensFunc
4.

We have assumed here that the variations are performed within the domain
of normalized densities. Alternatively, the minimization can be performed us-
ing the Euler-Lagrange procedure. Then the densities are allowed to vary also
outside the normalization domain. This we shall do by relaxing the normal-
ization constraint of the wavefunctions and by using the definition (

Density
3) of the

density also in the extended domain. The normalization constraint is enforced
by means of a Lagrange multiplier (µ),

δ
(
F [ρ0]− µ

∫
dr ρ(r)

)
= 0, (13) Lagrange

which leads to the Euler equation(δF [ρ]

δρ(r)

)
ρ=ρ0

− µ = 0. (14) Euler
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The extension of the functionals into the domain of unnormalized densities
can be made in different ways, and the value of the Lagrange multiplier will
depend on the way this is done. The process is not trivial, however, as we
shall demonstrate below. Certain rules have to be followed in making such an
extension (c.f., for instance, analytical continuation in function analysis). The
expression must above all fulfill the conditions for a functional in the extended
region, which, among other things, implies that it has to be uniquely defined
– a certain density must always lead to a unique value of the functional.

2.4 Comments on the treatment of Nesbet

At this point we want to make a brief comment upon the approach of Nesbet,
reviewed in another article of this volume

Ne03
[9]. Nesbet’s main conclusion is that

one of the main fundaments of DFT, the so-called locality hypothesis – the
assumption that the derivative of the density functionals can be expressed in
the form of multiplicative local function – is not generally valid. As we have
pointed out in a separate Comment to the Physical Review

LS03a
[10], we believe

that the arguments of Nesbet are incorrect and that the mistake is connected
to the above-mentioned question of extending the functionals into the domain
of unnormalized densities. We summarize our main arguments here and refer
to our Comment for further details.

Nesbet considers a system of N noninteracting electrons with a nondegener-
ate ground state and with the wavefunctions in the form of Slater determinants
Φ = 1/

√
N ! Det{φ1, φ2, · · · }. Restricting ourselves here to a two-electron sys-

tem, the kinetic energy is then given by the orbital functional

Ts[φ1, φ2] = 〈Φ|T̂ |Φ〉 = 〈φ1|t̂|φ1〉+ 〈φ2|t̂|φ2〉 (15) TN

with t̂ = −1
2
∇2 and the density by

ρ(r) = |φ1(r)|2 + |φ2(r)|2. (16) DensN

Differentiating the expression (
TN
15), yields the orbital derivative

δTs[φ1, φ2]

δφ∗i (r)
= t̂ φi(r) =

(
εi − v(r)

)
φi(r), (17) OrbDerN

using the orbital equation(
t̂ + v(r)

)
φi(r) = εi φi(r).

Considering the kinetic energy (
TN
15) also as a density functional,

Ts[φ1, φ2] = Ts

[
ρ[φ1, φ2]

]
, (18) DensOrb
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Nesbet applies the chain rule and obtains

δTs

[
ρ[φ1, φ2]

]
δφ∗i (r)

=
δTs[ρ]

δρ(r)

δρ(r)

δφ∗i (r)
=

δTs[ρ]

δρ(r)
φi(r). (19) ChainN

Identification then leads to an orbital-dependent derivative

δTs[ρ]

δρ(r)
φi(r) =

(
εi − v(r)

)
φi(r), (20) OrbDep

which Nesbet interprets so that the locality hypothesis is not valid if the system
contains different orbital energy eigenvalues.

As we have pointed out in our Comment
LS03a
[10], the expression (

TN
15) is in

combination with the density expression (
DensN
16) not a density functional outside

the normalization domain. Therefore, the identity (
DensOrb
18) is not generally valid

and the chain rule cannot be used in the way Nesbet does. If the variations
are restricted to the normalization domain, then the constant term (orbital
eigenvalue) disappears, and the locality hypothesis is restored.

Another approach is to modify the kinetic-energy expression so that it
will be a density functional also in the unnormalized domain. This we have
performed in our Comment by defining the density according to (

Density
3)

ρ(r) = |φ1(r)|2 〈φ2|φ2〉+ |φ2(r)|2 〈φ1|φ1〉, (21) DensDet

and the kinetic energy similarly by

Ts[φ1, φ2] = 〈Φ|T̂s|Φ〉 = 〈φ1|t̂|φ1〉 〈φ2|φ2〉+ 〈φ2|t̂|φ2〉 〈φ1|φ1〉. (22) TDet

(We here relaxed the normalization constraint of the orbitals but maintained
the orthogonality constraint.) Then we have shown that the kinetic energy is
in fact a density as well as an orbital functional in the close neighborhood of the
ground-state density, and hence the relation (

DensOrb
18) is valid in that neighborhood.

Direct derivation now yields the orbital derivative

δTs[φ1, φ2]

δφ∗1
=

[
t̂ 〈φ2|φ2〉+ 〈φ2|t̂|φ2〉

]
φ1(r)

=
[(

ε1 − v(r)
)
〈φ2|φ2〉+ 〈φ2|ε2 − v(r)|φ2〉

]
φ1(r) (23) OrbDer

and application of the chain rule

δTs

[
ρ[φ1, φ2]

]
δφ∗1(r)

=

∫
dr′

δTs[ρ]

δρ(r′)

δρ(r′)

δφ∗1(r)
=

[
δTs[ρ]

δρ(r)
〈φ2|φ2〉+

〈
φ2

∣∣∣δTs[ρ]

δρ

∣∣∣φ2

〉]
φ1(r).

(24) Chain
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Identification then yields

δTs[ρ]

δρ(r)
=

ε1 + ε2

2
− v(r), (25) Chain2

which is orbital independent and in the form of a multiplicative local potential,
and again the locality hypothesis is restored.

This demonstrates the importance of extending the functionals into the do-
main of unnormalized densities in a proper way in applying the Euler-Lagrange
procedure.

3 Functional derivatives
sec:Deriv

The functional derivative is a particular important concept in DFT, and we
shall here investigate that in some detail. Two forms of functional derivatives
are here of interest, the Gâteaux derivative and the Fréchet derivative.

3.1 Gâteaux derivative
sec:Ga

We consider a functional f : M → R, which is a mapping of a normed space
(M) on the space of real numbers (R). If at some point x0 ∈ M there exists
a mapping df(x0, ·) : M → R such that

df(x0, h) = lim
λ→0

f(x0 + λh)− f(x0)

λ
, (26) Ga

then df(x0, h) is the Gâteaux differential at the point x0 in the direction h
BB92
[13,

p. 46],
DMik99
[14, p. 448]. An equivalent definition is

f(x0 + h) = f(x0) + df(x0, h) + ω(x0, h), (27) Gaa

where

lim
λ→0

ω(x0, λh)

λ
= 0. (28) omega0

The Gâteaux differential is also termed the weak differential
LS61
[15, p. 293]. In

principle, this mapping need neither be linear nor continuous, but we shall
follow the convention

Lee03
[11, Eq. 60] that

a functional is Gâteaux differentiable at a point x0 if and only if the mapping
in (

Ga
26) is linear and continuous in h for all h at this point.
In applying the formalism to DFT, we express the variation of a density

functional F [ρ] at a density ρ0 due to a density change δρ in the form (
FuncDiff
12)

δF (ρ0, δρ) = F [ρ0 + δρ]− F [ρ0] =

∫
dr v

(
[ρ0]; r

)
δρ(r) + ω(ρ0, δρ), (29) Diff
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and the differential (
Ga
26) then becomes

df(ρv, δρ) =

∫
dr v

(
[ρ0]; r

)
δρ(r) + lim

λ→0

1

λ
ω(ρ0, λδρ). (30) GaDiff

This mapping is linear and continuous if (1) v([ρ0]; r) is a single-valued bounded
function of r that may depend on the density ρ0 but is independent of δρ, and
(2)

lim
λ→0

1

λ
ω(ρ0, λδρ) = 0. (31) Omega

(Note that a linear operator is continuous if and only if it is bounded
Gr81
[16, p.

197, 213],
DMik99
[14, p. 22].) We shall refer to the function above as the Gâteaux

derivative at the density ρ0

Lee03
[11, Eq. 61](δF [ρ]

δρ(r)

)
ρ=ρ0

= v
(
[ρ0]; r

)
. (32) GaDer

A necessary condition for the Gâteaux differentiability is also that the
functional is defined for ρ0 + λδρ – for all λ ∈ [0, 1] – if it is defined for ρ0 and
ρ0 + δρ. This is the case if the functional is defined on a space that is convex,
as the S space (

S
7).

The form (
GaDiff
30) represents a differential that is linear and continuous if the

conditions specified are fulfilled. A question relevant for the discussion of the
differentiability in section

sec:DensFunc
4, is if the differential of a differentiable functional

always can be written in this form. We believe that this can be answered
positively.3

3.2 Fréchet derivative

Another form of functional differential is the Fréchet differential, also termed
the strong differential, which can be defined as follows

BB92
[13, p. 37],

DMik99
[14, p. 451].

With M being a subset of a Banach space E with the norm ||·||, the function

3In order to show that this is at least plausible, we consider a discrete coordinate space,
r = ri, i = 1 . . . n and δρi = δρ(ri). A functional l[δρ] then becomes a function of n
variables, l[δρ] → l(δρ1, . . . δρn). If the functional is linear, then

l(δρ1, . . . δρn) = l(δρ1, 0, . . . ) + l(0, δρ2, 0, . . . ) + · · · =
n∑

i=1

fi δρi

with l(0, . . . 0, δρi, 0, . . . ) = fi δρi. In the limit, this approaches an integral,

l[δρ] → l(δρ1, . . . δρn) =
n∑

i=1

fi δρi →
∫

dr f(r) δρ(r).

If the functional is continuous, then all fi must be finite and the function f(r) bounded.

9



f : M → R is Fréchet differentiable at a point x0 ∈ M , if there exists a
continuous and linear operator, L(·) : E → R, such that (1)

f(x0 + h)− f(x0) = L(h) + ω(x0, h) (33) Fr

for all h ∈ E and x0 + h ∈ M and (2) ω(x0, 0) = 0 and

lim
||h||→0

ω(x0, h)

||h||
= 0. (34) omega

The function L(h) is the Fréchet differential at the point x0 in the direction h,
and the operator L(·) is sometimes termed the Fréchet derivative at x0. Here,
however, we shall reserve the term Fréchet derivative to a function equivalent to
the Gâteaux derivative (

GaDer
32). Fréchet differentiability is a stronger requirement

than that of Gâteaux differentiability, but – with the interpretations we make
– the difference is quite subtle.

3.3 Comparison between the Fréchet and Gâteaux dif-
ferentiabilities

It can be shown that if a Gâteaux derivative exists in a neighborhood of the
point x0, i.e., at all points ||x− x0|| < δ, and is (uniformly) continuous in x
in this neighborhood, then the functional is Fréchet differentiable at the point
x0

BB92
[13, p.47],

LS61
[15, p.295]. (For a linear mapping the concepts of ’continuity’ and

’uniform continuity’ are equivalent
DMik99
[14, p. 23].) In this case there exists a δ for

each ε so that the difference between the Gâteaux derivatives at the points x0

and x is less than ε for all x with ||x− x0|| < δ. Therefore, a functional that
is Gâteaux but not Fréchet differentiable at a point x0 must have some kind
of discontinuity at this point.

In order to demonstrate the difference further, we shall assume that the
functional is Gâteaux differentiable and then find out what the additional
requirement is to make it Fréchet differentiable. If we make the replacement
h → λh and set ||h|| = 1, the expression (

omega
34) becomes

lim
λ→0

ω(x0, λh)

λ
= 0 (35) omega1

or formally identical to the corresponding condition (
omega0
28) in the Gâteaux case.

The difference is that in the Gâteaux case it is sufficient that this relation is
satisfied for each individual value of h separately, while in the Fréchet case the
relation must be fulfilled for the entire neighborhood. In other words, the limit
must in the Fréchet case be uniform, implying that for each value of δ > 0
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there exists a λ > 0, so that

|ω(x0, λh)|
λ

< δ for all h. (36) omegas

If we assume that ω(x0, λh) = C(h)λ2, where C(h) is a number that de-
pends on h, then the condition for Gâteaux differentiability is that C(h) is
finite, while for Fréchet differentiability it is has to be bounded, implying that
there exists a number D < ∞, such that C(h) < D for all h. This implies
that also ω(x0, h) must be bounded within the neighborhood ||h|| < ε. Thus,
if the functional is not Fréchet differentiable, this term is unbounded in any
neighborhood of x0, which indicates some kind of singularity.

Fréchet differentiability is obviously a stronger condition than Gâteaux
differentiability. Therefore, if a functional is Fréchet differentiable, it is also
Gâteaux differentiable, and the Fréchet and the Gâteaux derivatives are iden-
tical.

4 Application to density functionals
sec:DensFunc

As mentioned, in order to be able to apply the variational principle in DFT, it
is necessary to extend the definition of the functionals beyond the domain of v-
representable densities, and the standard procedure is here to apply the Levy
constrained-search procedure

Le79
[17]. This has led to the functionals known as

the Levy-Lieb (FLL[ρ]) and Lieb (FL[ρ]) functionals, respectively, and we shall
now investigate the differentiability of these functionals. This will represent
the main part of our paper.

4.1 The Levy-Lieb functional
sec:FLL

We consider a general electronic system with the Hamiltonian (
Ham
1)

Ĥv = T̂ + Ŵ + V̂ (37) Ham1

with a ground-state energy Ev that can be degenerate. By applying the
constrained-search procedure to the Hohenberg-Kohn functional (

FHK
11), Levy

Le79
[17]

and Lieb
Li83
[5] have defined the functional

FLL[ρ] = inf
Ψ→ρ

〈Ψ|T̂ + Ŵ |Ψ〉, (38) FLL

referred to as the Levy-Lieb functional. Here, Ψ is any normalized wavefunction
in the Sobolev space H1(R3N) [equation (

FinKE
6)] that generates the density ρ(r).
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This extends the definition of the HK functional to all densities of the space
S. The energy functional (

EHK
10) is generalized accordingly,

ELL[ρ] = FLL[ρ] +

∫
dr ρ(r) v(r). (39) ELL

Here, we shall extend these definitions further by relaxing the normalization
restriction of the wavefunctions and densities by using the definition of the
density (

Density
3) also outside the normalization domain.

Within the normalization domain the energy functional (
ELL
39) has its mini-

mum equal to the exact ground-state energy Ev of the system, when the density
is equal to any of the exact ground-state densities ρv,

Ev = min
ρ∈S

ELL[ρ] = ELL[ρv]. (40) Emin

We shall now investigate the differentiability of the Levy-Lieb functional
(
FLL
38), and in doing so we shall largely follow the arguments of our recent Com-

ment to the work of Nesbet
LS03a
[10], extended to the more general situation.

With the normalization constraint, any ground-state wavefunction Ψv of
Ĥv minimizes 〈Ψ|Ĥv|Ψ〉 according to the variational principle of quantum me-
chanics. Hence, any ground-state wavefunction, corresponding to a particular
ground-state density ρv, also minimizes this quantity when the variation is
restricted to that density. In such a restricted variation the potential contri-
bution (

Vint
5) is constant, and it then follows that also 〈Ψ|T̂ +Ŵ |Ψ〉 is minimized,

or
FLL[ρv] = 〈Ψv|T̂ + Ŵ |Ψv〉. (41) FLLmin

We then have, using (
Dens
4) and(

Vint
5),

FLL[ρv] = 〈Ψv|Ĥv − V̂ |Ψv〉 =

∫
dr

(Ev

N
− v(r)

)
ρv(r). (42) FLL1

In order to find the differential of the functional (
FLL
38) at a ground-state

density, ρv, we make a small change in the density around that density, ρ =
ρv + δρ, and investigate the corresponding change of the functional

δFLL(ρv, δρ) = FLL[ρv + δρ]− FLL[ρv]

= inf
Ψ→ρv+δρ

〈Ψ|T̂ + Ŵ |Ψ〉 −
∫

dr
(Ev

N
− v(r)

)
ρv(r). (43) Fvar

We write the minimizing wavefunction as Ψ = Ψv + δΨ with Ψv being a
normalized ground-state wave function, corresponding to the density ρv. We
do not assume that δΨ has to be ’small’, and we also leave the question of
normalization of Ψ open.
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Generally, we have

〈Ψ|T̂ + Ŵ |Ψ〉 = 〈Ψ|Ĥv − V̂ |Ψ〉 = 〈Ψ|Ĥv|Ψ〉 −
∫

dr v(r) ρ(r) (44) Tave2

and

〈Ψ|Ĥv|Ψ〉 = Ev〈Ψ|Ψ〉+ 〈Ψv + δΨ|Ĥv − Ev|Ψv + δΨ〉
= Ev〈Ψ|Ψ〉+ 〈δΨ|Ĥv − Ev|δΨ〉. (45) Have

This yields

〈Ψ|T̂ + Ŵ |Ψ〉 = 〈Ψ|Ĥv − V̂ |Ψ〉 =

∫
dr

(Ev

N
− v(r)

)
ρ(r) + 〈δΨ|Ĥv − Ev|δΨ〉

(46)
and with the definition (

FLL
38)

FLL[ρv + δρ] =

∫
dr

(Ev

N
− v(r)

) (
ρv(r) + δρ(r)

)
+ inf

Ψ→ρv+δρ
〈δΨ|Ĥv −Ev|δΨ〉.

(47)
The variation (

Fvar
43) now becomes, using (

FLL1
42),

δFLL(ρv, δρ) = FLL[ρv + δρ]− FLL[ρv] =

∫
dr

(Ev

N
− v(r)

)
δρ(r)

+ inf
Ψv+δΨ→ρv+δρ

〈δΨ|Ĥv − Ev|δΨ〉. (48) DeltaF

This is of the form (
Diff
29), with the potential v(r) ∈ L∞ + L3/2 being finite.

Therefore, the functional is Gâteaux differentiable, if the last term

ω(ρv, δρ) = inf
Ψv+δΨ→ρv+δρ

〈δΨ|Ĥv − Ev|δΨ〉 (49) omega3

vanishes faster than δρ or

lim
λ→0

1

λ
inf

Ψv+δΨ→ρv+λδρ
〈δΨ|Ĥv − Ev|δΨ〉 = 0 (50) Limit

for all δρ.
We know that the kinetic energy is finite with the wavefunctions of the

space we consider [equation (
FinKE
6)], and since the electrostatic energy is finite and

the potential energy can be expected to be finite, it follows that the matrix
element in (

Limit
50) is finite. Then we can show the differentiability by scaling.

We consider one specific wavefunction Ψv + δΨδρ that yields a particular
density ρv +δρ. We know that all densities in the S space (

S
7) can be generated

by at least one wavefunction in our space. We then scale the wavefunction

13



increment by λ ∈ [0, 1], i.e., Ψv → Ψv + λδΨδρ, which generates the density
change

λδρ1 + λ2δρ2 = λδρ′. (51) ScalDens

With the scaled wavefunction we have

lim
λ→0

1

λ
〈λδΨδρ|Ĥv − Ev|λδΨδρ〉 = 0,

which means that

lim
λ→0

1

λ
inf

Ψv+δΨ→ρv+λδρ′
〈δΨ|Ĥv − Ev|δΨ〉 = 0. (52) Limit2

The infimum in (
Limit2
52) is searched over the density ρv + λδρ′, which is not

identical to the density ρv + λδρ of (
Limit
50). For that reason we consider instead

of (
DeltaF
48) the variation

δFLL(ρv, λδρ′) = FLL[ρv + λδρ′]− FLL[ρv]

=

∫
dr

(Ev

N
− v(r)

)
λδρ′(r) + ω(ρv, λδρ′) (53) DeltaF1

where
ω(ρv, λδρ′) = inf

Ψv+δΨ→ρv+λδρ′
〈δΨ|Ĥv − Ev|δΨ〉

vanishes faster than λ in view of (
Limit2
52). The expression (

DeltaF1
53) can be rewritten

as
δFLL(ρv, λδρ′)

λ
=

∫
dr

(Ev

N
− v(r)

)
δρ′(r) +

ω(ρv, λδρ′)

λ
, (54) GaM1

where the last term goes to zero as λ → 0. This leads to

lim
λ→0

δFLL(ρv, λδρ′)

λ
=

∫
dr

(Ev

N
− v(r)

)
δρ1(r). (55) GaM2

The r.h.s of (
GaM2
55) is continuous with respect to changes in δρ′, which we can

show by replacing δρ′ in (
GaM1
54) by δρ′ + δ2ρ′ and let δ2ρ′ → 0. Then the corre-

sponding change of the r.h.s. vanishes in the limit λ → 0. Furthermore, the
various ’paths’ δρ′ cover all possible densities, so that we can make infinitesimal
changes. By setting δ2ρ′ = −λδρ2, we then obtain

lim
λ→0

δFLL(ρv, λδρ′)

λ
= lim

λ→0

δFLL(ρv, λδρ1)

λ
(56) GaM3

and

lim
λ→0

δFLL(ρv, λδρ1)

λ
=

∫
dr

(Ev

N
− v(r)

)
δρ1(r). (57) GaM4
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This is exactly the definition of the Gâteaux differential (
Ga
26) in the direction

δρ1, and hence we have

dFLL(ρv, δρ1) =

∫
dr

(Ev

N
− v(r)

)
δρ1(r). (58) GaDiff2

This relation holds for any direction, which implies that the functional FLL is
Gâteaux differentiable with the Gâteaux derivative(δFLL[ρ]

δρ(r)

)
ρ=ρv

=
Ev

N
− v(r), (59) TDer

which is equivalent to a local multiplicative function.
Since Ev is the ground-state energy, it follows that the expression (

Limit
50) is

non-negative. This implies that the functional is locally convex in the neighbor-
hood of the density ρv. In the standard method for proving the differentiability
the convexity of the functional is used

Li83,EE84a,Lee03
[5, 4, 11]. Since the Levy-Lieb functional

is not necessarily convex, this procedure does not work. The reason that in
spite of this fact it has been possible to demonstrate the differentiability here
could be connected to the fact that the functional is locally convex in the
neighborhood of the points of interest.

We have here made no assumption about the normalization of the wave-
function or density. If the density is normalized, the integral over δρ vanishes,∫

dr δρ(r) = 0,

and the derivative will be undetermined up to a constant. The constant in
(
TDer
59) depends on the particular way the functional is extended into the unnor-

malized domain and has no physical significance. This constant corresponds to
the Lagrange multiplier in the Euler equation (

Euler
14), when the Euler-Lagrange

procedure is used.
In the treatment here we have assumed that Ψv is a ground-state wave-

function of a Hamiltonian Ĥv corresponding to the ground-state density ρv,
but no further assumption has been made. The results hold for nondegenerate
as well as degenerate ground states.

We can then conclude that the Levy-Lieb functional FLL is Gâteaux dif-
ferentiable at any PS-v-representable density and that the derivative can be
represented by a multiplicative local function.

If the density is not that of an eigenstate of a Hamiltonian Ĥv – ground
or excited state – then the differential cannot be of the form (

GaDiff2
58), which we

conclude will exclude differentiability. On the other hand, we cannot from our
analysis exclude the possibility that the functional is differentiable at a density
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due to an excited state of some Ĥv. This question, though, requires further
study.

Having considered the Gâteaux differentiability of FLL[ρ] at PS-v-representable
densities, we may now turn to the question of possible Fréchet differentiability
at these densities. The condition (

omega
34) is then

lim
δρ→0

ω(ρv, δρ)

||δρ||
= 0 (60) omega2

with ω(ρv, δρ) given by (
omega3
49). As discussed above, this requires that the ex-

pression (
omega3
49) is bounded in the neighborhood ||δρ|| < ε as ε → 0. The norm

could here be ||δρ||1 or ||δρ||3 of the spaces L1 and L3, respectively.
Since the electrostatic energy is bounded and we can assume that the ex-

ternal potential is such that the potential energy is bounded, it follows that the
residual term is bounded, if the kinetic energy is bounded. We have assumed
that the kinetic energy is finite (

FinKE
6), but this does not necessarily mean that

it is bounded. Generally, we cannot exclude the possibility that the kinetic
energy is unbounded, but it should be observed that it is the infimum that
appears in the expression (

omega3
49). Therefore, a sufficient condition for the Fréchet

differentiability is that for each density in any neighborhood of the ground-
state density ρv there exists one wavefunction that generates bounded kinetic
energy. It seems clear that all densities in the neighborhood of ρv can be gener-
ated by functions close to the ground-state function Ψv, generating the density
ρv.

4 On the other hand, it is possible to construct a function, generating a
density arbitrary close to ρv with arbitrarily high kinetic energy by adding
a small rapidly oscillating component to the wavefunction. In such a case
the functional would not be Fréchet differentiable. From a DFT standpoint,
though, it seems that the possible difference between Gâteaux and Fréchet
differentiability is of no practical importance.

4.2 The Lieb functional
sec:Lieb

In the degenerate case we can have a situation, where a linear combination
of ground-state densities is not necessarily itself a ground-state density. This
has the consequence that the Hohenberg-Kohn (

FHK
11) and the Levy-Lieb (

FLL
38)

functionals are not necessarily convex, which for many applications is a disad-
vantage. A convex functional can be constructed by considering ensemble-v-
representable (E-v-representable) densities

EE84,DG90,Lee03
[3, 12, 11]

ρEv(r) =
∑

k

λk ρvk(r) λk ≥ 0
∑

k

λk = 1, (61) rhoEv

4This problem is closely related to the ’Question 2’, raised by Lieb
Li83
[5, p. 247], which

Lieb believes has an affirmative answer, although a rigorous proof has not been found.
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which is a linear combination of ground-state densities ρvk of the Hamiltonian
Ĥv [equation (

Ham
1)]. It can be shown that the Hohenberg-Kohn theorems are es-

sentially valid also for such densities. The corresponding extended Hohenberg-
Kohn functional (EHK) is defined

FEHK[ρEv] = Ev −
∫

dr v(r) ρEv(r). (62) FEHK

The ground-state energy then becomes
Lee03
[11, Theorem 2]

Ev = inf
ρ∈B

{
FEHK[ρ] +

∫
dr v(r) ρ(r)

}
, (63) HKE

where B is the space of all E-v-representable densities.
Using the constrained-search procedure, Lieb

Li83
[5] has in analogy with the

Levy-Lieb functional (
FLL
38) extended the EHK functional (

EHK
10) to

FL[ρ] = inf
λk,Ψk→ρ

∑
k

λk〈Ψk|T̂ + Ŵ |Ψk〉, (64) FL

where {Ψk} is any set of orthonormal eigenfunctions of some Ĥv (not neces-
sarily degenerate) and λk has the same restrictions as in (

rhoEv
61). This is usually

referred to as the Lieb functional. Both the functionals FEHK (
FEHK
62) and FL (

FL
64)

are convex.
The energy functional corresponding to the functional FL is

EL[ρ] = EL[ρ] +

∫
dr v(r) ρ(r) = inf

λk,Ψk→ρ

∑
k

λk〈Ψk|T̂ + Ŵ + V̂ |Ψk〉,

which has its minimum, equal to the ground-state energy, when all Ψk are
ground-state eigenfunctions of Ĥv. Therefore,

Ev = min
ρ∈S

EL[ρ] = EL[ρEv], (65) EL

where ρEv(r) is according to (
rhoEv
61) composed of any combination of ground-state

wavefunctions of the Hamiltonian Hv.
We can now demonstrate the Gâteaux differentiability of the Lieb func-

tional (
FL
64) for all E-v densities using the same procedure as in the previous

section. We know that the energy functional (
EL
65) has its lowest value when all

functions belong to the ground state. It then follows that the Lieb functional
for an E-v density becomes

FL[ρEv] =
∑

k

λk〈Ψvk|T̂ + Ŵ |Ψvk〉 λk, Ψvk → ρEv, (66) FL1
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which can be expressed

FL[ρEv] =
∑

k

λk〈Ψvk|Ĥv − V̂ |Ψvk〉 =

∫
dr

(Ev

N
− v(r)

)
ρEv(r). (67) FL2

In exactly the same way as in the previous case, it can then be shown that the
differential becomes

dFL(ρEv, δρ) =
∑

k

λk〈δΨvk|T̂ + Ŵ |Ψvk〉+ c.c. =
∑

k

λk〈δΨvk|Ĥv − V̂ |Ψvk〉+ c.c.

= Ev 〈δΨvk|Ψvk〉+ c.c.−
∫

dr v(r) δρ(r) =

∫
dr

(Ev

N
− v(r)

)
δρ(r). (68) DeltaFL

This shows that the functional FL[ρ] is Gâteaux differentiable at any density
generated by an ensemble of ground-state wave functions, i.e., at any E-v-
representable density,

(δFL[ρ]

δρ(r)

)
ρ=ρEv

=
Ev

N
− v(r) (69) FLDer

Using the same arguments as in the previous case, it seems that function-
als of physical interest are also Fréchet differentiable at the E-v-representable
densities.

If the density in (
FL
64) is not E-v representable, i.e., cannot be expressed as

a linear combination of degenerate ground-state densities of any Hamiltonian,
Hv, then the minimum cannot be represented by ground-state wavefunctions
only – at least one must belong to an excited state. If not all wavefunctions
belong to the same energy eigenvalue, then the differential cannot be written
in the form (

DeltaFL
68). Using the same arguments as in the previous case, this

means that the functional is not differentiable. If, on the other hand, all
wavefunctions belong to the same excited energy eigenvalue, our analysis does
not at present exclude differentiability. As in the previous case, however, this
question requires further study.

5 The Kohn-Sham model
sec:KS

We shall now show how the formalism examined above can be used to derive the
standard Kohn-Sham scheme. We start by considering the Levy-Lieb energy
functional (

ELL
39), which is minimized under the normalization constraint

Ev = min
ρ∈S

ELL[ρ] = ELL[ρv] (70) Emin2
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by varying the density in the space S [equation (
S
7)].

The minimization of ELL[ρ], using (
ELL
39), leads to

δELL[ρ] = δ
{

FLL[ρ] +

∫
dr ρ(r) v(r)

}
= 0,

and staying within the normalization domain to

δELL[ρ]

δρ
=

δFLL[ρ]

δρ
+ v(r) + constant = 0. (71) MinELL

The constant is here undetermined, due to the normalization constraint,∫
dr ρ(r) = 0. If the functional ELL[ρ] is Gâteaux (Fréchet) differentiable, then

its Gâteaux (Fréchet) derivative will vanish at the minimum
DMik99
[14, p. 460].

In the Kohn-Sham model
KS65
[2] we consider a system of noninteracting elec-

trons, moving in a local potential vKS(r),

ĤKS = T̂ + V̂KS =
N∑

i=1

−1
2
∇2

i +
N∑

i=1

vKS(ri) , (72) HKS

and the basic idea of the model is to determine the potential vKS(r) so that the
ground-state density of the noninteracting system becomes the same as that
of the interacting system we are considering. This requires that the density
is noninteracting v-representable, i.e., can be reproduced by the ground-state
density of a noninteracting system with a local potential. van Leeuwen has
shown that this is always possible with arbitrary accuracy

Lee03
[11].

Using the constrained search, the correspondence of the Levy-Lieb func-
tional (

FLL
38) is for the noninteracting system the minimum of the kinetic energy,

TKS[ρ] = min
Ψ→ρ

〈Ψ|T̂ |Ψ〉, (73) TS

and the corresponding energy functional becomes

EKS[ρ] = TKS[ρ] +

∫
dr ρ(r) vKS(r). (74) EKS

The ground-state energy of the noninteracting system is obtained by minimiz-
ing this energy functional under the normalization constraint,

Ev = min
ρ∈S

EKS[ρ], (75) KS2

where the search is over the same set of densities as in the interacting case.
This leads to the equation

δEKS[ρ]

δρ
=

δTKS[ρ]

δρ
+ vKS(r) + constant = 0. (76) MinEKS
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The derivative exists here for densities that are PS-v representable for a non-
interacting system.

We now require that the solution of the equation (
MinEKS
76) should lead to the

same ground-state density as the equation (
MinELL
71), which yields the condition for

the potential vKS,

vKS(r) =
δELL[ρ]

δρ
− δTKS[ρ]

δρ
=

δFLL[ρ]

δρ
− δTKS[ρ]

δρ
+ v(r) + constant. (77) KS1

If this potential is inserted in (
MinEKS
76), we see that (

MinELL
71) is automatically satisfied.

We can express FLL as

FLL[ρ] = TKS[ρ] + ECoul[ρ] + Exc[ρ], (78)

where the second term on the r.h.s. represents the Coulomb (Hartree) interac-
tion energy and the last term the exchange-correlation energy, including also
the (hopefully small) difference between the TKS and the kinetic-energy part
of the FLL functional. This leads to the Kohn-Sham potential

vKS(r) = v(r) +
δECoul[ρ]

δρ
+

δExc[ρ]

δρ
(79) KS

leaving out the undetermined constant term.
With the potential (

KS
79) the Kohn-Sham model (

HKS
72) yields the same ground-

state density as the original problem, and inserting this density into the HK
functional (

EHK
10) leads, in principle, to the ground-state energy. This is the basic

Kohn-Sham procedure.
Above we have assumed that the minimization is carried out within the

domain of normalized of densities. Alternatively, we can perform the mini-
mization, using the Euler-Lagrange procedure. Then we use the extension of
the functionals valid also outside the normalization domain and enforce the
normalization constraint by a Lagrange multiplier.5 For the Levy-Lieb energy
functional (

Emin2
70) this leads to

δ
{

ELL[ρ]− µ

∫
dr ρ(r)

}
= 0 (80) ELKS

and to the Euler equation

δFLL[ρ]

δρ
+ v(r) = µ (81) EulerLL

5As demonstrated in section
sec:General
2, the extension of the functionals into the unnormalized

domain is nontrivial.
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and, similarly, minimization of the KS energy functional to

δTKS[ρ]

δρ
+ vKS(r) = µ′. (82) EulerKS

This yields

vKS(r) =
δFLL[ρ]

δρ
− δTKS[ρ]

δρ
+ v(r) + constant, (83) KS3

which is identical to the equation (
KS1
77).

Instead of basing the treatment on the Levy-Lieb functional (
FLL
38), the cor-

responding result can be obtained by using the Lieb functional (
FL
64).

6 Conclusions
sec:Concl

We have shown that the Lieb functional (
FLDer
69) is Gâteaux differentiable at all

E-v-representable densities, which is consistent with the result of Englisch and
Englisch

EE84,EE84a
[3, 4], who demonstrated the differentiability by using the convexity

of the functional. The same procedure is used by van Leeuwen
Lee03
[11]. This

procedure cannot be used for the Levy-Lieb functional, FLL[ρ], which is not
manifestly convex. According to Englisch and Englisch, the differentiability of
this functional is an open question.

The procedure we have applied does not depend on the (global) convexity
of the functional, and we have been able to demonstrate the Gâteaux differen-
tiability of the Levy-Lieb functional at all PS-v-representable densities, where
this functional is locally convex. It seems plausible that both these functionals
are also Fréchet differentiable at the same densities, although we have not
been able to find a rigorous proof.
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A Basic topological concepts
sec:GeneralA

In this Appendix we shall define some notations and basic topological concepts,
which are needed in treating density functionals in a formal way. (We also refer
to the article by van Leeuwen in this volume

Lee03
[11], where some of these concepts

are discussed in more detail.)
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A.1 Notations

X, Y, .. are sets with elements x, y, ..
x ∈ X means that x is an element in the set X.
N is the set of nonnegative integers. R is the set of real numbers. C is the
set of complex numbers.
Rn is the set of real n-dimensional vectors. Cn is the set of complex n-
dimensional vectors.
A ⊂ X means that A is a subset of X.
A ∪B is the union of A and B. A ∩B is the intersection of A and B.
A = {x ∈ X : P} means that A is the set of all elements x in X that satisfy
the condition P .
f : X → Y represents a function or operator, which mens that f maps uniquely
the elements of X onto elements of Y .
A functional is a unique mapping f : X → R (C) of a function space on the
space of real (complex) numbers.
The set of arguments x ∈ A for which the function f : A → B is defined is the
domain, and the set of results y ∈ B which can be produced is the range.
(a, b) is the open interval {x ∈ R : a < x < b}. [a, b] is the closed interval
{x ∈ R : a ≤ x ≤ b}.
sup represents the supremum, the least upper bound of a set
inf represents the infimum, the largest lower bound of a set.

A.2 Vector spaces

A real (complex) vector space or function space X is an infinite set of elements,
x, referred to as points or vectors, which is closed under addition, x + y = z ∈
X, and under multiplication by a real (complex) number c, cx = y ∈ X. The
continuous functions f(x) on the interval x ∈ [a, b] form a vector space, also
with some boundary conditions, like f(a) = f(b) = 0.

A subset of X is a subspace of X if it fulfills the criteria for a vector space.
A norm of a vector space X is a function p : X → [0,∞] with the prop-

erties (1) p(λx) = |λ|p(x), (2) p(x + y) ≤ p(x) + p(y) for all real λ (λ ∈ R)
and all x, y ∈ X, and (3) that p(x) = 0 always implies x = 0. The norm is
written p(x) = ||x||. We then have ||λx|| = |λ| ||x|| and ||x + y|| ≤ ||x||+ ||y||
and ||x|| = 0 ⇒ x = 0. If the last condition is not fulfilled, it is a seminorm.

A vector space with a norm for all its elements is a normed space, denoted
(X, ||·||). The continuous functions, f(x), on the interval [a, b] form a normed

space by defining a norm, for instance, ||f || =
[ ∫ b

a
dt |f(t)|2

]1/2
. By means of

the Cauchy-Schwartz inequality, it can be shown that this satisfies the criteria
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for a norm
Gr81
[16, p. 93].

If f is a function f : A → Y and A ⊂ X, then f is defined in the
neighborhood of x0 ∈ X, if there is an ε > 0 such that the the entire sphere
{x ∈ X : ||x− x0|| < ε} belongs to A

Gr81
[16, p. 309].

A function/operator f : X → Y is bounded, if there exists a number C
such that

sup
0 6=x∈X

[
||fx||
||x||

]
= C < ∞.

Then C = ||f || is the norm of f . Thus, ||fx|| ≤ ||f || ||x|| .
A function f is continuous at the point x0 ∈ X, if for every δ > 0 there

exists an ε > 0 such that for every member of the set x : ||x− x0|| < ε we
have ||fx− fx0|| ≤ δ

Gr81
[16, p. 139]. This can also be expressed so that f is

continuous at the point x0, if and only if fx → fx0 whenever xn → x0, {xn}
being a sequence in X, meaning that fxn converges to fx0, if x converges to
x0

Ta57
[18, p. 70].
A linear function/operator is continuous if and only if it is bounded

Gr81
[16, p.

197, 213],
DMik99
[14, p. 22].

A functional f : X → R is convex if

f(tx + (t− 1)y) ≤ tf(x) + (t− 1)f(y)

for all x, y ∈ X and t ∈ (0, 1).
A subset A ⊂ X is open, if for every x ∈ A there exists an ε > 0

such that the entire ball Br(x) = {y ∈ X| ||y − x|| < ε} belongs to A, i.e.,
Br(x) ⊂ A

BB92
[13, p. 363],

Gr81
[16, p. 98],

Ta57
[18, p. 57].

A sequence {xn} , where n is an integer (n ∈ N), is an infinite numbered
list of elements in a set or a space. A subsequence is a sequence, which is a
part of a sequence.

A sequence {xn ∈ A} is (strongly) convergent towards x ∈ A, if and only
if for every ε > 0 there exists an N such that ||xn − x|| < ε for all n > N

Gr81
[16,

p. 95, 348].
A sequence is called a Cauchy sequence if and only if for every ε > 0 there

exists an N such that ||xn − xm|| < ε for all m, n > N . If a sequence {xn}
is convergent, then it follows that for n,m > N

||xm − xn|| = ||(xn − x) + (x− xm)|| ≤ ||xn − x||+ ||xm − x|| < 2ε

which means that a convergent sequence is always a Cauchy sequence. The
opposite is not necessarily true, since the point of convergence need not be an
element of X

DW74
[19, p. 44].

A normed space in which every Cauchy sequence converges (to a point in
the space) is said to be complete and termed a Banach space.
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A subset A of a normed space is termed compact, if every infinite sequence
of elements in A has a subsequence, which converges to an element in A. The
closed interval [0,1] is an example of a compact set, while the open interval (0,1)
is noncompact, since the sequence 1, 1/2, 1/3... and all of its subsequences
converge to 0, which lies outside the set

Ta57
[18, p. 149]. This sequence satisfies

the Cauchy convergence criteria but not the (strong) convergence criteria.

Lp represents the Banach space with the norm ||f(x)|| =
[ ∫

dx |f(x)|p
]1/p

<
∞

BB92
[13].
A dual space or adjoint space of a vector space X, denoted X∗, is the space

of all functions on X.
An inner or scalar product in a vector space X is a function 〈·, ·〉 : X×X →

R with the properties (1)

〈x, λ1y1 + λ2y2〉 = λ1〈x, y1〉+ λ2〈x, y2〉 , 〈x, y〉 = 〈y, x〉

for all x, y, y1, y2 ∈ X and all λj ∈ R , and (2) 〈x, x〉 = 0 only if x = 0. A

Banach space with the norm x → ||x|| = +
√
〈x, x〉 is called a Hilbert space

BB92
[13,

p. 364].
A Sobolev space H(m)(R3N) is the space of all functions which together

with their partial derivatives up to order m are square integrable in the space
R3N , i.e., belong to the space L2

DMik99
[14, p. 97].
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