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Abstract. The Rayleigh-Schrodinger perturbation formalism is extended to the case of a 
model space, which is not necessarily degenerate. The model space defines the zero-order 
or model wavefunction, and the new formalism makes it possible to use a model wave- 
function of multi-configurational type. The effect of the states outside the model space are 
as usual taken into account by means of a perturbation expansion and expressed in terms 
of an ‘effective’ Hamiltonian, operating only within the model space. The extended Rayleigh- 
Schrodinger formalism is used to prove the linked-diagram theorem for a multi-configura- 
tional model space in a simple way. Alternatively, this pfoblem can be handled by means of 
the well known formalism for degenerate perturbation, treating the splitting within the 
model space as due to an additional perturbation. The present approach, however, is more 
direct and the model space splitting is handled without summing any infinite series. The 
problem of convergence of the perturbation expansion is briefly discussed. 

1. Introduction 

The purpose of the perturbation technique in quantum mechanics is to solve the 
Schrodinger equation by means of successive approximations. The basic idea here is 
that the Hamiltonian H for the system is split up into a model Hamiltonian H ,  and a 
perturbation V,  

H = H , + V  

The model Hamiltonian should represent a good approximation of the full Hamiltonian, 
and its eigenvalues and eigenfunctions should be easy to determine. 

Two types of perturbation expansions are frequently used, namely the Brillouin- 
Wigner (BW) and the Rayleigh-Schrodinger (RS) schemes. The BW expansion is 
formally very simple, but it contains the unknown energy of the system, which means that 
the contributions due to the perturbation have to be calculated in a self-consistent way. 
The RS expansion, on the other hand, is given in terms of the known eigenvalues of the 
model Hamiltonian, but it has instead a number of additional terms not appearing in the 
BW case. 

The starting point for the perturbation expansion is a zero-order or model wave- 
function, which is confined to a subspace ofthe Hilbert space for the system, usually called 
the model space. This subspace is defined by means of certain eigenfunctions of the 
model Hamiltonian, and the standard procedure is to restrict the model space to the 
space spanned by the eigenfunctions of a single eigenvalue of this Hamiltonian (single 
configuration). If the eigenvalue spectrum of the model Hamiltonian is non-degenerate, 
the model space will then contain a single state (closed-shell case), and it is easy to derive 
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the perturbation expansions. If the model space has degenerate eigenvalues (open-shell 
case), the perturbation theory becomes more complicated, particularly in the RS 
formulation. Complete derivations of the RS perturbation expansion, for a model 
space with a single, degenerate energy level (single open-shell configuration), were first 
given by Kat0 (1949, 1950) and by Bloch (1958). In their treatment the model function 
is restricted to a combination of degenerate eigenfunctions of the model Hamiltonian, 
and the admixture of eigenfunctions belonging to all other eigenvalues are treated by 
perturbation. Obviously, the convergence of the perturbation expansion can be expected 
to be faster, if a larger fraction of the final solution is included in the model function. 
In particular, it may happen that certain energy levels of the model Hamiltonian are so 
strongly interacting that it is difficult to treat their mixing on a perturbational basis. 
In the present work the RS perturbation is extended to a model space with several energy 
levels. This makes it possible to use a model function of the ‘multi-configurational’ 
type, so that strongly interacting levels can be included to infinite order (by solving a 
secular equation), and only weaker interactions have to be treated by perturbation. 

The various contributions in the perturbation expansion are conveniently represented 
by means of diagrams of the Feynman type (Feynman 1949), and it was first shown by 
Brueckner (1955) that the additional terms in the RS expansion cancel in this repre- 
sentation in the lowest orders against so-called unlinked diagrams of the leading term. 
This means that the RS expansion is given by an expression analogous to the BW 
formula, provided only linked diagrams are considered. This is the linked-diagram 
theorem, which represents a great simplification in carrying out perturbation calculations 
to high order. This theorem was first proved by Goldstone (1957) in the non-degenerate 
case (closed-shell configuration). A more general proof has been given by Brandow 
(1967) by starting from the BW perturbation and expanding the energy dependence 
out of the denominators. Brandow was then able to show that the unlinked diagrams 
vanish in all orders, provided some ‘folded’ diagrams were added. A different proof of 
the linked-diagram theorem, based directly on the RS expansion for an exactly de- 
generate model space, has been given by Sandars (1969). The methods used by Brandow 
and Sandars are time-independent, while Goldstone used a time-dependent approach. 
Later, Goldstone’s proof has been extended to degenerate systems (Johnson and 
Baranger 1971, Kuo et a1 1971). 

Modern applications of the perturbation technique are often based on the effective- 
operator formalism, which has been developed particularly in connection with nuclear 
problems (Eden and Francis 1955, Bloch and Horowitz 1958, Feshbach 1958, 1962, 
see also the review article by Barrett and Kirson 1973, where numerous references to 
recent works are to be found). The basic idea here is that the effect of the true operator, 
operating in the entire Hilbert space, can be reproduced by means of an ‘effective’ 
operator, operating only within the model space. Also the effective operators are 
conveniently represented by means of diagrams, and there is a corresponding linked- 
diagram theorem. 

In the present work an extended form of the RS perturbation formalism is used to 
prove the linked-diagram theorem for a model space with several energy levels. A time- 
independent approach is used, and the work can be considered as an extension of that 
of Sandars (1969). The result is expressed in terms of a ‘wave operator’, which is the 
same for the entire model space and which can be used to evaluate wavefunctions and 
effective operators. 

As mentioned, there are other ways of handling the problem of non-degeneracy within 
the model space. Brandow (1967) starts from a formally degenerate model space and 
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considers the splitting within this space as due to an additional perturbation. Under 
certain circumstances the effect of this perturbation can be summed to all orders. A 
different technique has been used by Balian and DeDominicis (1971). Like Brandow 
these authors start from the BW formalism, and they construct a closed form of the 
transformation to an energy-independent effective Hamiltonian. The present approach 
leads to essentially the same results, but it is more direct, since it starts from the energy- 
independent RS expansion. In particular, it does not depend on any summation of 
infinite series, which may have some consequences regarding the convergence of the 
perturbation expansions. This problem has recently been investigated in some detail 
by Weidenmuller et al(Schucan and Weidenmuller 1972,1973, Hoffman et al1973,1974). 

2. Perturbation expansions and effective operators 

2.1. Projection and wave operators 

Our basic problem is to solve the Schrodinger equation 

HY'"  = E""'". (1) 

H is the Hamilton operator for the system, and it is split up into two hermitian parts, a 
model Hamiltonian H ,  and a perturbation I/: 

H = H,+I/ .  ( 2 )  
We need not specify H ,  at this moment, but we assume that a complete set of ortho- 

normal eigenfunctions { 4') and corresponding eigenvalues are available 

H04" = E t @  (@14b> = d a , b .  (3) 
The eigenvalues E t  of the model Hamiltonian may be degenerate. (If the energy spectrum 
is partly continuous, it is for simplicity assume that some 'box of normalization' is used, 
so that all states can be treated formally in the same way.) 

Some of the basis functions {@} will define a model space D, and the remaining 
part of the Hilbert space is called the orthogonal space. It is assumed that all eigenstates 
of H ,  belonging to the same eigenvalue are in the same subspace. The projection 
operators associated with the two spaces are 

The projection operators satisfy a number of well known relations, such as 

If the model space has d dimensions, it can be shown that there is normally a one-to- 
one correspondence between d eigenfunctions of the full Hamiltonian Ya and their 
prqjections onto the model space or model functions 

Ya, = PY'" CI = 1,2, . . . ,  d (6) 
(Kuo er al 1971). This can be made very plausible, if we consider the limiting case, when 
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the perturbation is turned off adiabatically. d eigenfunctions of H will then go over 
into distinct (and orthogonal) functions in the model space (and the remaining eigen- 
functions into the orthogonal space). With no perturbation the model functions are, 
of course, identical to the corresponding true wavefunctions. When the perturbation is 
turned on again, the model functions can change, due to mixing within the model space. 
But the model functions are still expected to be distinct (except possibly in very accidental 
cases), and, therefore, there is a one-to-one correspondence between them and the 
original eigenfunctions of the full Hamiltonian. This makes it possible to define an 
operator R which transforms all d model functions back into these eigenfunctions 

YZ = RYt a =  1,2 ) . . . )  d .  (70)  
This operator is often called the wave operator ( M ~ l l e r  1945, 1946) or the model 

operator (Eden and Francis 1955), and it should be observed that it is the same for all d 
states. The wave operator is analogous to the time-development operator U(0, - m )  
used in the time-dependent approach. In order to specify R completely, we assume that 
it gives a null result when operating on the orthogonal space, ie 

RQ = 0. (7b)  
Since P +  Q = 1, it follows directly from (7b)  that 

R P  = R. (8Q) 

Operating on (7a)  with P from the left gives 

Y ;  = PRY; x = 1,2, . . . ,  d 

which means that PR leaves any function in the model space unchanged. But since R 
destroys any component in the orthogonal space according to (7b), we always have the 
relation 

PR = P .  (8b) 
The prqjection operator P transforms a d-dimensional subspace (spanned by Y’) of 
the Hilbert space into another subspace of the same dimensionality (the model space, 
spanned by Y;),  and the wave operator R transforms the model space back to the 
former subspace. This does not mean, however, that R is the inverse of P in the ordinary 
sense. In figure l(a), (b )  we have illustrated the prqjection and wave operators in a very 
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Figure 1. Simple illustrations of the projection and wave operators. 
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simple way. The horizontal axis here represents the model space and the vertical axis 
the orthogonal space. The projection operator P prqjects out of any function in the 
combined space its components in the model space. The wave operator transforms any 
function with the prqjection Yo into Ye, independent of the component in the orthogonal 
space. Therefore P has no effect in R P  and, similarly, R has no effect in PO in accordance 
with (8a, b). 

2.2. Efective operators 

By means of the wave operators (7a) we can write the Schrodinger equation (1) 

HRY; = E"RY,aO a =  1,2, . . . ,  d (9) 
for the states Y* that correspond to the d model states. It should be observed that the 
wave operator R is the same for all these states. If we operate with P from the left on 
this equation, we obtain 

PHRWZ, = €ay; a =  1 ,2  , . . . ,  d .  (10) 

Herr = PHR = P H o P +  PVR (1 1) 

Herr"; = E""'", a =  1 , 2  , . . . ,  d. (12) 

We then find an operator 

which satisfies the eigenvalue equation 

This 'effective Hamiltonian', which is the same for the entire model space, generates d 
of the exact eigenvalues of the full Hamiltonian, although it operates only within the 
model space. The eigenfunctions of the effective Hamiltonian are the prqjections of the 
corresponding true wavefunctions, ie the model functions. These functions are not 
necessarily orthogonal and therefore the effective Hamiltonian is generally non- 
hermitian. (Its eigenvalues are, of course, always real, since they correspond to true 
energies.) We shall return to the question of the non-hermiticity in § 2.5. 

I t  is often convenient to use the intermediate normalization, which means that the 
model function-and not the true wavefunction-is normalized, ie 

(Y; /Y; )  = (Y;IY'") = 1 

The exact energy is then given by 

E" = ( ~ , a O l H e f f l ~ ; ) ~  

The wave operator can also be used to construct effective operators corresponding to 
other quantities than the energy, but we shall not be further concerned with this problem 
here. (A brief discussion is given in 9 3.4.) 

2.3. Brillouin-Wigner expansion 

By operating with Q from the left on the Schrodinger equation 

(E"-H,)Y" = VY'" 

we obtain 

(E" - Ho)QY'"  = Q V Y " .  
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This equation can be solved for Q Y "  by introducing a resolvent T" (see eg Messiah 1965, 
Lowdin 1966,1968), defined by 

Ta(Ea  - Ho)  Q T"Q = Tu.  (15) 
This operator is the inverse of (E"- H,) in the orthogonal space (and zero in the model 
space) and is often written 

It can also be given a more explicit form using the 'spectral resolution' (Lowdin 1968). 
(1 5) gives directly 

T"(Ea-  H,)Ir) = T"(E" - E;)lr) = Qlr) 

where Ir) is an eigenfunction of H0(3).  This shows that T" has the same eigenfunctions 
as H ,  in the orthogonal space and that the corresponding eigenvalues are @"--E;)-'.  
We then get the expansion 

By operating with T u  from the left on (14b) we get (using 15) 

QY"  = T " V Y "  

or 

Y" = Y1,+ T " V Y " .  (17) 

Y" = (1 + T"V+ T'VT"  + . . .)Y$. (18) 

This gives immediately the Brillouin-Wigner (BW) expansion 

By means of the expansion (16b) of the resolvent this leads directly to the well known 
expansion in matrix form. 

From (17) it follows that we can introduce an operator X u ,  defined by 

X "  = P +  T'VX" (19) 

which converts the model function Y'", into the correspondent true wavefunction Y", 

Y" = X"Y5. 

We can also define an 'effective interaction' W" satisfying the equation 

W" = V X "  = VP+VT"W"  (20) 
or 

W" = V P +  V T " V P +  V T " V T " V P + .  . . . 
We then obtain an 'effective Hamiltonian' 

Hzff = PH,P+P W" 

which satisfies the eigenvalue equation 

Hzf fY '" ,  = E""'",. ( 2  1 b) 

This equation, however, differs from the previous effective-operator equation (1 1, 12) 
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in one important respect. Since T" in (16) depends on the exact energy E" of the state 
considered, the effective Hamiltonian H:,f also becomes energy dependent. Therefore, 
the equation (21) can only be solved in an iterative way for one energy level at a time. 
The effective Hamiltonian discussed in the previous section, on the other hand, is exactly 
energy independent and the same for all states corresponding to the model states. 
Although it is possible to eliminate the energy dependence of the BW operators by means 
of series expansions, (Brandow 1967), we shall find it more convenient to start directly 
from a perturbation expansion of RS type. 

2.4. Generalized Rayleigh-Schrodinger expansion 

2.4.1. General. In order to obtain a perturbation expansion that is independent of the 
energy, we operate on the Schrodinger equation (14a) by the wave operator (7a, 8a) 
R = RP. This gives 

(E" -RHoP)Y"  = R W " .  (22) 

We can now eliminate E" by subtracting this equation from the Schrodinger equation, 

( R H o - H o R ) Y t  = (VQ-RVR)Y'",. (23) 

This equation holds for all d model functions of the model space, and the wave operator 
R is the same in all these cases. Since the operators on both sides of this equation give a 
null result when operating on the orthogonal space, it follows that the operator relation 

[R,HO] = VR-RVR (24) 

holds in the entire space. The equation is the basic formula for the generalized Rayleigh- 
Schrodinger perturbation introduced here, and it represents the main result of the present 
work. We shall demonstrate below that this leads to an energy-independent perturbation 
expansion, which is valid also for a model space containing several (degenerate) energy 
levels, ie of multi-configurational type. Before we do  so we shall show that it yields the 
familiar RS expansion, when all model functions have the same energy (single con- 
figuration). 

2.4.2. Completely degenerate model space. We assume now that all states of the model 
space have the same unperturbed energy E o ,  ie 

H o Y t  = Eo"; a =  1,2 , . . . ,  d. (25) 

This gives 

[R, Ho]Yt = (Eo -Ho)RYt a = 1,2, . . . ,  d 

and instead of (24) 

(Eo-Ho)R  = VR-RVR. (27) 

By introducing a resolvent R in analogy with (15H16) 

RQ = R R(Eo - H o )  = Q 
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we can transform this equation into 

QR = R(VR-RVR) 

or since PR = P according to (8b), 

R = P+R(VR-RVR). (29) 

This expression was first derived by Bloch (1958, equation (31)). (Our wave operator R 
is identical to the U operator used by Bloch.) 

In order to obtain an expansion of R we set 

= R'O"'+R'2'+ . . . (30) 

where R(") represents the part of R that contains n interactions of the perturbation V.  
Obviously, we have 

R(O) = p (31) 

and the following terms are given by the recursion formula 

or 

This leads to the well known Rayleigh-Schrodinger expansion (Bloch 1958, Messiah 
1965) 

(Eo-Ho)R") = QVP 

(Eo-Ho)R'2' = QVR(')-R(')VP (33) 
(Eo-Ho)Q(3)  = QI/R(2)_R(1)T/R(1)-R(2)T/p 

etc, or 

R(') = RVP 

R(') = R V R  V P  - R 2  V P  V P  (34) 

R(3) = R V R  V R  V -  R V R 2  V P  V P  - R2 V P  V R  V P  - R2 V R  V P  V P  - R3 V P  V P  V P  

etc, where the resolvent R is given by (28). 

2.4.3. Model  space with several energy levels. The formulae of the previous section are 
no longer valid, if there are several different energy levels in the model space. In this case 
we have to use the more general equation (24) as the starting point for the perturbation 
expansion. In analogy with (32a) we get the recursion formula 
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ie in the lowest orders 

[R'",H,] = QVP 

[R'", H,] = QVR'"-Rcl)VP (36) 
p 1 3 1 ,  H,] = Q I / R ( ~ ) - R ~ ~ ) v R ~ ~ ) - R I ~ ) I / ~  

etc. 
The equations above are somewhat more complicated to solve than the corresponding 

equations (33) due to the commutator. Therefore, we have to analyse them further 
before we can formulate the equivalent of (34). 

The equations (36) are of the form 

[R'"', H,] = A. (37) 

By taking an arbitrary matrix element of both sides we get 

or 

We assume here that l a )  is in the model space and Ir) in the orthogonal space, since all 
other elements are equal to zero (for n > 0) according to  ( 8 4  b). Therefore the de- 
nominator in (38) can never vanish. In order to compare this with the results for a 
completely degenerate model space, we form the analogous expression for the wave 
operator in 5 2.4.2. From 

( E ,  - H,)Q'"' = A (39) 

we obtain 

(r l (E,  -H,)R("'la) = ( E ,  -E',)(rlR'")la) 

= (rlAla> 

or 

We now see that (38) and (40) differ only in their energy denominators. E ,  in (40), which 
is the energy of all states in the model space, is in the more general expression (38) 
replaced by the energy of the particular initial state la) (which is always in the model 
space). The denominator is therefore always equal to the difference in zero-order energy 
between the initial and the final states for the operator A. This makes it convenient to 
describe the perturbations in terms of diagrams, as we shall demonstrate in the next 
section. Essentially the same result as that obtained here, can be achieved by starting 
from an exactly degenerate model space and summing certain diagrams to all orders 
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(Brandow 1967). The present approach is more direct and yields the same result without 
any summation of infinite series. We shall return to this question in 0 4. 

In the previous section we introduced the resolvent R in order to solve the equations 
(27). Instead of (28) we can, ofcourse, as well use (39,40) as the definition of this operator, 
ie 

Similarly, we can introduce a resolvent S in order to solve equations of the type (37), 
and define this operator by 

where again la) is supposed to  belong to the model space and Ir) to the orthogonal 
space. It should be observed that the effect of this new resolvent depends not only on the 
final state Ir) but also on the initial state l a )  for the operator A that the resolvent is 
acting on. Therefore, S cannot be given any explicit form of the type (28), but (42) is, of 
course, a perfectly adequate definition of the resolvent. 

The fact that the denominator in (42) depends on the initial as well as on the final 
state, makes it necessary to use a special notation in order to indicate exactly what 
operator the resolvent is acting on. For this purpose we shall use a parenthesis in the 
following way 

(43) [Q'"', HO] = A =. = S(A).  

The right hand bracket ) represents the initial state and the left hand bracket ( the final 
state for the operator A .  We shall soon see that this convention leads to a convenient 
and unambiguous notation when more complicated expressions are built up. 

We are now in the position to write down the formal solutions of the equations 
(35,36) in analogy with (32-34). Since the two sets of equations differ only in their left 
hand sides, we only have to replace the resolvent R in the previous equations by the 
new resolvent S introduced above. We then get the general formula 

and, particularly, for the lowest orders 

Q(3) = S(Vl2 '~ ) ) -  S(Q(l)VQ(l))- S(Q'2'VP) 

etc. 
In order to get the equivalent of (34) we have to keep track of the different resolvents 

and exactly what operators they are acting on. But we can easily see that this is auto- 
matically taken care of by the parentheses. For instance, in R(') the resolvent acts only 
on V P  and therefore we must keep the parenthesis around that expression, when Q(') 
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is substituted into etc. We then get 

Q(1) = S ( V P )  

Q(2)  = S( VS( V P ) )  - S( S( V P )  V P )  

+ S( S( S( V P )  V P )  VP) 

(46) 
02'3)  = S( VS( VS( VP)))  - S( VS( S( V P )  V P ) )  - S( S( V P )  VS( V P ) )  - S( S( VS( V P ) )  V P )  

etc, where the resolvent S is given by (42). 
Ordinary algebraic rules are used here to associate each left hand bracket with the 

correct right hand one. These expressions, which are valid for a model space with 
several energy levels, are completely analogous to the expressions (34) for an exactly 
degenerate model space, with the important exception that in the general case the 'range' 
of each resolvent has to be shown explicitly. 

An even more compact notation can be used here, which we shall find useful in the 
following, namely 

Q ( 1 )  = ( V )  

Q c z )  = ( V (  V ) )  - (( V ) V )  (47) 

Q(3) = ( V (  V (  - ( V((  V )  VI) - ( ( V U  VI) - ( (V(  V ) ) V  + ((( V ) V )  V )  

etc. 
We have here simply removed all resolvents and projection operators. It is under- 

stood that each right hand bracket is associated with a state in the model space and each 
left hand bracket with a state in the orthogonal space. Each complete parenthesis yields 
an energy denominator, equal to the corresponding unperturbed energy difference. 

2.5. Non-hermiticity of the eflective Hamiltonian 

We have previously mentioned ($2.2) that the effective Hamiltonian is generally not 
hermitian, since it has non-orthogonal eigenvectors. In this section we shall demonstrate 
this non-hermiticity more explicitly. 

The hermitian ad.joint of the wave operator L2 (7a) is defined by 

QQ' = 0. 

Its expansions are obtained 

[H, ,R ' "+]  = 

[ H o , R ' Z ' f ]  = 

etc. 

by forming the hermitian ad,joint of (36) ,  ie 

(49) 

These equations can, of course, be solved by means of a resolvent, similar to the 
S operator introduced above. However for the present purpose this will not be necessary. 
From the first equation above we get directly 
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where, as usual, we assume that l a )  is in the model space and Ir) in the orthogonal space. 
An arbitrary matrix element of the first-order term of the effective Hamiltonian (1 1). 
P V R ( ' ) ,  is according to (46) 

while the corresponding element of the hermitian adjoint operator, Q(')' VP, is according 
to (50) 

The two expressions above differ in their energy denominators ; the former contains 
the energy of the initial state la), while the latter contains the energy of the final state 1 b). 
The operator PVR")  is therefore not hermitian in the general case. Both the initial and 
the final states are in the model space, and if this space is completely degenerate, there 
is no difference between the two expressions, and the operator becomes hermitian. 
However the higher-order terms become non-hermitian also in this case, as demonstrated 
by des Cloizeaux (1960). Then symmetric terms, like PVRVRVP,  are hermitian, while 
'mirror' terms like, PVR'VPVP and PVPVR2VP,  are the hermitian ad,joints. Since the 
expression for the PVR (using 34) is not completely symmetric, it follows that the 
effective Hamiltonian (11) is non-hermitian. In the more general case studied here. 
where the model space need not be completely degenerate, it follows from the analysis 
above that also symmetric terms are generally non-hermitian. 

des Cloizeaux (1960) has shown that it is possible to transform the effective operator 
(without changingits eigenvalues) to a hermitian form. In the case ofanexactly degenerate 
model space (which is the only case he considers), this leads to a symmetrized form in 
terms of the P ,  Vand R operators. A transformation of a similar kind can, in principle, 
be applied in the more general case. This transformation, however, will be very com- 
plicated, and we shall not consider this problem further here. There is, of course, no 
particular difficulty in solving the eigenvalue equation (12) as it stands. even if the 
effective Hamiltonian is non-hermitian. We shall return to this problem briefly in 5 3.4. 

3. Linked-diagram expansion 

3.1. General 

As mentioned previously, the linked-diagram theorem can be proved by time-dependent 
(Goldstone 1957, Johnson and Baranger 1971) or by time-independent (Brandow 1967, 
Sandars 1969) methods. In the present section we shall extend the time-independent 
proof of Sandars, to the case of a multi-configurational model space, using the new RS 
formalism discussed above. Essentially the same results as those obtained here can be 
derived by other (time-dependent or time-independent) methods, and we shall return to 
the question of comparing different methods in 0 4. In that section we shall also make 
some comments about the convergence of the perturbation expansion, particularly in 
the light of recent works of Weidenmiiller et a1 (Schucan and Weidenmiiller 1972, 1973. 
Hofmann et a1 1973, 1974). 
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3.2. Diagrammatic represen tu t ion of perturbations 

In order to use the diagrammatic representation of the perturbation expansion, it is 
necessary to have an orbital description of the wavefunction. Therefore, we assume 
that our model Hamiltonian (2) is composed of one-particle operators 

‘i 

where index i runs over the N particles of the system. Our basis functions (3) can then be 
single determinants of one-particle orbitals 

= la) = det{$i(l)d2(2). ’ .  $ , v ( N ) )  (53) 

with 

lZ,(bi = €&hi. 

H,la) = E t l u )  with E t  = 1 ci (54) 

Obviously, we then have 

i 

where i runs over the orbitals of the determinant la).  States with the same eigenvalue of 
the model Hamiltonian are said to form a configuration. The model space is defined 
by the eigenfunctions of H ,  belonging to one or several configurations. 

I t  is convenient to separate the orbitals into the following three categories : 
( a )  core orbitals, defined as orbitals occupied in all determinants of the model space, 
(b )  valence or open-shell orbitals, defined as orbitals occupied in some but not all 

determinants of the model space, 
( c )  excited orbitals, defined as orbitals not occupied in any determinant of the model 

space. 
We shall assume that all orbitals with the same eigenvalue belong to the same 

category. As an example we can consider the Be atom with the 2s and 2p shells regarded 
as valence shells. The orbitals of the 1s shell would then be the only core orbitals, and the 
model space would consist of the configurations ls22s2, ls22s2p and ls22p2. 

In the diagrammatic representation we shall essentially follow the conventions 
adopted in the current literature. Thus, a core orbital is represented by a vertical line 
with an arrow pointing downwards and an excited orbital by a vertical line with an 
arrow pointing upwards. For valence orbitals we use Sandars’ notation with a double 
arrow, normally pointing upwards (see figure 2). (In Sandars’ diagrams time flows from 
the right to the left, but we shall here use the normal convention of a vertical time axis.) 
The perturbation Vis assumed to consist ofone-particle (f )and two-particle (g )  operators, 
ie in second-quantized form (see eg Judd 1967) 

As usual, the interactions are represented in the diagrams by horizontal, broken lines 
and there is a matrix element associated with each such line. The creation operators 
are associated with outgoing orbital lines and absorption operators with incoming 
orbital lines with respect to the interaction vertex, as illustrated in figure 3. The wave- 
function or the wave operator can also be represented by similar diagrams. Since 
the wave operator operates to the right only on the model space (according to equation 
@a)), the corresponding diagrams can have no free core or excited lines at the bottom. 
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Core Valence E x c i t e d  

O r b i t a l s  

Figure 2. Notations for orbital lines in the diagrammatic representation. 

One- body I Two-body 

Figure 3. Examples of one- and two-body operator diagrams 

The rules for operating with an interaction diagram on a wave operator diagram 
can be obtained directly from the algebra of second quantization (see eg Goldstone 1957, 
Judd 1967, Sandars 1969). If the interaction diagram has free core or excited orbital 
lines at the bottom, these must be connected with corresponding outgoing lines of the 
wave operator diagram, since they are not allowed in the final diagram. Valence orbital 
lines at the bottom of the interaction diagram may or may not be connected with 
outgoing valence lines of the wave operator diagram. All possible ways of making these 
connections lead to allowed diagrams. This technique is illustrated in figure 4. 

The standard rules for evaluating diagrams are well known, and we shall not be 
concerned with their details here. The reader is referred to more complete works on the 
subject (eg Kelly 1969). We only mention in passing that there is an energy denominator 
for each interaction of a wave operator diagram and a phase factor depending on the 
structure of the diagram. The emphasis of the present work is on the modification of the 
linked-diagram theorem due to the energy splitting of the model space, which will 
essentially affect the denominators. 

3.3. Linked diagram theorem 

3.3.1. Formulation of the problem. We shall first make some definitions. A part of a 
diagram that is not connected to the rest of the diagram by any orbital or interaction 
lines is said to be disconnected. If a disconnected part has no other free lines than valence 
lines (or no free lines a t  all), it is said to be closed, and the entire diagram is then defined 
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Figure 4. Illustration of the rules for operating on a wave operator diagram by the V 
interaction. 

as unlinked. All other diagrams are linked. Examples of closed, linked and unlinked 
diagrams are given in figure 5. (Note that linked diagrams may consist of disconnected 
parts as long as no part is closed. Note also that the in- and outgoing lines of a closed 
part may in the general case represent different valence shells.) 

The linked-diagram theorem states that the wavefunction or the wave operator is in 
each order represented by all possible linked diagrams obtained by operating with the 
perturbation on the wave operator of the next lower order according to the rules 
previously given. In order to prove this theorem in the general case of a model space 
that may contain several energy levels, we shall start from the recursion formula (35) 

When V operates on R(”- l ) ,  linked as well as unlinked diagrams may be formed. The 
linked-diagram theorem then implies that the unlinked diagrams obtained in this 

Closed Unlinked 

Figure 5. Examples of closed, unlinked and linked diagrams. 

Linked 
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operation are essentially cancelled by the remaining terms of (56) so that only linked 
diagrams remain. We shall now prove this theorem by the method of induction. 

We assume that the linked-diagram theorem holds to order (n-  l), and we shall 
show that it then holds in order n. Qoi- is now assumed to be linked, which means that 
it does not have any closed parts. When I/ operates on Qc’ l -  ‘ I ,  unlinked diagrams may 
be formed in different ways. If Cl(”-’ )  contains disconnected parts, ie parts that are not 
connected by any orbitals or interaction lines, one or several of these can be closed by 
the nth interaction (see figure 6). Besides, of course, the last interaction can form a closed 

\ I Unlinked 

Figure 6. Example of formation of unlinked diagrams by operating on a wave operator 
diagram. 

part by itself, or it can close the entire diagram. In the last case the final state will be in 
the model space, and the diagram will be cancelled by the Q operator in (56). Since all 
diagrams of Q(”- ‘I are assumed to be linked, there cannot be more than one closed part 
in a diagram of Q VQ(’’- ‘ I ,  and the number of interactions in the closed part can be 
m = 1 , 2  . . . (n- 1). We shall now show that all unlinked diagrams of QVQ”-”, with 
m interactions in the closed part, are cancelled by the term Qoi-”’VQ(*- in (56) (after 
introducing so-called backwards or folded diagrams). Then the linked-diagram theorem 
follows directly. 

3.3.2. Cancellation of unlinked diagrams : an illustrative example. As a simple illustration 
of the cancellation of unlinked diagrams we consider the disconnected wave operator 
diagram in figure 7. It follows from the rule sfor constructing the diagrams that all possible 
permutations of the relative orderings of the interactions of the two parts will appear 
as allowed diagrams (see figure 8). It is also well known that the denominators can in 
such a case be factorized into a product of the denominators of the two parts, considered 
as separate diagrams. This is the ‘factorization theorem’ (Frantz and Mills 1960, see 
also the Appendix). 

We now operate on the diagrams in figure 8 so that unlinked diagrams are produced 
(see figure 9). The factorization theorem can be applied to these unlinked diagrams as 
well, and the result is then a product of a linked and a closed diagram (apart from the 
order of the creation and absorption operators). 
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Jn-1) 

Figure 7. Example of disconnected wave operator diagram 

Figure 8. Possible permutations of the interactions in the diagram of figure 7 .  

We then consider the term Ri"-")VR("-') in (56). Since R operates to the right only 
on the model space (8a), we can write this term as R("-")PT/R("-')P. Therefore the 
I/ interaction must here close the diagrams of R(m-') ,  and the result is a product of 
wave operator diagrams, Ri"-"), and closed diagrams, PVRi"- 'IF'. Therefore this term 
will contain the product of the linked and the closed parts of the unlinked diagram in 
figure 9, which will then be essentially cancelled. 

The cancellation is exact, possibly apart from the order of the creation and absorption 
operators, which we have not yet considered. Generally, the order of these operators is 
obtained by reading the outgoing, free lines of the diagram in one direction (normally 
from the left to the right) and the incoming, free lines in the opposite direction. Thus, for 
the unlinked diagram in figure 9 (which is a single diagram) this order is a,+a,+a,a,. For 
the corresponding product in Rcil-")P Vac"- ' ) P ,  on the other hand, this order is a:a,ay+a,. 
Using the commutation rules we have 

a: up+ a,a, = - 60 ,  u)u: a, + U: a,a; a,. (57)  
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Unlinked vnin-l i  

Figure 9. Formation of an unlinked diagram by operating on the diagram of figure 7. 

This means that we have to add a diagram corresponding to - 6(p, u)a:a, in order to get 
an exact cancellation in this case. This diagram should have the same matrix elements 
and energy denominators as the original diagram in figure 9, and it can be obtained by 
joining the p and U lines (see figure 10). Such diagrams are called 'backward' by Sandars 
(1969) since a valence line is directed downwards, and they are essentially equivalent to 
the 'folded' diagrams discussed by Brandow (1967). 

Backward 

Figure 10. 'Backward' diagram associated to the diagram in figure 9 
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In the time-dependent approach similar diagrams appear in order to compensate 
for the incorrect time ordering, caused by the factorization (Johnson and Baranger 1971, 
Kuo et a1 1971). In the present work we shall not make any more detailed comparison 
of the backward diagrams used here and the different types of folded diagrams found in 
the literature. 

3.3.3. Cancellation of unlinked diagrams :general. In order to show that there is a general 
cancellation of unlinked diagrams, we have primarily to establish a one-to-one correspon- 
dence between the factorized, unlinked diagrams of Q VQ("- '), with m interactions in the 
closed part, and the terms of Q("-'")VQ(m-l). Secondly, the creation and absorption 
operators have to be rearranged, which gives rise to the backward diagrams. We shall 
first establish this one-to-one correspondence and then return to  the question of con- 
structing the backward diagrams in § 3.3.4. 

It follows from the rules of constructing the diagrams and the linked-diagram 
theorem that each separated part of a disconnected wave operator diagram is itself 
an allowed wave operator diagram (see figure 7)  and that all combination of allowed 
wave operator diagrams lead to allowed diagrams. The linked-diagram theorem is 
assumed to be valid up to order (n -  1) and, hence, all disconnected diagrams of Q'" 
(1 6 n - 1)can be analysed in terms ofwave operator diagrams oflower order. Obviously, 
the disconnected diagrams of Q(') consists of all 'distinct' combinations of R(kl), Q(k2),  . . . 
with Eki = 1. ('Distinct' is here used to exclude horizontal permutations of diagram- 
matic parts.) By means of the factorization theorem R(l)  can then be expressed by means 
of products of the corresponding wave operator diagrams (disregarding the order of the 
creation and absorption operators). 

Let us by QLk) denote all connected diagrams of CYk). It then follows from the argu- 
ments above that we can formally express the wave operators of the lowest orders in  the 
following way 

Q ( 1 ) :  Q(1, 
C 

Q ( 2 ) :  Q ( 2 ) + - Q ( l ) Q ( l )  1 
2 ! c c  

1 1 1 
2 !  2!  4 !  

~ ( 4 )  : ~ ( 4 )  + ~ ( 3 ) ~ ( 1 )  + - ~ ( 2 ) ~ ( 2 )  + - Q ( ~ ) Q (  'IQ(') + - Q ( ' ) Q ( ~  ) Q ( l ) Q (  1 )  
C c c  

elc. We have here avoided the equality sign, since the order of the creation and absorp- 
tion operators is not the same on both sides. In the general case we have 

nk is here the number of separated parts of the same order k ,  and the summation is 
performed over all combinations with 

n,k = 1 

The factor n,! in the denominator of (59) compensates for the number of permutations, 
which do  not lead to distinct diagrams. A formula analogous to (59) has been given by 
Brandow (1967) and others, for the effective interaction. 



2460 I Lindgren 

We now operate on  C l ( ' )  with the interaction Vso that unlinked diagramsare obtained. 
As mentioned previously, the last interaction can form a closed part by itself, or, if the 
wavefunction is disconnected, it can close one or  several parts. (If V is an  N-body 
operator, it is obviously possible to  connect and  close up to W separated parts of the 
wave operator diagram by a single interaction.) As a n  example we consider the ex- 
pression for C22'4) above. By closing @", for instance, we get a closed part with two 
interactions, for which we use the symbol p. This operation on C$"Qa'' then gives 
Q a 3 ) p .  The fourth term of Qi4) has two factors of Cl','', and closing one or the other 
leads to  equivalent diagrams. We can therefore close one of them and remove the 
factor of 112, ie Ob2)R~')G~. For  the last term in !2(4) we can close Cl:') in four equivalent 
ways: and  we should therefore remove a factor of four from the denominator. All 
unlinked diagrams with two interactions in the closed part obtained by operating with 
V on CF4' can then be expressed as 

Q;3)R(1 ,+  Q("Q(',mc')+ -Q;')Qc 1 ')~(')nc', = fJ31i520 
C c c c  C '  c c c  3 !  

Unlinked diagrams with three interactions in the closed part can be obtained by 
closing Ra2), which in the case of Q'4) leads to  Qi2'R',2) in the same way as above. But we 
can also in some cases close two diagrams of 0;'' simultaneously. From the term 

- Qi2"'"R"' 
2 !  

we then get 

- Q2'2'n"". 
2!  c c c 

In the last term of CP4) we can close two of the 0:') parts in 

equivalent ways, and the result is 

Altogether we then get by closing two R(')  parts of !2(4) 

Combining this with the result above, Q(2)z, we see that all unlinked diagrams with 
three interactions in the closed part, obtained by operating with I/ on CY4', are given by 

By means of the expressions (59-60) it is easy to extend the arguments above to the 
general case. The result can be expressed so that there is a one-to-one correspondence 
between the factorized, unlinked diagrams of QViR("-'),  with m interactions in the closed 
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part, and the terms of R(“-m)QZ(m-l). Instead of Q ( m - l )  we can use the previous notation, 
PVQcm-’) ,  and we have the important result 

where UL indicates unlinked diagrams. I t  then follows from (56) that all unlinked 
diagrams are cancelled, and the final result becomes 

(62) [Q(”’, H,] = { VR‘” - )}  L 

where L indicates linked and backward diagrams. This is the linked-diagram theorem, 
which states that the wave operator diagrams ofa certain order are obtained by operating 
with the perturbation Von the wave operator diagrams of the next lower order, keeping 
only linked (and backward) diagrams. The rules for operating with the perturbation on 
a wave operator diagram are briefly described in 43.2, and the rules for obtaining 
backward diagrams will be discussed in thl  following section. The commutator in (62) 
yields an energy denominator, which is equal to the difference in the unperturbed 
energy of the initial state for the first interaction and the final state for the nth interaction 
(seeequation(38)),ie between the bottomand the topofthediagram. Thisisinaccordance 
with the normal rules for evaluating diagrams, but the important point is here that this 
has been shown without any assumption about the energies of the model space. This 
will be discussed further and compared with other ways of handling this problem in 4 4. 

3.3.4. Backward diagrams. In the previous section we have proved that there is a com- 
plete cancellation of unlinked diagrams in the wave operator if certain ‘backward’ 
diagrams are included. This cancellation was shown by establishing the one-to-one 
correspondence between the factorized, unlinked diagrams of QVQ(“-  ’ )  and the 
diagrams of R(‘ l -m)VQ(m-lJ  in (56). However the order of the creation and absorption 
operators is not the same in the two terms. Therefore, these operators have to be 
rearranged, which leads to the backward diagrams. In this section we shall analyse these 
diagrams in some detail. 

The order of the creation and absorption operators are in the unlinked diagrams 
of Q VR(”-’) given by the ordinary diagrammatic rule, for instance, by reading outgoing 
lines (creation operators) from the left to the right and incoming lines (absorption 
0perators)from the right to the left. In Q(”-m)VQ(m-lJ ,  on the other hand, these operators 
are associated with the two parts, 

Let us consider a simple but non-trivial example shown in figure 11. A’,  B + ,  C and 
D represent here groups of creation and absorption operators as indicated in the figure. 
If this diagram represents QT/Q‘”-”, the order of these operators should be, for instance, 
A’B’CD, while ifit represents Ro7-m)VR(m-1) the order should be A’DB’C. Therefore, 
in order to get agreement we have to move the operators, for instance, those of the closed 
part in the unlinked diagram (B’C) to  the right of the operators of the linked part (A‘D). 
This leads to contractions between the valence shell operators of B +  and D. Similar 
permutations are made, when ordinary diagrams are constructed by means of the rules 
of second-quantization (see 53.2). It then follows that the backward diagrams are 
obtained by joining the valence lines of B +  and D in all possible ways (see figure 12). 
Of course, only lines belonging to the same shell shall be joined. From the commutation 
rules for the creation and absorption operators one easily finds that the diagrams (a),  
( d )  and ( e )  in figure 12 will have a phase factor - 1 in addition to the usual phase rule 

and (P)VQ(m-lJ ,  separately. 
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t T ' i '  D 

B+ 8 C 

Figure 11. General unlinked diagram. 

mentioned in 8 3.2. The general phase rule can be formulated so that there is a change in 
sign, if there is an even number of crossings, when the backward lines are drawn. This is 
in accordance with the rule found by Sandars (1969) in the single-configurational case. 

Generally, backward diagrams appear as soon as the normal rules for constructing 
the diagrams would lead to an unlinked diagram. Before the latter is discarded, all 
possible backward diagrams must be constructed by joining the outgoing valence lines 
of the closed part with the incoming valence lines of the linked part. 

3.4. EfSective-operator diagrams 

In the previous sections we have been mainly concerned with the linked-diagram 
theorem for the wave operator (7a). In practical applications, however, it is usually more 
convenient to work with effective operators. By means of (1 1) we can easily construct 
the diagrams for the effective Hamiltonian. In the nth order (n  > 0) we have 

(63) 
which means that the nth order diagrams of the effective Hamiltonian are obtained 
by closing the wave operator diagrams oforder (n  - 1) by the perturbation Vin all possible 
ways. Since the diagrams of R are linked, ie do not have any closed part, there cannot be 
any disconnected closed parts in the diagrams of Hefr. If the wave operator diagram is 
disconnected, the separated parts must be connected by the closing interaction. The 
exact rules for forming the diagrams of the effective Hamiltonian follows from (62) and 
(63). It should be noted that there is no energy denominator associated with the last 
interaction in (63). 

When the diagrams of Herr have been constructed and evaluated with the desired 
accuracy, the eigenvalue equations (12) can be solved. This leads to a matrix equation 
of the same order as the dimensionality of the model space. Usually, however, this can 
be split up into a number of equations of lower order, using the known constants of the 
motion. Considering again as an example the Be atom with the configurations 
ls22s2('S), ls22s2p('P, 3P) and ls22p2('S, 'D, 3P) in the model space, we have a total of 
28 states in that space. With the electrostatic interaction as the only perturbation 
S ,  L,  M s ,  M L  and parity are good quantum numbers, and states which differ in any of 
these do not mix. Therefore, the 28-dimensional problem can be separated into 26 

= pl/""-" 
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Figure 12. Backward diagrams associated with the unlinked diagram in figure 11. 

one-dimensional ones (for the P and D states) and a two-dimensional one (for the two 'S 
states). In the latter case there are four groups of diagrams (see figure 13), depending on 
the initial and the final states, and each group contributes to  an element of the 2 x 2 
matrix of the effective Hamiltonian. Of course, it is necessary here to include H, in the 
effective Hamiltonian, since its (diagonal) elements are not the same in the two states. 
Solving this two-dimensional eigenvalue equation leads to the energies of the two ' S  
states and the mixing of the two configurations in these cases. 

Some precaution is required here, since the effective Hamiltonian is not generally 
hermitian, as demonstrated in Q 2.5. This means that in our example diagrams starting 
from the 2s' level and ending at the 2p2 level are not identical to diagrams going in the 
opposite direction. The reason for this is, of course, that with our conventions the initial 
state enters in the denominators while the final state does not. I t  is possible to define 
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2 :  2 s '  

2 5 '  2 2  2pz 2; 

Figure 13. The four groups of effective two-body operator diagrams, appearing in the Be 
problem mentioned in the text. Each group of diagrams contributes to one matrix element 
of the 2 x 2 matrix for the ' S  state. (In addition one-body operator diagrams as well as H ,  
contribute to the diagonal elements.) 

the diagrams in such a way that the initial and final states appear in a symmetric way, 
which obviously leads to a hermitian operator (Johnson and Baranger 1971). Such a 
convention, however, is less convenient in a formalism like ours, which is based on the 
wave operator concept. In the wave operator the final state is not yet known, and a 
symmetric denominator cannot be used. Therefore we prefer to use the unsymmetric 
form of the effective operators. 

It is also easy to construct the effective-operator diagrams corresponding to some 
other quantity (h)  than the energy. Usually, one is interested in the effect of some small 
perturbation, like the hyperfine interaction. In order to get the 'effective interaction' 
heff one can then replace the perturbation V by V + h  and consider terms linear in h. 
It is easily found that the corresponding diagrams are obtained by replacing one of the 
V interactions in the diagrams of Heff by h in all possible ways. The energy shift due to 
this interaction is according to (14) given by 

Of course, the model functions have still to be determined by means of the eigenvalue 
equation (12). In many cases, however, these functions are uniquely determined for 
symmetry reasons, as illustrated for the Be atom above. Then the energy shift in (64) 
can be determined entirely without considering the main perturbation. 

We shall not consider the effective-operator diagrams further in the present work, 
but we shall return to them in more detail in the connection with applications to the 
hyperfine interaction and other problems (Garpman et a1 1974). 

4. Discussion and conclusions 

In the previous sections we have proved the linked-diagram theorem for a model space 
of the multi-configurational type, starting from an extended form of the Rayleigh- 
Schrodinger perturbation expansion. Similar results can be obtained by other methods, 
and it is therefore of interest to compare the various approaches in order to find out 
to what extent they are identical and to what extent there are significant differences. An 
instructive comparison between time-dependent and time-independent methods has 
recently been made in the review article by Barrett and Kirson (1973), and, therefore, 
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we shall not be further concerned with that aspect of the problem here. Instead, we shall 
make some comparisons between the present approach and that of Brandow (1967), 
which are both time-independent. The main difference between the two approaches is 
that Brandow starts from the Brillouin-Wigner type of perturbation expansion, while 
in the present work the Rayleigh-Schrodinger type is used. 

In order to deal with a model space that is not exactly degenerate, Brandow intro- 
duces an additional perturbation 

(65 )  

summed over all valence shells, and the same term is removedfrom the model Hamiltonian 
VI = C a' (E; - to)ai 

HO 

H b  = HO-VI.  (66) 
This has no effect on the orbitals, but it will shift the orbital energy for all valence shells 
to an arbitrary value e o .  This means that all configurations of the model space (which 
differ only in the occupation numbers of the valence shells) will be exactly degenerate. 
It is then possible to use the technique for a single-configurational model space, provided 
the effect of the perturbation (65) is considered. 

The extra perturbation (65) has only diagonal elements, and, therefore, i t  is easy to 
sum its contributions to all orders. Let us consider the situations in figure 14, where VI 

Figure 14. Modification of valence-orbital lines by the diagonal perturbation (65). Modifi- 
cation of an incoming line leads to a backward diagram (b). 

is operating on diagrams with outgoing or incoming valence lines. The former case 
leads to a normal and the latter case to a backward diagram (see $3.3.4). The resulting 
diagram is equal to & (ci - Eo)/AE times the original diagram, where AE is the last energy 
denominator of that diagram. The minus sign appears in the backward case (b),  since 
there is no crossing. This process can be repeated, and it leads to a geometric series, 
which is easily summed, 

AE is the difference between the energy of the initial and the final states with the modijied 
model Hamiltonian (66). Therefore, the effect of multiple interactions by the artificial 
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perturbation V, can be included to all orders simply by replacing the modified orbital 
energy c, by the original energy ci for the valence shells in the denominators. This means 
that the energy denominator is now given by the energy difference between the initial 
and final states corresponding to the original model Hamiltonian H,. It can be shown 
that this result holds also in more complicated cases than that shown in figure 14. 
Exactly the same result is obtained with the technique introduced in the present work, 
using the RS formalism for a multi-configurational model space, without any summation 
of infinite series (see equations 38 and 62). 

There is one important formal difference between the result obtained in this section 
and that obtained previously. The series (67) is certainly convergent, if 

or, more generally, if 

where AIE is the energy shift caused by the perturbation VI in (65), and AE is the distance 
to an unperturbed level outside the model space. Therefore, (68) is always fulfilled, if 
there is no overlap between the zero-order energies of the model space and those of the 
orthogonal space (for a reasonable choice of eo). This is certainly a sufJicient condition 
for the convergence of the series (67). This result is in agreement with the more general 
conclusion of Schucan and Weidenmiiller (1972), namely that the entire perturbation 
expansion can be expected to be convergent, if there is no overlap between the true 
energies of the states corresponding to the model space and those corresponding to the 
orthogonal space. In the present approach, however, there is no perturbation of the 
type (65), and, hence, there is no restriction, similar to (68), on the zero-order splitting 
of the model space. But the two approaches lead to identical results, which means that 
the summation of the diagrams due to VI in (67) can be made, even if (68) is not fulfilled. 
Therefore the zero-order splitting of the model space has no effect on the convergence, 
which instead should be determined by the shifts of the model states due to real perturba- 
tions relative to the levels originating from the orthogonal space. If crossings occur 
(when the perturbation is turned on smoothly), convergence problems are likely to 
appear, and non-perturbative techniques, such as Pade approximants (Hofmann et al 
1973, 1974) may be used. On the other hand, it is not necessary that the model space 
yields all states within a certain energy range for the perturbation expansion to converge. 
Instead, one can include the strongest interacting levels in the model space (regardless 
of their zero-order energy separation), and leave out weakly interacting ones, even if they 
are close in energy. This gives great flexibility in choosing the model space, which can 
be a useful tool, in addition to the non-perturbative methods mentioned above, in 
reducing convergence difficulties. 
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Appendix. Factorization theorem 

The factorization theorem, which is a crucial part of the time-independent proof of the 
linked-diagram theorem, can be formulated in the following way. Consider a diagram, 
which has no intermediate state within the model space and which is partly disconnected 
at one end (see figure A 1). If a summation is performed over all possible relative orderings 

Figure A l .  Partially disconnected diagram. 

between the interactions of the disconnected parts (keeping the relative ordering within 
each part intact), the results can be expressed by means of a single diagram with the 
denominators determined independently for each part of the diagrams (see eg Frantz 
and Mills 1960). 

We shall begin the proof of this general theorem by considering a simple example, 
shown in figure A2. If we let a and r denote the matrix elements associated with the 

+ 
Figure A2. Illustration of the simple factorization in equation (Al) .  

interactions indicated and A, and A, the corresponding excitation energies, we can 
express the sum of two diagrams as 

where D stands for the remaining part of the diagram. This is the simplest possible 
illustration of the factorization theorem, and it is the only case we have to calculate 
explicitly. The general theorem can be proved by means of repeated use of this relation. 
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Next we consider a more general diagram shown in figure A3, and introduce the following 
notations : 

bc . . .  
( B )  = (b(c( . . . ))) = _ _ _ _ _ ~ - ~ ~ ~  

(Ab+A,+ . . . )  (A,+  . . . )  

etc. 

Figure A3. Illustration of the notations used in the mathematical expressions. 

Again, a, b, c . . . represent matrix elements, Aa,  A,,, A,,  . . . the corresponding excita- 
tion energies, and the parentheses indicate the denominators in the same manner as in 
0 2 (equation (47)). We then have the following relations 

With these notations the factorization shown in (Al) can be written 

M r ) )  + ( (a ) r )  = (a)(r). (A4a) 

It is easy to show that this relation holds also if a and r represent several interactions. 
With the notations introduced above we then have, for instance, 
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It follows directly from the definitions (A2) that we can permute the terms in such 
expressions, provided we move also the associated parentheses. For instance, 

( A ) ( R )  = ( W A )  and ( (AIR) = ( R A ) ) .  ('45) 

(A6a) 

By means of the relations (A3-5) we then get 

( A ) ( R )  = (A(R))+(R(A))  = (a (B) (R) )+(r (S ) (A) )  = (a(B)(R))+(r(A)(S)) .  

In the same way 

Combining (A6a) and (A6b) we get 

where P represents a summation over all permutations of a, h, c, . . . , r ,  s, t ,  . . . , such that 
the relative ordering within the two groups (a ,  b, e , .  . . and r,  s, t . .  . .) is unchanged. In 
(A8) all right hand parentheses are a t  the far right, which means that the denominators 
are given in accordance with the rules for evaluating diagrams. The left hand side of 
(A8) represents a factorized product of the two parts of the diagram taken separately. 
Therefore, (A8) is a formulation of the factorization theorem, which is thereby proved. 
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