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Abstract. It has been demonstrated by Gorceix and Indelicato and others that the effective 
potentials for the interaction between the electrons, derived in the Feynman and Coulomb 
gauges, respectively, lead to different results, when applied in a many-body procedure, 
even when the orbitals are generated in a local potential. This apparent gauge dependence 
is due to the fact that the standard many-body procedures include only the reducible part 
of the multiphoton exchange, while the irreducible part does contribute to leading relativistic 
order in the Feynman gauge but not in the Coulomb gauge. It  is shown explicitly that 
when the irreducible part of the two-photon exchange (crossing photons) is taken into 
account, this gauge dependence is removed to leading relativistic order. The situation is 
expected to be the same in higher orders. 

1. Introduction 

There is now an increasing interest in relativistic many-body calculations, where 
combined relativistic and correlation effects are considered. For this purpose it is 
desirable to express the problem by means of a Schrodinger-like equation with an 
effective Hamiltonian. If such a Hamiltonian is available-to the desired degree of 
approximation-then it would be possible to apply the highly developed techniques 
of non-relativistic many-body theory, such as multiconfiguration Hartree-Fock ( MCHF), 
many-body perturbation theory ( MBPT) or coupled-cluster approach (CCA) also in the 
relativistic case. 

In principle, an effective Hamiltonian expressed in terms of effective interaction 
potentials can be derived from QED, and several attempts have been made along this 
line. The potentials obtained in such a procedure, however, depend upon the particular 
gauge employed, and questions have been raised in the literature how this gauge 
dependence should be handled in a many-body context. Gorceix et a1 (1987) and 
Gorceix and Indelicato (1988) have found that the potentials derived in the Coulomb 
and Feynman gauges, respectively, lead to significantly different numerical results in 
a MCDF calculation. They conclude that the ambiguity is not entirely related to the 
use of SCF wavefunctions but is partly more fundamental in origin. I t  has been pointed 
out by Sucher (1988, 1989) that the iterative use of the first-order Feynman gauge 
potential leads to an error already in the leading relativistic order, O ( a 2  Hartree) 
(where using the atomic Hartree unit; 1 Hartree = a’ mc’). Recently, Lindroth and 
MBrtensson-Pendrill ( 1989) have examined the gauge dependence further and found 
that the discrepancy remains, even if one goes beyond the no (-virtual)-pair approxima- 
tion. As a curiosity they have noted that the discrepancy can be removed in leading 
order, if single-virtual-pair excitations are evaluated in the low-frequency limit, which 
is not valid for such excitations. 
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Potentials derived from physical scattering processes should be gauge independent, 
provided all diagrams of a certain order are considered, as emphasised by Feinberg 
and Sucher (1988) in a comprehensive study of the two-photon problem. In a standard 
MBPT treatment, however, only the so-called reducible part of the multi-photon exchange 
diagrams is included, which leads to an apparent gauge dependence. In the present 
note an analysis is made of the complete two-photon exchange between the electrons 
(omitting self-energy and other radiative effects), and it is shown explicitly that the 
ladder part (non-crossing photons) is reproduced correctly to leading order in either 
gauge by using the standard potentials in second-order perturbation theory. The key 
point is, however, that also the crossed diagram (crossing photons) contributes to this 
order in non-Coulomb gauges. This part is irreducible in the sense that it is not included 
in a procedure, where the single-photon potential is used repeatedly in a perturbation 
scheme. It is found that this irreducible part corresponds exactly to the discrepancy 
found in the analyses of Gorceix and Indelicato and of Lindroth and MHrtensson- 
Pendrill. This part can be expressed by means of a ‘correction’ potential, or irreducible 
two-photon potential, which has the sameform as the potential contribution due to a 
single virtual pair, although it lies entirely within the NVP approximation. This is the 
underlying reason for the strange-looking result of Lindroth and M&tensson-Pendrill, 
mentioned above. In the Coulomb gauge the correct electron-electron interaction is 
reproduced in leading order without any correction potential, and is from that point 
of view more convenient to use in a many-body treatment. In order to go beyond the 
leading order, however, irreducible two-, three-photon potentials are needed in any 
gauge, and a more detailed analysis is needed in order to find out which approach is 
most convenient on that level of sophistication. 

In the present analysis we consider only effects of O( a’ Hartree). In non-Coulomb 
gauges there are also spurious contributions of O ( a  Hartree), which are known to 
cancel, when crossed photons are considered (Love 1978, Lindgren 1988, p 384). 

2. Single-photon exchange 

As an introduction we consider the exchange of a single virtual photon between the 
electrons, which will reproduce the well known fact that the first-order energy contribu- 
tion is gauge independent. 

The exchange of a single virtual photon between two bound-state electrons, rep- 
resented by the Feynman diagram in figure l ( a )  can be expressed by means of the 
second-order S matrix ( h  = 1) 

Figure 1. The Feynman representation of the exchange of a single, virtual photon between 
two electrons (a) is compared with an effective-potential interaction (b) .  The heavy lines 
represent electronic states in the bound-interaction picture. 
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where T is the time-ordering symbol and 

%,“,(x) = -ep(x)y”A,(x)*(x) = -e* (x)a”A+(x)*(x).  

*(x) =e c,c$,(x) =c  C I + , ( X )  exp(-ie,t) 

(2.2) 
The Dirac fields are given in the bound-interaction picture by 

I J 

Q(x) = W ( x ) y O  9 ( X I  = c, 4 1 ( x )  = c, c$;(x) exp(is,t) (2.3) 
I I 

where the orbitals { d I }  are generated by the Dirac Hamiltonian with the nuclear 
potential and an external-field potential U 

h04, = &14/ h, = casp +pmc2 - Z e 2 / 4 m 0 r  +- U (2.4) 
and cl/ cy are the corresponding annihilation /creation operators. The gamma matrices 
are here represented by 

yI* = aI* = (1, a )  Y o = P  
where a, p are the standard Dirac matrices. a , ,  S2 are damping coefficients, which 
eventually go to zero in the adiabatic approximation (Gell-Mann and Low 1951, Sucher 
1957, 1989, Mohr 1989). 

The scattering amplitude for the process in figure l ( a )  is 

where the Feynman photon propagator, DFy+(xz-x,) ,  is defined by 

After performing the time integrations, this becomes 

(cdlS‘2’lub)= - 2 r i e 2 c  d z 8 ( & , - e E , + z ) 8 ( e d  - e b - z )  

where D,,,(x2-x1; z) is the Fourier transform of the photon propagator with respect 
to time 

DFYP(X2-X1) =- dz exp[-iz(t,- t1)]DFur(x2-x1; z) (2.8) 271 I‘ -n 
Performing the z integration yields 

(cdlS‘2’lab)= -2xi e2c8(&, + & b  - E , - & ~ ) ( c ~ ~ L Y ( I L Y ~ Y D ~ ~ ~ ( x ~ - x ~ ;  cq)(ab) (2.9) 

where cq = E,  - E, = Ed - &b. 

Formally, the S-matrix element (2.9) is the same as that of potential scattering 
(figure l ( b ) )  

(cdlS“’lab) = - 2 d 8 ( & ,  -I- &b - E ,  - & d ) ( C d l  V1,IUb) 

VI, = V, , ( cq )  = e 2 c a ~ a ~ D F I * * v ( x 2 - x 1  ; c q ) .  

(2.10) 

(2.11) 

with the potential given by 
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This gives 

(2.12a) 

in the Feynman and the Coulomb gauges, respectively. By means of the Gellman-Low- 
Sucher procedure it can be shown that such a potential leads to the correct first-order 
shift 

A' " E  = (@ 1 Viz ( cq I@) = (ab I Viz ( cq 1 ab) - ( 6a 1 Viz ( cq ) 1 ab)  (2.13) 
where @ is the antisymmetrised, unperturbed state ]{ab}) 

In the limit q 3 0  the potentials (2.12) reduce to 

(2.14a) 

known as the Coulomb-Gaunt and the Coulomb-Breit interactions, respectively. 

in (2.12b) can be replaced by 
If the orbitals are generated in a local external potential (2.4), then the commutators 

(2.15) 

and the difference between the potentials becomes 

which vanishes in the case of energy conservation. This reproduces the well known 
fact that the two potentials give exactly the same first-order energy shift in the case of 
a local potential. 

3. Two-photon exchange 

In second order there are two Feynman diagrams contributing to the interelectronic 
interaction, the 'ladder' and the 'crossed' diagrams, shown in figure 2, omitting self- 
energy and other radiative effects. Performing the time integrations as before, the 

Figure 2. The two-photon exchange between the electrons is represented by two Feynman 
diagrams, the 'ladder' and the 'crossed-photon' diagram. 
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S-matrix element for the ladder diagram can be expressed 

(cdlSL4’lab) = 8 ( ~ ,  + E,, - E,, - ~ d )  

(Note that in this formalism energy is conserved at each vertex, using the energy 
parameters of the propagators.) With the potential (2.1 1) the corresponding two-photon 
potential can in any gauge be expressed 

and similarly for the crossed diagram 

(3.4) 

In the present study we are not concerned with terms beyond the leading relativistic 
order O ( a 2  Hartree). (We also omit terms of O ( a  Hartree), which, as mentioned in 
the introduction, are known to cancel.) Therefore, we need not consider virtual-pair 
excitations, which means that all intermediate states will have positive energy. In the 
Coulomb gauge we can then use the unretarded potential (2.14b), which is correct to 
that order also off the energy shell. In the Feynman gauge, on the other hand, we 
must include the leading part of the retardation. Since the imaginary part of the 
potential does not enter in this order (Lindgren 1989, p 383), we can here use the form 

VF(cq)= (1 -a1  a2) cos(qrI2)/rl2= (1 -a1 + a z ) ( e ’ 9 r ~ ~ + e - 1 4 r ~ ~ ) / 2 r l ~  (3.5) 
leaving out the factor e2 /4mo.  Only one of the interactions can be retarded in the 
order we consider, and standard complex integration technique then gives in either 
gauge 

(cdl Vr’lab) = f {(cd IY ;~ IYS) (   SI V (  a - r )  + V( b - s)lab) 
re 

+ (cd/ v (  c - I) f v (  d - s)lrs)( rslrTilab)}/( &, + &b - E ,  - E , )  

= C {(cd~r;;/rs)(rs~ VBMjab) 
rc 

+ ( C d l V B M l r S ) ( r s ’ S / r ; : I Q b ) } / ( E , + E b - E , - E , ) .  (3.6) 
Here, V( i - j )  = V( E ,  - E , )  and VBM is the generalised potential of Brown (1952) and 
Mittleman (1972) 

(3.7) ( rs  1 VBMlab) = ;<rs/ V ( a  - r )  + V( b - s) jab). 
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To leading order the ladder potential (3.6) can be expressed 

(cdl Vk2'lab) = 1 (cdl  V ' 3 M / ~ ~ ) ( ~ ~ (  VRMIUb)/(  E, + &b - E ,  - E,) (3.8) 
I ,  

which represents the reducible part of the two-photon interaction, since it can be 
expressed by means of repeated use of a single-photon potential. The Brown-Mittleman 
potential is in the Coulomb gauge identical to leading relativistic order to the unretarded 
Coulomb-Breit potential (2.14b), which means that the ladder diagram is correctly 
reproduced to that order by iterating the latter potential. 

For the crossed diagram we get in an analogous way 

(cdlVY'lub)= -$I {(cslr; i lrb)(rdlV(a-r)-  V(d - s ) l a s )  
,, 

+ ( cs 1 V (  c - r ) - V( b - s ) 1 rb)( rd 1 r yi 1 us)} /  ( E,, + E ,  - E,, - F ,  ) (3.9) 

= - {(cdlryJrs)(rsl v ~ " / u ~ )  
r \  

+ ( C d l V d ' " l r ~ ) ( T S / r y : l U b ) } / ( F ,  +&,  - E d  - & , )  

where Vd'* is the 'difference' potential 

( r s j V " " / a b ) = ~ ( r s / V ( n - r )  V (b - s ) lah ! .  (3.10) 

Only retardation corltributes to the latte, patential, and therefore the leading relativistic 
part vanishes in the Coulomb gauge, but not in the Feynman gauge. 

The results given above can also be obtained from the more general two-photon 
potentials (Lindgren 1989) 

(cdl V:"lub) = 1 {sgn(&,)(cdl V ( c  - r)lrs)(rs/ V ( U  - r ) / u b )  
,, 

+sgn(E,)(cdIV(d - s ) l r s ) ( r s IV(b - s ) lab ) } / (&,+  E ~ -  E, - E , )  ( 3 . 1 1 ~ )  

(cd 1 Vy'lab) = 1 { - sgn( E,)( csl V( c - r)/rb)( rd ~ V( a - r ) / a s )  
,, 

+sgn(s , ) ( c s  V(b - s)lrb)(rdl V ( d  - s)las)}/(e, + E ,  - E ,  - E ~ )  (3.11b) 

by considering the leading relativistic contribution. 
The potential of the crossed diagram (3.9) is irreducible, since it cannot be expressed 

in terms of single-photon potentials in a perturbative way. Formally, however, we can 
express this as a second-order perturbation expression applied to the particle-hole 
diagram (figure 3(b)),  where one of the interactions is the Brown-Mittleman potential 

Figure 3. The structure of the crossed-photon diagram ( a )  is similar to the standard MBPT 
diagram with a single particle.hole ( b ) ,  although it contributes also in the no-virtual-pair 
approximation. One of the interactions is here of the average type (3.6) and the other is 
the difference potential (3.9). 
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(3 .7 )  and the other is the difference potential (3 .9 ) .  The fact that the leading relativistic 
part of the latter vanishes in the Coulomb gauge, but not in the Feynman gauge is the 
source of the apparent gauge dependence, which will be further analysed in the 
following section. 

4. Comparison between the two-photon contributions 

It follows from the treatment above that in the Coulomb gauge the standard Coulomb + 
(energy-independent) Breit potential applied in second-order perturbation theory 
within the no-virtual-pair approximation reproduces correctly the leading relativistic 
contribution of O( a' Hartree) to the two-photon interaction between the electrons. 
This implies that using that gauge the irreducible part of the two-photon interaction 
enters first in higher orders in a. The situation is different in the Feynman gauge, 
where not even the energy-dependent form of the one-photon potential is sufficient to 
yield the leading order correctly. Here, also the irreducible part, corresponding to 
crossed-photon exchange, enters already in O( a' Hartree). We shall now show 
explicitly that when this irreducible part is taken into account, the two gauges give the 
same two-photon contribution to that order. 

4.1. Ladder diagram 

We shall first compare the ladder part of the two-photon contribution (3 .6) .  We express 
the single-photon potentials, V (  i - j ) ,  as a Coulomb-Gaunt part and a remainder 

V ( i - j ) = ( l - C u ,  *cr2 ) r ; i+RV (4.1) 
where in the leading order 

in the Feynman and Coulomb gauges, respectively. The difference between the ladder 
contributions in the two gauges now becomes 

( cd  I S V y ) /  ab) = f {( cd 1 r;: 1 rs)( rs 1 R !r + R L,? - 2 R'/ ab)  
r s  

+ (cd  I RFr + Rz,s - 2 Rclrs)( rs l r7 i /ab)} / (e ,  + E h  - E ,  - E , ~ )  

=$  {(cd(r;:Irs)(rsl(q,r+qb,s)2FOlab) 
r.s 

+ (cd ( qcr + q d s  )'FOlrs)(rs I r;: I ab)}/ ( E ,  + Eb - E r  - Es ) (4 .3)  

where qv = ( ei - e j ) / c .  But qcr + qds = q,, + qb,y = ( E ,  + &b - E ,  - E , ) / c ,  so one factor 
cancels the energy denominator, as observed by Lindroth and MQrtensson-Pendrill 
(1989). Expressing the other factor in terms of commutators, we get 

( c d / 6 V : Z ' l a b ) = s C  {(cdlr;dIrs)(rsI[Fo, h o ( l ) +  ho(2)lIab) 
1 

rz 

+ (cd I[ ho( 1 ) + h0(2),  FOI I rs)( rs I r;: lab)} 
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where A++ is the projection operator for the positive-energy virtual states. This is the 
discrepancy between the two gauges found by Gorceix and Indelicato (1988) and by 
Lindroth and Mirtensson-Pendrill (1989). However, these authors considered only 
the reducible part of the two-photon interaction, and we shall see below that this 
discrepancy is removed when also the irreducible part, due to crossed photons in the 
Feynman gauge, is taken into account. 

4.2. Crossed diagram 

From the two-photon expression for the crossed photons (3.8) we get 

(cd(GV$'lab)= -$x {( csI r;: I rb)( rd 1 RE - R :,I as) 
I5 

+ ( c s l R I , - R ~ , l r b ) ( r d ( r ; : l a s ) } / ( ~ , + ~ ,  - c d  - E , )  

= -41 {(CSl(qf,-q5h)F,lrb)(rdIr;:las) 
r \  

+(cslr;:Irb)(rdl(q;, -q :J~oIa~) l / (% + EF - E d  - E r ) .  (4.5) 
Also here one factor cancels the energy denominator, and the result can be expressed 

(cd  16 V',"l a b )  = - 7 
1 

{ ( E ,  + - E ,  - E , ) (  csI r;: I rb)( rd IFolas) 
2c r5 

+ ( E , +  & h  - ~,-~~)(c~IF,lrb)(rdlr;:las)}. (4.6) 

Exchanging the second orbital between the bras and the kets, gives 

(cd  16V',2'lab) = - 7 ( cb* / [  h,( 1) + h,(2),  Fo]A++r;i + r;;A++[ F, , h,( 1) + h,(2)]lad *). 
1 

2c 
(4.7) 

We can here exchange the second orbital once more, and then we see that this irreducible 
contribution exactly cancels the discrepancy (4.4) found in the reducible, ladder contribution 
between the gauges. 

5. Conclusions 

By using a single-photon potential in a many-body calculation within the no-virtual-pair 
( NVP) approximation the reducible part of the two-photon interaction between a pair 
of electrons is properly taken into account to 0(a2 Hartree). In the Coulomb gauge 
this represents the entire interaction to this order, while in the Feynman gauge also 
the irreducible part due to crossing photons-still within the NVP approximation-is of 
the same order. When this part is taken into account, the two gauges yield the same 
energy shift to that order. The virtual-pair excitations do not contribute in this order. 
There will be contributions to leading order in the Feynman gauge also from the 
exchange of more than two photons, and this will be analysed in a forthcoming paper. 
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