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Abstract. A Hermitian formulation of the coupled-cluster approach (CcA) is developed,
based on the Jorgensen condition, PO'(1P = F, {1 being the wave operator and P the
projection operator for the model space. This (eads to a formalism where the exact as well
as the model functions are orthonormal, and the effective Hamiltonian has the manifestly
Hermitian form H.g= PQ'HQP It is shown that the Jargensen condition is compatible
with the connectivity criteria (connected cluster operator and effective Hamiltonian) for a
general, incomplete model space. Even with an effective Hamiltonian of this form, however,
non-Hermiticity may be introduced when the cluster expansion is truncated. This can be
remedied by a reformulation of the coupled-cluster equations, where additional terms,
which cancel in the complete expansion, preserve Hermiticity at each truncation. The new
equations also lead to additional terms in the cluster operator itse!f, which make it possible,
for instance, to include important effects in the pair approach that otherwise would require
the evaluation of three- and four-body clusters.

1. Introduction

The many-body perturbation theory (MBPT) is often based on the so-called intermediate
normalization (IN) (Brandow 1967, Lindgren 1974, Kvasnicka 1974, 1977}, which
implies that the zero-order wavefunction is the projection of the full wavefunction on
a certain model space. This scheme has many advantages and leads to a simple form
of the effective Hamiltonian, which yields the energies (energy splitting} of the system.
On the other hand, the IN scheme also has certain disadvantages, such as a non-
Hermitian effective Hamiltonian and non-orthogonal zero-order or model wavefunc-
tions. Furthermore, as first pointed out by Mukherjee {1986a, b}, in order to obtain
connectivity in the coupled-cluster expansion for a general, incomplete model space,
it is necessary to abandon the intermediate normalization.

The non-Hermiticity of the effective Hamiltonian in the N scheme can be demon-
strated in a simple way by means of the second-order diagrams («) and (b) in figure
1. In this scheme the energy denominators are evaluated in the standard way ‘from
the bottom’ (Lindgren and Morrison 1986), which leads to an asymmetry of the
expressions. If the energies of the initial, final and intermediate states of diagram (a)
are A, B and C, respectively, as indicated in the figure, then the denominator of that
diagram becomes (A- C), while for the ‘Hermitian adjoint’ diagram (b} the denominator
is ( B-C). Hence, these diagrams are not exactly Hermitian adjoints in the case A # B,
leading to non-Hermiticity of the effective Hamiltonian,

Several procedures have been proposed to ‘Hermitize’ the effective of the 1N scheme
by means of a non-unitary transformation, first discussed by des Cloizeaux (1960) and
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further developed particularly by the Toulouse group (see, for instance, Durand and
Malrien 1987). Another possibility is to impose a subsidiary condition, which forces
the effective Hamiltonian to be Hermitian—a procedure first proposed by Jgrgensen
(1975). This procedure, which has previously been employed by Kvasnicka (1981,
1982) and by Haque and Mukherjee (1984, 1985), will be applied here. In the example
mentioned above this procedure leads to an additional diagram (c¢), which compensates
for the non-Hermiticity. An important advantage of the Hermitian formulation is that
it is compatible with connectivity criteria also for an incomplete model space, as will
be demonstrated below.

In 1N non-Hermiticity can also be caused by the truncation, as illustrated in figure
2. If one- and two-body effects are considered, then the effective-operator diagram (a)
will be generated in 1N, while the corresponding Hermitian adjoint diagram {&) would
in that scheme require that some three-body effects are included (namely single and
double core excitations in combination with an unexcited valence electron). In the
Hermitian formulation presented here, however, the latter diagram will be partly
evaluated ‘from the top’, which requires only one- and two-body effects. The same
kind of asymmetry appears in the wave operator. In i~ the diagram (¢) in figure 2 will
be generated in the one- and two-body approximation, while the analogous diagram
(d) would require that three-body effects were also considered. Again, in the Hermitian

C C
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Figure 1. Illustration of the non-Hermiticity of the effective Hamiltonian in intermediate
normalization. The broken lines represent the electron-electron interaction and the full
lines the electron orbitals. Valence lines are marked with double arrows. The energy
denominator of diagram (a) is (A~C), while that of (b) is (B-C). Hence the diagrams
are not Hermitian adjoints when the initial and final energies are different, A* B. Diagram
{c} is a correciion to the effective Hamiltonian, which in the Hermitian formulation
compensates for the non-Hermiticity (see equation (25)). The double line represents here

the double energy denominator (A-C)}(B-C).
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Figure 2. If single and double excitations are considered (without interaction with any
passive valence orbital), then the effective-operator diagram () would be generated in
intermediate normalization but not the corresponding Mermitian adjoint diagram (b).
Similarly, the wave-operator diagtam (c) would be included but not the analogous diagram
{d), which invoives a tripie excitation, when viewed from the bottom, I the ‘symmetrized’
Hermitian formulation all these diagrams would be included in the approximation with

singles and doubles.
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formulation the latter can be evaluated from the top in the one- and two-body
approximation.

In the Hermitian formulation presented here, it can be shown that the single-electron
approximation leads to the full random-phase approximation (rpa), including the
so-called ‘ground-state correlations’, while in i~ the same approximation leads to the
Tamm-Dankoft approximation (TDa} without these correlations. The situation is
analogous in higher approximations, and the scheme yields a systematic way of
generating approximations beyond rpa.

The present paper is organized as follows. First a review is given in section 2 of
the general mBpT—with 1N as well as with arbitrary normalization. In section 3 a
Hermitian form of MBPT is presented, based on the condition of Jgrgensen (1975). The
equations for the wave operator and the effective Coulomb interaction are then
expressed in a symmetric way in order to guarantee that the Hermiticity is preserved
also for a truncated expansion. The effective operator corresponding to an additional
perturbation is also discussed in this section. In section 4 the coupled-cluster formalism
is presented, and the connectivity of the cluster operator is demonstrated for a general
model space in the Hermitian formulation. In section 5 the one- and two-particle
equations and their graphical representation are discussed.

The Jgrgensen condition used here is a sufficient but not necessary condition for
Hermiticity. A more complete analysis of the sufficient and the necessary conditions
for Hermiticity and connectivity will be given in a forthcoming publication (Chowdhuri
et al 1991).

2. General wave-operator equation

The wave operator, (1, is defined by the relation

Yl = (it (1)
where ¥’ is a solution of the Schradinger equation

Hie) = Elagta) (2)

and ¥{" is the corresponding zero-order function, confined to a subspace, called model
space. We assume that the model space has the dimensionality d, and we consider d
independent solutions (a=1, 2, ..., 4). We also assume that the zero-order functions
are linearly independent, so that they span the entire model space.

The effective Hamiltonian, H.,, is defined so that operating on the zero-order
function it generates the corresponding exact energy,

H W= B, (3)
Operating on this equation from the left with 1, we get—using {1, 2)—
QH W = E9v @ = HQU .

Since this relation holds for all a=1,2, ..., d, we can write it as an operator relation,
often referred to as the (generalized) *Bloch equation’

QH P=HQP (4)

where P is the projection operator for the model space. It follows directly from the
definition (3) that the effective Hamiltonian cannot connect the model space with the



1146 I Lindgren

orthogonal space (Q=1-P)
QH gP =10, (5)

For the purpose of applying perturbation theory we partition the Hamiltonian, H,
into a zerp-order Hamiltonian, H,, and a perturbation, V,

H=Hy+V (6)

and the effective Hamiltonian similarly into H, and an effective ( Coulomb) interaction,
Ver

HgP=(Hy+ Vi) P. (7)
It then follows that relation (4) can be written in the form of the commutator relation
[, Ho]l P=(VQ -V 4) P (8)

By taking the projection onto the model space and the orthogonal space, respectively,
we get

PLQ, H)]P=P(VQ-QV, )P (9a)
QLA, Ho]P=Q(VQ-QV.q)P. (9b)

The equations above hold in any scheme, regardless of the choice of the normaliz-
ation. In intermediaie normalization (1N}, we have

Vi =Py (10)
which together with (1) leads to
POP=P (11)

By projecting equation {4) to the left onto the model space, using (11}, it follows that
the effective Hamiltonian and the effective interaction are in the 1N scheme

H.P=PHQP V.aP=PVQP, (12)
The relation (8) then becomes
[Q, Hi]P=(VQ-OQPVQ)P (13)

which is a standard form of the wave-operator eqguation in intermediate normaliization
and the basis for several developments of MBPT using that scheme (Lindgren 1974,
Kvasnicka 1974, 1977, Lindgren and Morrison 1986). Equation (8) is a generalization
of this equation, valid in any scheme.

In the IN scheme the P projection (9a} of the commutator relation (8), (13) vanishes,
and the wave operator can be generated by solving recursively the Q projection (9b)
only. In the general case, on the other hand, the P projection is also non-vanishing,
and both equations have to be treated simultaneously. Writing the wave operator in
the form

Q=1+x (14)
and using the relation (6}, the projections (9) can be expressed

PO, H)JP=P{VQ - Vq—xVa) P {(i3a)

QLN Hy]P =Q(VQ—xV.a)P. (15b)

We have here used the fact that
QVsP=0 (16)
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which follows directly from (5) and (7). In the recursive process the P projection (15a)
is used to determine Vg4

VeaP = P(VQ—xV.q—[Q, H,]) P. (17)

The P part {closed part) of the commutator appearing in this equation is determined
by the choice of normalization and vanishes in 1v. Note that it vanishes also for a
degenerate model space, and that in the general case only elements of § between
different zero-order energy appear in the effective interaction.

3. Hermitian form of the effective Hamiltonian

3.1. The Jargensen condirion

In order to find a formulation of MBPT with a Hermitian effective Hamiltonian, we
start from the Schrédinger equation (2} in the form

HQV{ = Q™ (18)
and operate from the left with an operator X

XHQU = E'XQ¥®. (19)
Then we see from definition (3) that the effective Hamiltonian is given by

H.P=XHQP (20)
provided

XQP=P (21)

X = P leads to the iN scheme (12) with PX}P = P. Another possible choice is X =07",
which obviously satisfies (21) (Mukherjee 1989) and gives

H P=Q 'HQP (22)
One way of making H.; manifestly Hermitian is to set X = PQ', which leads to

HP=PQ'HOP (23)
and

PQOP=P or Plx"+x+x'y)P=0. (24)

This is the ‘isometry condition’ of (Jérgensen (1975), which we shall use in the following.
Since only the Hermitian part of PyP is determined by this relation, there is some
additional degree of freedom. The condition (24) has also been utilized in coupled-
cluster developments by Kvasnicka (1981, 1982) and by Haque and Mukherjee (1985)
(see also Mukherjee 1989}.

The zero-order functions satisfy the eigenvalue equation (3), and it then follows
that in the Hermitian scheme the zero-order functions are orthogonal.

In order to demonstrate explicitly that condition (24) actually leads to Hermiticity,
we consider again the effective-operator diagrams (a) and (b) in figure 1. Diagrams
of the same kind will appear in Py'yP, when two first-order wave-operator diagrams
of x" and y are combined to form a closed diagram, as illustrated in figure 1{c). This
diagram has a double denominator, (A-C)(B-C), and inserted into the commutator
in (18} this yields (4-B)/(A-C){B-C). This compensates exactly for the non-Hermi-
ticity of the two effective-operator diagrams (a) and (b), regardiess of the non-
Hermitian part of y.
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3.2. The effect of truncation

We have shown above that the Jgrgensen condition (24) leads to Hermitian effective
operators when all effects are considered. It may still happen, however, that non-
Hermiticity is introduced by truncation at a certain level. Using the partitioning (6)
and the definition (7) of V.4, we find from (23} and (24) that

HaP=POQ(H+ V)QP=P(Q'QH,+QH, Q]1+0Q'VQ)P

VP = PO VQ - Q[0 H]) P, (25)
The last expression is identical to {17), when all effects are considered, but not
necessarily so for a truncated expansion. Expression (25) is identical to (23) and
therefore—in contrast to {17)—Hermitian at each level of truncation.

In order to demonstrate the relation between the two expressions (17} and (25) for
Vs, we operate on the wave-operator equation (8) from the left by O

Q'Q, HlPp=(Q'va-atav.)p (26a)
and move x'[£2, Hy]P to the right-hand side

[Q, HP=(Q'VQA-Q'Q V.. —x[Q, H,])P. (26b)
The Q projection of this equation yields

Q[, H]P=Q(Q'VQ - Q' V.~ x'[Q, Ho])P (26c)

while the P prajection yields the expression (25),

In the equations (25) and (26) there are large cancellations between the different
terms on the right-hand side, and therefore these equations are less convenient to use
as they stand. For that reason we rewrite (26b) as an extension of (8)

[Q, HiP=(VQ-QVat+x (VQ-QV,a—[Q, H])P. (27)

Of course, due to relation (8), the ‘extension term’ here vanishes identically, if all
contributions are considered. This is not the case for a truncated expansion, however,
the reason being that intermediate states can reach beyond the approximation used.
For instance, in the one- and two-body approximation considered above (figure 2),
V{} may contain triple excitations, which are reduced to double or single excitations
by x'. Hence, the inner bracket in (27) will not cancel exactly at each level of
approximation, and this introduces additional terms compared with the original
equation (8). In this way diagrams like that in figure 2(d) will be produced and included
in the wave operator in the approximation with singles and doubles.

In order to express the appearance of the additional terms more explicitly, we write
the ‘extended’ equation (27) as

[Q, Hy]P = (VR ~Q Vgt x (VR - QV,0),) P (28)
where the subscript ‘+’ is used to indicate effects beyond the approximation used,
Obviously, the commutator [, H,] does not contain any such c¢ontributions. The Q
and P projections of this equation lead to

QLQ, HyJP = Q(VQ ~ xVegt+ x (VR -QV,q).)P (29a)

PVeuP= P(VQ—xVea—[Q, Hol+ X" (V2 - QV.q).) P (29b)
The correction term represents the difference between the standard expressions (9)
and (17) and the ‘extended’ ones (25) and (26). It vanishes when all effects are

considered, but it has the important property of making the effective interaction Her-
mitian at each level of truncation.
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3.3. Additional perturbation

The effect of an additional perturbation, h, on the effective Hamiltonian can be obtained
by making the substitution

H->H+h (30)
and looking for the corresponding change of H.4
Heq— Heg+ heg. (31)

h g is the h-dependent part of the new effective Hamiltonian and is called the effective
operator, corresponding to the perturbation h Assuming that substitution (30) leads
to the following change in the wave operator

Q-0+0, (32)
we find that the form (23) of the effective Hamiltonian leads to
ha=PQIHQ+Q'HO, +Q RO P : (33)

considering only terms linear in h, Using relation (4) and its Hermitian adjoint, this
can be written

he=P(QIQH .+ H..Q0'Q,+QhQ)P. (34)

The first two terms are here the Hermitian adjoints of each other, so the result can be
expressed

heg= P(2x herm part {QJQH.z}+QhQ)P. (35)
However, it follows from the Jargensen condition {24) that
PQIO+0'Q,)P=0 (36)

again considering only terms linear in k. Hence, the Hermitian part of ;) vanishes,
and we have in first order in h

heaa=PQ'RQOP. (37)

4. Coupled-cluster expansion. Proof of connectivity

4.1. General criteria for connectivity

The equations obtained above can be transformed into the coupled-cluster {cc)
formalism following essentially the standard procedure. We start with the ‘normal-
ordered exponential ansatz’ {Lindgren 1978)

Q={exp S}=1+S+3{S%}+. .. (38)

where the curly brackets are used to denote normal-ordering in the second-quantized
(particle-hole) formalism (Lindgren and Morrison 1986). Equations for the cluster
operator, 8, corresponding to those of {} given above, can then be derived, and,
following the procedure of Mukherjee (1986a) and Lindgren and Mukherjee (1987),
it will be shown below that the cluster operator can be connected for a general
(incomplete) model space also in the Hermitian formulation.

We start by considering the basic equation {4} as a Fock-space relation

QH..=HQ (39)



1150 I Lindgren

implying that it holds for each valence sector (m) separately (valence universality)
(QH.)'™ = (HQ"™. (40}

With a valence sector we understand all terms in the second-quantized formulation
with a certain number of valence-electron absorption operators (or diagrams with a
certain number of incoming valence lines). We consider only terms which give a
non-zero result when operating to the right on P or on any of the ‘subduced’ model
spaces, P with m < n, obtained by removing one or several valence electrons from
the original model space P = P" with n valence electrons. The m-valence sector can
then be defined also as the collection of terms which give a non-zero result when
operating to the right on P, (For simplicity we assume here that all valence electrons
are of particle type. The formalism can easily be extended to the more general case
with valence particles as well as valence holes, following the procedure of Lindgren
and Mukherjee {1987).)
Relation (40} can be written in the form (see (A.1) in the appendix)

{QH 0} ={HQ O} (41)

where HQ (Q H.q) represents the part of HQ(Q H.q) that is connected if S (and H.q)
are connected. { S or H 4 need not be connected at this stage.) Since this is a Fock-space
relation, all terms are linearly independent. Therefore, the relation will hold for the
connected parts separately,

QH=HQ {42)

as before, considering only terms operating to the right on P'™ (m < n). (The curly
brackets are here deleted, since it is assumed that connected terms are always normal
ordered.) With the partitioning (6} and (7) it then follows that

HOQ"QH(,:W—QV;“.
Assuming that H, is a one-body operator, it can connect only one § operator, giving
(S, Hl=VQ (V.. (43)

This is the cluster equation, corresponding to the wave-operator equation (8) above.
{Note that the right-hand side is here connected in the sense that there are connections
with all § operators in {}, while the connectivity of S itself or of V.4 has not yet been
shown.)

A necessary condition for connectivity for a general model space is that the effective
Hamiltonian has no (‘dummy’} valence lines, not connected to the rest of the diagram
{(Lindgren and Mukherjee 1987). This has the consequence that relation (16) must hold
for each valence sector separately,

QViRP=0. (44)

No part of V.g is allowed to connect the P space with the orthogonal Q space, which
with our definition implies that V.q must be closed. We shall also follow the terminology
of Mukhopadhyay and Mukherjee (1989) and refer to a term as ‘quasi-open’, if it can
excite from the model space into the compiementary modei space, P, which together
with P forms a complete model space. (We still use the definition P+ Q =1, so that
P is a part of the Q space.) In defining P we disregard the exclusion principle. For
instance, with a model space s’d, an excitation d - s is defined as quasi-open, although
it cannot operate by itself on the model space.
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Sufficient conditions for connectivity can be derived from the P and @ projections
of (43), considering one valence sector at a time (with £2=1+ y),

QLS, Ho]'"P = Q(VA~x V)™ P (45a)
PVR'P=P(VQ - XV~ S, H)"P. (45b)

The last equation refers to the closed components, while the first equation determines
the open as well as quasi-open components, with the definitions given above. The
relation between the closed parts of § and V.4 is not regulated here but is deiermined
by the choice of normalization. It can now be shown by induction that § as well as
V.q is connected, provided the closed part of S is connected (Lindgren and Mukherjee
1987). We shall now show that this condition is compatible with the Hermiticity
condition of Jgrgensen (24),

4.2. Connectivity and Hermiticity

In our Fock-space treatment the various valence sectors are linearly independent, and
the Jgrgensen condition must then hold for each sector separately (Haque and
Mukherjee 1985, Mukherjee 1989)

PQ'Q)™P=P (46)
In the appendix (section A.2) the following relation is shown
Q'Q = {exp W} with W=S"+S5+yy (47)

where x'x represents the part of y'y which is connected if § is connected. In our
treatment this relation holds also for each valence sector separately. For a complete
model space the closed part of {exp W} is given by the closed part of W, and hence a
necessary and sufficient condition for the extended Jgrgensen condition (46) in that
special case is that the closed part of W vanishes, or

P(S'+8)Y™P=—P(x'x)™P (48)

Since x'x is rigorously connected, if § is connected, the conditions for connectivity
given above can be satisfied with this subsidiary condition. Hence, the conditions for
connectivity and Hermiticity are compatible for a complete model space.

The situation is somewhat more complicated for a general incomplete model space,
since quasi-open terms may here form a closed combination without any contraction.
Obviously, the Jargensen condition (46) is satisfied, if all closed and quasi-open parts
of W vanish. However, the non-diagonal, quasi-open part of S is given by (45a) and
cannot be chosen freely. Below we shall show that the twa conditions are in fact
compatible also for a general model space.

From (44) it follows that PV.7’P =0, and Hermiticity requires that also

PVII'P =0, (49)
From equation (26a) and its Hermitian adjoint in the Fock-space formulation we get,
assuming V,.; to be Hermitian

Q7T0, H]=(Q'vQ-0'Q V) (50a)

[H,, 2710 = (Q'vQ- Vv Q'0). (50b)
This leads to

[Q°Q, Hy]=[ V., 2'Q] (51)
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and, using relation (47), we have in analogy with (41)
[ Ve, Q] =[ Vg, {exp Wi = {(Vi{exp W] —T{exp W1 V,4) exp W1 (52a}

In the connected parts there are connections between V.; and all W operators in
{exp W} but no connection between the W operators in {exp W}. Similarly, we get

(00, Hy]=[{exp W}, Hyl= {({exp W}H,— H,{exp W]) exp W}
= {(WH,— H, W) exp W} (52b)

since H, is assumed to be a one-body operator and can connect only one W operator.
This leads with (51) to

{(WH,—H, W) exp W}={(V q4{exp W}—{exp W}V.q) exp W}

and since this is a Fock-space relation, we get in analogy with (42) and {43)

[ W, Hy]= Veelexp W} —{exp W}V,,. {53)

We assume now that the closed, diagonal elements of W™, i.e. elements between
states of the same energy within the model space, vanish, and we shall show by
induction that this leads with (53) to the vanishing of all closed and quasi-open elements
of W.

In zero order W =1, and the rHs of (53) vanishes in first order, Hence, alse [ W, H,]
and the non-diagonal closed and quasi-open elements of W vanish in that order.
Therefore, alf closed and quasi-open elements of W vanish in first order. It then follows
from (53) that the non-diagonal, closed and quasi-open elements of [ W, H,] vanish
in second order, and so on. Hence, the condition that the closed diagonal elements of
W vanish has the consequence that all closed and quasi-open diagrams of W vanish,
which implies that the Jgrgensen condition (46) is satisfied. The closed diagonal
elements of W can be made zero by choosing the closed part of § according to {48).
Therefore, the conditions for Hermiticity and connectivity are compatible also for a
general model space.

Assuming connectivity, we can now write the general cluster equation (43) as

(S, Ho]={VQ -0 V.q)e (54)
where ‘¢’ stands for rigorously connected diagrams, and the P and Q projections (43) as
QLS, Ho]™P = Q(VQ~xV,a)™P (55a)
VP P=P(VQ—xV—[Q, HDP (558)

where the projections have the same meaning as in (45).
It is of interest to compare the condition of Jgrgensen (24)

POQ'QP = Plexp W}P=P
with that of intermediate normalization (11)
POP=Plexp S}P=P.

In order to see why the former is compatible with connectivity in the general case
while the latter is not, we consider as an example an incomplete model space consisting
of the electron configuration sd. The complementary model space, P, consists here of
the configurations s*+d*. The excitations s->d and d-s are then quasi-open, since
they lead from P to 2 The combination of the two excitations, on the other hand, is
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closed, since it leads back to the model space. If we require § to be connected, we
cannot at the same time require PyP to vanish. Therefore connectivity is incompatible
with intermediate normalization. The situation is different with the Jorgensen condition.
1t is easy to see that in the first-order W operator, W = §"+ §‘V"_ the contributions
from the excitations s » d and d - s cancel. In second order the corresponding contribu-
tions cancel between the terms in W'¥ = §¥ 4+ §@*4 g1 and 5o on. Therefore,
there are no ¢lements of W between the model space sd and the complementary model
space s°+d?, and no combination of disconnected {quasi-)open W operators can lead
back to the model space. Hence, the condition P{exp W}P = P is not in conflict with
connectivity.

4.3. The ‘extended’ coupled-cluster equations

We can now derive the coupled-cluster analogue of the “extended’ equations (27)-(29)
We start from relation (26a) in the Fock-space formulation

Q'Q, Hl=(@'vQa-a'av,,). (56)
From relation {A.3) in the appendix we have

Q'[Q, Hol = {(Q'[Q, Ho])c exp W} (57a)

Q'vVa={(Q'VQ), exp W} (57b)

Q'QVes={(Q'Q Ver)cexp W} (57¢)
since § is connected. We then get in analogy with (52)

(Q'[Q, HoDe=(Q'VQ-Q'QV,y). (38)
or

([Q, Hol)e =18, H]=(Q'VQ-Q'Q V.~ x[Q, Hy])e. (59)

The rus is here the connected part of the corresponding equation for { (26}, and in
analogy with (28) we can then write this as

[S, Hol=(VQ—QVat x (VR - Q V,0)1)e (60)

where, as before, index ‘+° indicates terms beyond the approximation used. The
projections then lead to the ‘extended’ coupled-cluster equations, which are the
analogues of (29)

QLS, Hy)™P=Q(VQ~xVy+x (VR -Q V) ) "'P (61a)
VP =P(VQ - xVer—[Q, Ho]+ X (VQ—-Q V), ) 7P, (61b)

4.4. Normalization diagrams
In order to fulfil the extended Jdrgensen condition {46}, we include closed-cluster
diagrams according to (48)

P(ST+8)™MP=-P(x x)"™P (62)
Only the Hermitian part of PSP is determined by this relation, while the non-Hermitian

part is optional. A few examples of such diagrams are illustrated in figure 3. It should
be observed that in evaluating such diagrams there is a double energy denominator in
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Figure 3. Graphical representation of some closed-cluster diagrams, which appear in order
to satisfy the Hermiticity condition (24) and (48). The heavy lines represent the cluster
operator S, Note that the diagrams without open valence lines (2) and (&) do not appear
in the equations for § or V.4 (61). Note also that in the evaluation of these diagrams there
is a double denominator in the intermediate state, denoted by the double bar.
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the intermediate state, represented by the double bar. The closed S diagrams appear
in the P as well as in the Q projections (61) above. The diagrams without any open
valence line (a) and (b) do not appear in any equation, since they cannot form
connected combinations.

The appearance of the closed $ components has the consequence that the linked-
diagram theorem has a different formulation in the Hermitian formulation presented
here than in intermediate normalization. The wave operator may contain terms with
disconnected closed parts. The cluster operator and the effective Hamiltonian, on the
other hand, are rigorously connected, as demonstrated abovet.

5. One- and two-particle equations

5.1. Single-particle approximation
Let us first consider the single-particle equation in the approximation
Quy=1+5,+3{S7}. (63)

The equation for the single-particle cluster operator 5, becomes in that approximation

[S), Hol =(V+ V8, +1VSi+ S Vo+ 81(V8)),— S Vo) (64)
where subscript ‘2" represents two-body effects, which are beyond the approximation
(63). This equation is illustrated in figure 4 for an excitation from the core. The
single-particle cluster, S,, can be regarded as an orbital correction, and consistent
inclusion of that correction is equivalent to using Brueckner orbitals (Lindgren et al
1976, Ynnerman and Mairtensson-Pendrill 1990). It can be noted that when this
formalism is applied to an open-shell system, there will be a symmetric correction to
the incoming and outgoing valence lines due to the extension terms,

In figure 5 we have illustrated the single-particle equation for an excitation from
the core with an interaction with an unexcited valence electron, leaving out the orbital
corrections and the folded diagrams for simplicity. In this approximation, which we
recognize as the ‘random-phase approximation’ (RPA), we observe that the extension

% The extended coupled cluster equations given here were first presented at the Symp. on Many-Body Methods
in Quanium Chemistry ( Tel Aviv) August 1988 (Lindgren 1989). Related equations were also discussed at
the same symposium by Bartlett ef al (1989) as a means of evaluating certain classes of diagrams {see also
Noga et af 1989}).
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Figure 4. Graphical representation of the single-particle equation for excitation from the
core, using the approximation (63). For simplicity the arrows are left out from the orbital
lines, Only some representative diagrams are shown. The corresponding representation for
excitation from a valence orbital is obtained by turning the incoming line down and adding
a ‘folded’ diagram.

L\/ 1\/

L

A1 0¥ oV "O...O‘"V*

Figure 5. Graphical representation of the single-particle equation for excitation from the
core with an interaction with an unexcited valence electron. The valence orbitals are marked
with double arrows, while the general particle and hole lines are left unmarked, as before.
Orbital corrections are left out as well as folded diagrams These diagrams represent the

N crlmen f oy L " 4 4l mad axmo A i o oo

ranaom pndSC dppl’u}&lmdlluﬂ \KPA} Noie lrldl LHE ‘)I operaior l& IltCUCU w 5cm‘:rdu: mc
‘backward’ loops (‘ground-state correlation').

term is vital in order to generate the ‘backward’ loops. Without that term only diagrams
with ‘forward’ loops are generated, known as the Tamm-Dankoff approximation (TpA).
The “backward’ loops appearing in rra involve double excitations in the intermediate
states, and the corresponding effect is often referred to as the ‘ground-state correlation’.
From a physical point of view, however, this is a single-particle effect, which is also
manifested by the fact that it can be evaluated by means of a single-particle equation.

3.2. Pair approximation
Next we consider the pair approximation
Qy=1+8,+ 8, +1{SHY+{5,5:} +3{S3}. {65)
The equation of S, then becomes
[S,, Hol = (V+ V8, + VS, +1VSi+ V8,5, + S3( VS,),
+S;( st)s"‘---"sl Veﬁ,l""u»)l.c (66)
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F QLD "Q+L0‘Q

S, V Vs VS, VIsi ViS5,

SI(V Sa)s S;(V S:] 3 vaen.l

Figure 6. Graphical representation of the single-particle (66) in the approximation (65).
The incoming line at the bottom can represent a valence or a core otbital. In the latter
case there is no folded diagram.

which is illustrated in figure 6 for a general excitation. We observe here that the diagram
in figure 2(d) is generated by the additional term, S3(VS,);, while the analogous
diagram in figure 2(c) is generated by V§,. This iilustrates the fact, mentioned pre-
viously, that the Hermitian procedure presented here yields a more symmetric and
more complete expansion at each truncation than the standard procedure with inter-
mediate normalization. In the pair approach, all ‘physical’ one- and two-body effects
are included, represented by those Goldstone diagrams which after factorization can
be expressed by means of one- and two-particle functions. In particular, this implies
that all third-order diagrams are included in such a pair approach.
Similarly, the two-particle equation becomes

[S,, Hol=(V+ V8, + VS, +1VS2+ V5,5, +5VS3+ SI(VS3),+. ..
_Sz Veﬁ,l _Sl Veﬂ,Z_Sz Veﬁ,Z_- . -)l.c- (67)

Here, the extension terms appear first in fourth order.

6. Summary and conclusions

In the treatment given here we have shown that it is possible to present the coupled-
cluster theory in a form which is Hermitian at all truncations. This has the consequence
that additional terms, not present in the conventional treatment, appear at each

ol Y]

truncation, making these truncations iess arbifrary and more ‘physical’. It has also
been shown that the formulation is compatible with the connectivity criteria for the
cluster operator and the effective Hamiltonian for an arbitrary incomplete model space.
Numerical tests are now under way of the significance of the new terms of the
pair-correlation approach extended in this way, compared with genuine three-body
effects left out in any pair approach.
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Appendix

A.1. Proof of the relation V() ={Vi} (2}

(The proof here follows essentially that of Lindgren (1978) and Kvasnicka (1982))
Wick’s theorem gives

VQ={VQ}+{ Wy}

where {/} represents all terms with at least one connection between V and y. With the
definition (39) of ()

O=1+y={exp S}= %::0;'1—!{8"}
we get
@ 1 —

TZCa

_M.n:I m!(n—m)
{ s LV y l{S’}} )
m=1 m! r! BRAC '

r=g !

The bar represents a single cluster of operators with at least one connection between
V and each of the § operators (but, of course, no connection between the latter). Thus

=1 1
Vi=VS+- VBS+— V&3S ...
“ o)

is the part of Vy that is connected if § is connected. With

VQ=V+Vy
we get the final result
vQa={vVQa Q).

A.2. Proof of the relation Q' = {exp W} with W=S"+S+yTx
Wick’s theorem gives
t 1)
Q'0={Q'0}+{x x}

shnma (ool camcacants all moccihla cantrastinne hatwaan vf and 3
WIHCIC 1 Af TCPIROCILY @il PUSIIVIV VWWILKLAVHUIL ULLwuhdl [ gl g,
t v 1 +
megn
x'xt= ¥ —— {88
mn=1 M.LA

The contracted part can be separated into one, two, . .. connected clusters, disconnected
from each other. One such cluster corresponds to

{i - E('f)(;’){s*'}{ss}{sm—'}{S"-‘}}

mn=1 min! rs=1

={ ) LT ¢ 1 !{S*"'"}{S""}}

L2rlst mn=1 (Mm—r}l{n=s)
={x"x0'Q}
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where
[t T i T
¥ x=S'S+1iS'SS+1STS' S +1187STSS + . .,

represents the part of x'y which is connected if § is connected.
Similarly, two clusters give rise to

L[ 3 1 romrsa s L _tgmrgm
2L, s S HSY T S {STHSY

x 1
Xm,§21 (m—r—t)1(n—s-u)

! {STm—r—J}{Sn—s—u}}

= {%(}*_xm"n}
etc. This gives
Tt R a1 T2 t s t
X' xt={x"x+2:(x"x)"+... )20} ={{exp(x x) — 1) exp(S" + 8§)}
and the final result

Q0 ={exp(S§T+S+x ¥}

A.3. Proof of the relation 2"V} ={Q"V) exp W}
Wick’s theorem gives

+ —f0* TN i e v
Qv ={Q VO +{x Vx}+{Q Vx}+{x VQ}+{x Vx}

1 | 1
+Ivi vy + vVl
TIA YAT T A VAT

where the outer hook in the last two terms indicates that there are also connections
between x' and y not involving V. In analogy with the previous case the following
relations can be shown

QT VA +{x Vi = {(V(Q'Q+ x )t ={V exp W}

(0 VA + 1Y V) = (V@' + X x)} = {Vx exp W}
[ J— _

TV +{x Vit = (X V@ O+ X Db ={x V exp W}

(X' Vb= {x" Vi exp W}
which lead to the final result

Q'va={0'vQexp W}



Hermitian formulation of the coupled-cluster approach 1159
References

Bartlett R }, Kucharski § A, Noga J, Watts ] I? and Trucks G W 1989 Proc. Many-Body Methods in Quantum
Chemistry ed U Kaldor (Lecture Notes in Quantum Chemistry 52) (Berlin: Springer)

Brandow B H 1967 Rev. Mod. Phys, 39 771-§28

Chowdhuri R, Lindgren I and Mukherjee D 1991 unpublished

des Cloizeaux J 1960 Nucl. Phys. 20 321-46

Durand P and Malrieu J-P 1987 Adv. Chem, Phys. 67 321

Haque M A and Mukherjee D 1984 Pramana 23 651

—— 1985 Proc. 5th Int. Congress on Quantum Chemistry (Montreal)

Jgrgensen F 1975 Mol. Phys. 29 1137

Kvasnicka V 1974 Czech. J. Phys. B 24 605

~— 1977 Adv. Chem. Phys. 36 345

——— 1981 Chem. Phys. Lett. 79 89

—— 1982 Adv, Chem. Phys. 52 181

Lindgren I 1974 J. Phys. B: At. Mol. Phys. 7 2441-70

— 1978 Int. J. Quantum Chem. § 12 33-58

—— 1989 Proc. Many-Body Methods in Quantum Chemisiry ed U Kaldor (Lecture Notes in Quantum
Chemistry 52) (Berlin: Springer)

Lindgren I, Lindgren J and Maértensson A-M 1976 Z. Phys. A 279 113

Lindgren I and Morrison J 1986 Atomic Many-Body Theory 2nd edn (Berlin: Springer)

Lindgren I and Mukherjee D 1987 Phys. Rep. 151 93-127

Mukherjee D 1986a Chem. Phys. Les. 125 207

—— 1986b Int. J. Quantum Chem. § 20 409

—— 1989 Adv. Quantum Chem. 20 291

Mukhopadhyay Jr D and Mukherjee I3 1989 Chem. Phys. Lett. 163 171

Noga J, Kuchari § A and Bartlett R J 1989 J. Chem. Phys, 90 3399

Ynnerman A and Martensson-Pendrill A-M 1990 Phys. Scr. 41 329



