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Abstract

By means of Many-Body Perturbation Theory (MBPT) it is shown that minimizing the
energy expectation value of a closed-shell system in a certain order of the preturbation expan-
sion by varying the partitioning of the Hamiltonian, leads to a zeroth-order function, which
– as the order of perturbation increases and provided the expansion converges properly – ap-
proaches a determinant of Brueckner orbitals. It is also shown that the energy eigenvalues
of the Brueckner orbitals represent the corresponding ionization energies of the system, in-
cluding orbital-relaxation and correlation effects to all orders of perturbation theory. This is
a generalization of the Koopmans theorem in Hartree-Fock theory. The MBPT treatment is
used for a discussion of the Density-Functional Theory (DFT), and a new model is proposed –
referred to as the Brueckner–Kohn-Sham (BKS) scheme – where also the electron correlation
is included in the functional. This leads to a non-local exchange-correlation potential, quite
similar to that of Brueckner orbitals (BO), implying that the orbitals of the new scheme are
essentially BO. Arguments are given that also the orbitals of other schemes with a purely local
potential, such as the standard Kohn Sham (KS) scheme, would be close to BO. This has been
conjectured by Heßelmann and Jansen (J. Chem. Phys. 112, 6949 (2000)), and the present
work gives more direct evidence of that. This might explain the recent observations that the
KS orbitals and energy eigenvalues do have more physical significance than was originally
anticipated.

1 Introduction

Per-Olov Löwdin has in a series of seminal papers laid down the foundation of modern theory of
Self-Consistent-Fields (SCF) and of Many-Body Perturbation Theory (MBPT) [1, 2, 3, 4, 5, 6, 7].
In the paper [6], entitled ’Studies in Perturbation Theory. V. Some Aspects of Exact Self-Consistent
Field Theory’, he introduced into quantum chemistry the important concept of Brueckner orbitals
and formulated the Brillouin-Brueckner condition. In the present paper we shall be particularly
concerned with MBPT and the Brueckner orbitals and their relation to the Density-Functional
Theory (DFT).

The MBPT was in the 1950’s and 1960’s developed in the form of the linked-cluster or linked dia-
gram expansion, initially formulated for closed-shell systems by Brueckner [8] and Goldstone [9] and
later extended, particularly in nuclear physics, to degenerate open-shell systems by Brandow [10],
Brown, Kuo and others [11, 12, 13, 14] and also to general quasi-degenerate systems [15, 16]. The
Coupled-Cluster Approach (CCA) of MBPT or Exponential Ansatz was developed during the same
period, first in nuclear theory by Hubbard, Coster and Kümmel [17, 18, 19, 20, 21] and later in
quantum chemistry by Čižek, Paldus and others [22, 23, 24, 16, 25].

As an alternative to MBPT and CCA, the DFT has in the last 10-15 years developed into an
extremely popular and useful tool for computational quantum chemistry. DFT started actually
already in the 1920’s by the development of the statistical atomic model by Thomas and Fermi [26,
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27]. In 1951 Slater [28, 29] introduced the local statistical exchange approximation, which formed
the beginning of the Local Density Approximations (LDA). The modern form of DFT started by
the fundamental papers by Hohenberg and Kohn [30] and by Kohn and Sham [31]. Later the
formalism has been extended and improved by many groups. The major formal improvement was
the introduction of the constrained search by Levy in 1979 [32].

In the original Kohn Sham (KS) scheme, the electrons move independently in a local poten-
tial, which represents – apart from the Coulomb and external fields – also the electron exchange
and correlation effects [33]. Although the KS potential can in principle represent the exchange-
correlation in an exact way, no schemes have been deviced for its evaluation apart from the crude
local-density approximation (LDA) and the gradients variants (Generalized Gradient Approxima-
tions, GGA) [34, 35, 36, 37, 38]. A scheme which treats the electron exchange part exactly within
the Kohn-Sham picture has recently been developed and is referred to as the EXX scheme. It has
first been suggested as an approximation to the Hartree-Fock method under the name Optimized
Exchange Potential (OEP) [39]. Later it was derived within a Kohn-Sham framework [40, 41], and
it was shown to yield the exact local KS exchange.

It was found a number of years ago that the LDA and GGA results can be considerably improved
by including into the potential a fraction of a non-local exchange potential, yielding schemes referred
to as hybrid schemes [42, 43, 44, 45, 46, 47, 48]. In recent years a number of formal schemes have
been developed by Levy, Görling and others [49, 50], which can be regarded as Generalized Kohn-
Sham (GKS) schemes and which will form the starting point of the present work. In a scheme
known as the Hartree-Fock–Kohn-Sham (HF-KS) scheme [49] the electron exchange is treated
exactly by means of a non-local potential. The electron correlation effect is as in the original KS
scheme treated by means of a local potential. In the present paper we will extend the arguments
in order to include also most of the electron correlation into the model. This leads to a scheme,
which we will refer to as the Brueckner–Kohn-Sham (BKS) scheme, with a non-local exchange-
correlation potential, which we show is quite similar to that of Brueckner orbitals (BO). This
implies that the orbitals of this scheme are essentially Brueckner orbitals. It is well-known that
BO are more ’physical’ than HF orbitals, in the sense that experimental single-electron properties
are much better represented by such orbitals [51, 52, 53, 54]. As a consequence, the orbitals and
eigenvalues of the BKS scheme would have definite physical significance. Arguments will be given
that the orbitals of other schemes, such as the standard Kohn-Sham procedure, also are similar to
Brueckner orbitals – as has recently been conjectured by Heßelmann and Jansen [54]. This may be
the case also for orbitals generated by means of a local exchange potential of Slater type, where it
has been found that single-particle properties, like the hyperfine structure, often agree better with
experiments than do the HF results [51].

The present paper will be organized as follows. In the first MBPT part we shall study the mini-
mization of the energy expectation value of a closed-shell system in a certain order of perturbation
theory, and it will be shown that this leads at increasing order to a zeroth-order determinant of
Brueckner orbitals. In the second part we shall compare the minimization of the energy expectation
value in the MBPT treatment with the energy minimization performed in the Density-Functional
Theory (DFT). Minimizing the energy functional of such models have great similarities with min-
imizing the energy expectation value in MPBT, and this will be our starting point for comparing
the two many-body procedures.
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2 Basic Many-Body Theory

2.1 General

We consider an N -electron system with the Hamiltonian (using Hartree atomic units, m = e =
h̄ = 4πε0 = 1)

H = T̂ + Ŵ + V̂ext = −
N∑

i=1

1
2 ∇2

i +
N∑

i<j

1
|ri − rj | +

N∑

i=1

vext(ri), (1)

where T̂ is the kinetic-energy operator, Ŵ the electron-electron interaction and V̂ext the interaction
with the external (normally the nuclear) field. In treating such a system by means of perturbation
theory, the Hamiltonian is partitioned into a zeroth-order Hamiltonian, H0, and a perturbation
H ′ [16],

H = H0 + H ′, (2)

where

H0 = T̂ + V̂ext + Û =
N∑

i=1

{− 1
2 ∇2 + vext(r) + u

}
i
=

N∑

i=1

h0(i)

H ′ = −Û + Ŵ =
N∑

i=1

−ui +
N∑

i<j=1

1
|ri − rj | . (3)

The potential Û =
∑N

i=1 ui – which can be local or non-local – is hermitean but otherwise optional.
The eigenfunctions of the zeroth-order Hamiltonian

H0ΦA = EA
0 ΦA (4)

can be expressed in the form of Slater determinants,

ΦA =
1√
N

det
{
φa(r1) · · ·φn(rN )

}
, (5)

formed of spin-orbitals, which are eigenfunctions of h0,

h0 φi = εi φi. (6)

It should be noted that the partitioning above is not unique, since the choice of the potential u is
essentially free. We shall utilize this freedom in the following.

In general MBPT we consider a number (d) of eigenstates of the system [16]

HΨa = EaΨa (a = 1, 2, · · · d), (7)

which form the target space (T). The corresponding zeroth-order or model functions, Ψa
0 , form

a model space (D), and a wave operator transforms the model functions into the corresponding
target functions,

Ψa = ΩΨa
0 (a = 1, 2, · · · d). (8)

The Schrödinger equation of the target states can then be written

HΩΨa
0 = EaΩΨa

0 (a = 1, 2, · · · d). (9)

We define an effective Hamiltonian, Heff , by means of the relation

HeffΨa
0 = EaΨa

0 (a = 1, 2, · · · d). (10)

It follows from the definition that this operator has the properties

PHeffP = HeffP and QHeffP = 0, (11)
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where P is the projection operator for the model space and Q for the complementary space,

Q = 1− P. (12)

The exact energy of the target states is given by

Ea = 〈Ψa
0 |Heff |Ψa

0〉, (13)

assuming the model states to be normalized to unity. The form of the effective Hamiltonian
depends on the scheme of normalization, as will be discussed further below.

Using the effective Hamiltonian, the Schrödinger equation (9) can be expressed

HΩΨa
0 = ΩHeffΨa

0 (a = 1, 2, · · · d). (14)

Since this relation is valid for all model states (which are assumed to span the entire model space),
we can write it in the form of an operator equation,

HΩP = ΩHeffP = ΩPHeffP. (15)

We shall refer to this equation as the Bloch equation [55, 56, 16, 25]. With the partitioning (2),
the Bloch equation (15) becomes

[
Ω,H0

]
P =

(
H ′Ω− ΩPH ′

eff

)
P, (16)

where H ′
eff is the effective interaction, defined by

HeffP = PH0P + H ′
effP. (17)

We shall work here in intermediate normalization (IN), where PΩP = P and

Heff = PHΩP = PH0P + PH ′ΩP and H ′
eff = PH ′ΩP. (18)

The Bloch equation then becomes
[
Ω,H0

]
P =

(
H ′Ω− ΩPH ′Ω

)
P. (19)

This form can be used to generate an order-by-order expansion, such as the generalized Rayleigh-
Schrödinger expansion [15, 16],

Ω = Ω0 + Ω(1) + Ω(2) + · · ·
[
Ω(n), H0

]
P =

(
H ′Ω− ΩPH ′Ω

)(n)
P. (20)

The Bloch equation (16) can also be used to generate the linked-diagram expansion [8, 9, 15, 16, 25]

[
Ω(n),H0

]
P =

(
H ′Ω− ΩPH ′

eff

)(n)

linked
P, (21)

where the subscript linked refers to linked diagrams, i.e., diagrams with no disconnected, closed
part [16]. The last term on the right-hand side represents so-called folded diagrams, which appear
only for open-shell states [57, 10].

2.2 Closed-shell states

For the rest of this paper we shall restrict ourselves to closed-shell ground states. (The treatment
will be valid – with trivial modifications – also for systems with a single electron outside closed
shells.) The target space then contains only a single wave function, Ψ, and the model space one
model function, Φ,

HΨ = EΨ ; Ψ = ΩΦ ; H0Φ = E0Φ. (22)
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The model functions are projections onto the model space of the corresponding target functions,
i.e., for a closed-shell system

〈Φ|Ψ〉 = 〈Φ|Ω|Φ〉 = 1, (23)

assuming the model function, Φ, to be normalized to unity.

The Bloch equation (19), (21) assumes for closed-shell systems the simple form

[
Ω(n),H0

]|Φ〉 =
(
H ′Ω− ΩPH ′Ω

)(n)|Φ〉 = Q(H ′Ω)(n)
linked|Φ〉, (24)

where P = |Φ〉〈Φ|.
Instead of an order-by-order expansion of the wave operator, we shall often use successive

approximations,
Ωn = 1 + Ω(1) + Ω(2) + · · ·+ Ω(n), (25)

so that Ωn → Ω as n →∞. These approximations can be obtained by solving the Bloch equation
recursively, [

Ωn,H0

]|Φ〉 =
(
H ′Ω− ΩPH ′Ω

)
n
|Φ〉 = Q(H ′Ω)n,linked|Φ〉. (26)

Also the effective Hamiltonian contains only linked terms/diagrams and can be given the forms

Heff = P
(
HΩ)linkedP = P

(
H0 + (H ′Ω)linked

)
P = P

(
H + (H ′χ)linked

)
P, (27)

where we have introduced the correlation operator [16]

χ = Ω− 1. (28)

The ground-state energy is according to (13)

E = 〈Φ|Heff |Φ〉, (29)

and using the successive approximations (25), the perturbative energy of order (n + 1) becomes

En+1 = 〈Φ|Heff,n+1|Φ〉. (30)

2.3 Energy expectation value

The perturbative energy (30) is not variational, and in the following we shall therefore consider
the corresponding energy expectation value,

〈E〉n+1 =
〈Ψn|H|Ψn〉
〈Ψn|Ψn〉 =

〈Φ|Ω†nHΩn|Φ〉
〈Φ|Ω†nΩn|Φ〉

, (31)

which clearly has this property.

In any finite order the expectation value as well as the perturbative energy depends on the
way the partitioning of the Hamiltonian (2) is performed – i.e., on the potential u. Since the
expectation value is variational, it must have a minimum under the variation of the partitioning,
and we shall now investigate the conditions for this minimum.

In order to simplify the expression above, we rewrite the numerator by means of the Bloch
equation (26),

Ω†nHΩn = Ω†nΩnH0 − Ω†n[Ωn,H0] + Ω†nH ′Ωn = Ω†nΩnH0 + Ω†nH ′Ω(n) + Ω†n
(
ΩPH ′Ω

)
n
, (32)

where Ω(n) = Ωn − Ωn−1. After some algebra, one then finds that the expectation value (31) can
be expressed

〈E〉n+1 =
〈Φ|Ω†nHΩn|Φ〉
〈Φ|Ω†nΩn|Φ〉

= 〈Φ|HΩn + h.o.t.|Φ〉, (33)
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where ’h.o.t’ stands for terms of order (n + 2) and higher. The r.h.s is – apart from the h.o.t. –
identical to the corresponding perturbative energy (30), which verifies the expected result that the
perturbative – or diagrammatic – expansion of the expectation value is up to order n + 1 identical
to that of the perturbative energy in intermediate normalization. In addition, the expectation
value contains terms beyond order n + 1, which makes it variational. Of course, in the limit
n →∞ the two expansions will be identical. The expression HΩ is not hermitean in intermediate
normalization, but this is compensated for by the higher-order terms, so that the entire expression
is hermitean.

We shall now investigate under what conditions the energy expectation value (31) is minimum,
when the partitioning (2) or – equivalently – the potential u is varied. The minimum condition
can be expressed

δ〈E〉n+1 = δ
( 〈Φ|Ω†nHΩn|Φ〉
〈Φ|Ω†nΩn|Φ〉

)
= δ〈Φ|HΩn + h.o.t.|Φ〉 = 0, (34)

where δ represents any modification of the partitioning/potential.

We assume now that we modify the determinant Φ by a small admixture of a single substitution,

δΦ = ηΦr
a (35)

and make the corresponding modification of the potential. Here, Φr
a is the determinant Φ with the

occupied orbital a replaced by the unoccupied (or virtual) orbital r, and η is a small number. This
corresponds to an orbital modification

φa → φa + η φr; φr → φr − η φa. (36)

The minimum condition (34) now becomes

〈δΦ|HΩn + h.o.t.|Φ〉+ 〈Φ|HΩn + h.o.t.|δΦ〉+ 〈Φ|HδΩn + h.o.t.|Φ〉 = 0, (37)

where the last term represents the effect of the corresponding modification of Ωn. These variations
have to be made with some care. We are interested in the change of the diagonal element of
the effective Hamiltonian, while in (37) also some undefined non-diagonal elements may seem to
appear. In order to handle this subtle problem properly, we can think of replacing the effective
Hamiltonian, Heff , by a reaction operator, H, which has the same closed part (operating within
the model space) as Heff ,

〈Φ|H|Φ〉 = 〈Φ|Heff |Φ〉, (38)

but which also has an open part, operating outside this space. This part can be defined by means
of second quantization [16]. In the effective Hamiltonian, H or H ′ operates on the wave operator,
and all creation and annihilation operators must be completely contracted in order to contribute
(in the closed-shell case). The reaction operator is constructed in the same way as the effective
Hamiltonian, but the operators need not be completely contracted.

Obviously we must have δ〈Φ|χ|Φ〉 = 0, which yields a condition for δχ = δΩ,

〈δΦ|χn|Φ〉+ 〈Φ|χn|δΦ〉+ 〈Φ|δχn|Φ〉 = 0, (39)

where the correlation operator, χ, is given by (28). Similarly, we must have

δ〈Φ|H0χ|Φ〉 = δ〈Φ|χH0|Φ〉 = 0,

which yields the only non-vanishing, non-diagonal elements of δH0, i.e., the change in H0 due to
the modification (35),

〈δΦ|δH0|Φ〉 = 〈Φ|δH0|δΦ〉 = η2(εa − εr). (40)

When these relations are used in (37), one finds that the δΩn contribution exactly cancels the
H0χn part of the first two terms as well as the unlinked part of HΩn that can be formed in these
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terms when H ′ is operating on Ωn in second quantization. Since the wave operator is completely
linked, we can then express the reaction operator as

Hn+1 = (HΩn)linked = H0 + (H ′Ωn)linked = H + (H ′χn)linked (41)

and the condition that the energy expectation value, 〈E〉n+1, is stationary for the substitution (35)
as

〈Φr
a|Hn+1 + h.o.t.|Φ〉 = 0. (42)

Here, all the forms of the reaction operator in (41) yield identical results.

At the global minimum of 〈E〉n+1, the condition (42) must hold for all occupied orbitals a
and all vitual orbitals r. In the following sections we shall investigate the consequences of this
condition. As an introduction, we shall first consider the simple case of minimizing the first-order
energy, which leads to the well-known Hartree-Fock equations. In the section thereafter we shall
consider the minimization of the expectation value in arbitrary order and demonstrate that this
leads in the limit n →∞ to Brueckner orbitals.

3 First-order energy. Hartree-Fock

In this section we shall minimize the energy expectation value of a closed-shell system in first order
(31), i.e., the expectation value of the Hamiltonian of the system,

〈E〉1 = 〈Φ|H|Φ〉. (43)

This is stationary for single substitutions (35), if

〈Φr
a|H|Φ〉 = 〈Φr

a|H ′|Φ〉 = 0 (44)

for all a and r, which is the Hartree-Fock (HF) condition. With the form (3) of the perturbation
H ′, the matrix element is here in the single-particle representation

〈
Φr

a

∣∣H ′∣∣Φ〉
=

〈
Φr

a

∣∣− Û + Ŵ
∣∣Φ〉

= 〈r| − u|a〉+
occ∑

b

〈
rb

∣∣∣1− P12

r12

∣∣∣ab
〉

=

= 〈r| − u + v̂HF|a〉 = 〈r|veff |a〉, (45)

where r12 = |r1 − r2| is the interelectronic distance and P12 is the exchange operator. v̂HF is the
Hartree-Fock potential with the matrix elements

〈r|v̂HF|a〉 =
〈
Φr

a

∣∣Ŵ
∣∣Φ〉

=
occ∑

b

〈
rb

∣∣∣1− P12

r12

∣∣∣ab
〉

=

=
occ∑

b

∫∫
d r1dr2 φ∗r(r1) φ∗b(r2)

1− P12

r12
φa(r1) φb(r2). (46)

veff is referred to as the effective potential and defined by

veff = −u + v̂HF. (47)

This potential can be represented graphically by the MBPT diagrams in Fig.1, where the last two
diagrams represent the Hartree-Fock potential (46).

The minimum condition (44) can now be expressed
〈
Φr

a

∣∣H
∣∣Φ〉

=
〈
Φr

a

∣∣T̂ + Ŵ + V̂ext

∣∣Φ〉
=

〈
r
∣∣− 1

2 ∇2 + v̂HF + vext(r)
∣∣a〉

= 0 (48)

for all occupied orbitals a and virtual orbitals r. Using the closure property, this can be written

[− 1
2 ∇2 + v̂HF + vext(r)

]|a〉 −
occ∑

b

∣∣b〉〈b∣∣− 1
2 ∇2 + v̂HF + vext(r)

∣∣a〉
= 0, (49)
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Figure 1: Graphical representation of the ’effective potential’, defined in (47). The first diagram on the
right-hand side represents the (negative) potential interaction in H ′ (3) and the last two diagrams the
Hartree-Fock potential, v̂HF (46).
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Figure 2: Graphical representation of the Brillouin theorem (52).

a relation that could also be obtained by minimizing the expression (43) with the ortho-normality
constraint, using the Euler-Lagrange equation. The potential is here hermitean, and the equation
can be expressed in canonical form

[− 1
2 ∇2 + v̂HF + vext(r)

]|a〉 = εa|a〉. (50)

These are the Hartree-Fock equations. Comparing with the single-particle equations (6), we see
that this corresponds to the potential

u = uHF = v̂HF (51)

in the zeroth-order Hamiltonian (3). The HF potential depends on the occupied orbitals, and the
equations have to be solved self-consistently.

It follows from MBPT [16] that the first-order contribution to the wave function in the form
of a single substitution, Φr

a, is proportional to 〈Φr
a|H ′|Φ〉. It then follows from (44) that there are

no single substitutions in the first-order Hartree-Fock wave function, which is Brillouin’s theorem.
This theorem can also be expressed, using (45),

〈r|veff |a〉 = 0 (52)

and illustrated as in Fig. 2.

The energy associated with an occupied orbital is in first order

ea =
〈
Φa

a

∣∣H
∣∣Φ〉

, (53)

which is evaluated in the same way as the matrix element in (48) but with r replaced by a. It then
follows from (50) that this is equal to the orbital eigenvalue,

ea = 〈a| − 1
2 ∇2 + v̂HF + vext(r)|a〉 = εa (54)

which is Koopmans’ theorem. Here, all other orbitals are unaffected, which means that no relaxation
effects are included in this removal energy.

4 Higher-order energies. Brueckner orbitals

We shall now consider the energy expectation value in higher orders of perturbation theory – still
restricting ourselves to the gound state of closed-shell systems – in order to find out under what
conditions this will be stationary under the variation of the partitioning (2). We start with the
second order, which we carry through in some detail, mainly for pedagogical reasons.
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4.1 Second order

The second-order energy expectation value is according to (33)

〈E〉2 =
〈Φ|Ω†1HΩ1|Φ〉
〈Φ|Ω†1Ω1|Φ〉

= 〈Φ|HΩ1 + h.o.t.|Φ〉, (55)

and the minimization leads to the condition (42)
〈
Φr

a

∣∣H2 + h.o.t.
∣∣Φ〉

=
〈
Φr

a

∣∣H + (H ′Ω(1))linked + h.o.t.
∣∣Φ〉

= 0, (56)

where Ω(1) is the first-order contribution to the wave operator (20). The first term of the second
expression can as in the Hartree-Fock case (48) be represented by

〈
Φr

a

∣∣H∣∣Φ〉
= 〈r| − 1

2 ∇2 + v̂HF + vext(r)|a〉, (57)

where v̂HF is the Hartree-Fock potential (46). The second term can be represented by means of a
second-order non-local correlation potential

〈
Φr

a

∣∣(H ′Ω(1))linked

∣∣Φ〉
=

linked∑

ΦA 6=Φ

〈Φr
a|H ′|ΦA〉〈ΦA|H ′|Φ〉

E0 − EA
0

= 〈r|v̂BO
corr,2|a〉. (58)

The minimum condition (56) then yields
〈
r
∣∣− 1

2 ∇2 + v̂HF + v̂BO
corr,2 + vext(r) + h.o.t.

∣∣a〉
= 0 (59)

for all a and r, where ’h.o.t.’ here represents a potential contribution due to the higher-order terms
– in this case beyond second order. In analogy with (50) this yields

(− 1
2 ∇2 + v̂HF + v̂BO

corr,2 + vext(r) + h.o.t.
)
φa = εaφa. (60)

(Here, the potential is not necessarily hermitean, but we shall anyhow leave out possible off-diagonal
multipliers, which will not be important for our discussions, and write the orbital equations in
canonical form.) Comparing this equation with the zeroth-order Hamiltonian (3), we find that up
to second order it corresponds to a potential

u = uBO,2 = v̂HF + v̂BO
corr,2. (61)

At the global minimum of 〈E〉2 the equation (60) must be satisfied for all occupied orbitals.

It follows from MBPT [16] – and it will also be shown below (79) – that the first two terms of the
second expression in (56) represent the amplitude of the admixture of the singel substitution Φr

a in
the second-order wave function (apart an additional energy denominator). When this vanishes, the
Brillouin-Brueckner condition [6] is satisfied to this order. This implies that the orbitals generated
by the equations (60) with the higher-order terms removed,

(− 1
2 ∇2 + v̂HF + v̂BO

corr,2 + vext(r)
)
φa = εaφa, (62)

would be second-order Brueckner orbitals (BO). We shall now have a closer look upon these orbitals.

We shall first consider the correlation potential (58) and start with the corresponding energy
expression (55),

E(2) = 〈Φ|(H ′Ω(1))linked|Φ〉 =
linked∑

ΦA 6=Φ

〈Φ|H ′|ΦA〉〈ΦA|H ′|Φ〉
E0 − EA

0

. (63)

The intermediate states, ΦA, can here be singly or doubly excited,

E(2) =
linked∑

a,t

〈Φ|H ′|Φt
a〉〈Φt

a|H ′|Φ〉
εa − εt

+
linked∑

ab,tu

〈Φ|H ′|Φtu
ab〉〈Φtu

ab|H ′|Φ〉
εa + εb − εt − εu

, (64)
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Figure 3: MBPT diagrams (of Goldstone type) representing the second-order contribution to the energy
for a closed-shell system, leaving out the exchange variant. The graphical representation of the effective
potential, veff , is given in Fig.1.

and this is represented by the linked many-body diagrams (of Goldstone type) [16] in Fig.3 (leaving
out the exchange variant of the second diagram).

The graphical representation of the second-order correlation potential can easily be obtained
by considering the definition of the reaction operator (38). As mentioned there, the effective
Hamiltonian is in second-quantized form for a closed-shell system represented by fully contracted
terms, i.e., by diagrams that are completely closed. The reaction operator is represented by
the same second-quantized terms, but the terms need not be fully contracted. The diagrams of
the reaction operator can therefore be obtained from those of the the effective Hamiltonian by
’breaking up’ the closed lines. The diagrams obtained in this way with a single pair of open
lines, corresponding to single substitutions, are shown in Fig.4. The first four diagrams represent
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Figure 4: Diagrams representing the change in the second-order contribution to the energy due to the
orbital modifications. These diagrams also represent the second-order correlation potential, vBO

corr,2 (58).
The first four diagrams represent correlation effects and the last two effects of the orbital relaxation.
Exchange diagrams are left out.

correlation effects associated with the orbital a with the remaining occupied orbitals frozen, while
the remaining two diagrams represent the effect due to the relaxation of the occupied orbitals.
Together with the Hartree-Fock potential (last two diagrams in Fig.1) these diagrams represent
the second-order Brueckner potential, uBO,2 (61), appearing in the equation for the second-order
Brueckner orbitals (62).

Next, we shall consider the significance of the orbital energies, which, using (62), are given by

εa =
〈
a
∣∣− 1

2 ∇2 + v̂HF + v̂BO
corr,2 + vext(r)

∣∣a〉
. (65)

The diagonal element of the correlation potential is not defined by the expression (58), but we shall
make the natural extension and let this element be given by the same expression in the single-
particle representation (or second quantization) as the non-diagonal element with r replaced by a.
Formally, the diagonal element can be expressed

〈a|v̂BO
corr,2|a〉 =

〈
Φa

a

∣∣(H ′Ω(1))linked

∣∣Φ〉
, (66)

10



and, using (54), it then follows that the eigenvalue is given by

εa =
〈
Φa

a

∣∣H + (H ′Ω(1))linked

∣∣Φ〉
=

〈
Φa

a

∣∣H2

∣∣Φ〉
, (67)

which is equal to the energy associated with the orbital a or the negative of the corresponding
ionization energy, including correlation and orbital relaxation effects to second order. This is a
generalization of Koopmans’ theorem in Hartree-Fock theory (54). The diagonal element of the
correlation potential represents the effect of correlation and orbital relaxation. Diagrammatically,
this part of the energy is represented by the same diagrams as the correlation potential shown
above with the outgoing virtual orbital line r replaced by an outgoing occupied orbital line a (see
further below).

4.2 All orders

We shall now minimize the energy expectation value in arbitrary order (33), (41),

〈E〉n+1 =
〈Φ|Ω†nHΩn|Φ〉
〈Φ|Ω†nΩn|Φ〉

= 〈Φ|Hn+1 + h.o.t.|Φ〉 = 〈Φ|H + (H ′χ)n+1,linked + h.o.t.|Φ〉. (68)

The condition for minimum is according to (42)

〈Φr
a|H + (H ′χ)n+1,linked + h.o.t.|Φ〉 = 〈Φr

a|H +Hcorr,n+1 + h.o.t.|Φ〉 = 0, (69)

where we have introduced the correlation part of the reaction operator,

Hcorr = H−H = (H ′χ)linked. (70)

This condition leads in analogy with (59) to the equation
〈
Φr

a

∣∣H +Hcorr,n+1 + h.o.t.
∣∣Φ〉

= 〈r| − 1
2 ∇2 + v̂HF + v̂BO

corr,n+1 + vext(r) + h.o.t.|a〉 = 0 (71)

and to the orbital equations
[− 1

2 ∇2 + v̂HF + v̂BO
corr,n+1 + vext(r) + h.o.t.

]
φa = εa φa, (72)

where
〈r|v̂BO

corr,n+1|a〉 = 〈Φr
a|Hcorr,n+1|Φ〉 (73)

is the correlation potential of order (n + 1).

We shall show below that the orbitals generated by equation (72) – with the higher-order terms
removed, [− 1

2 ∇2 + v̂HF + v̂BO
corr,n+1 + vext(r)

]
φa = εa φa, (74)

are Brueckner orbitals of order n+1. It is obvious that in the limit n →∞ the two equations (72)
and (74) become identical and equal to

[− 1
2 ∇2 + v̂HF + v̂BO

corr + vext(r)
]
φa = εa φa, (75)

where the correlation potential (73) is

〈r|v̂BO
corr|a〉 = lim

n→∞
〈r|v̂BO

corr,n+1|a〉 = 〈Φr
a|Hcorr|Φ〉 = 〈Φr

a|(H ′χ)linked|Φ〉. (76)

This is the equation for all-order Brueckner orbitals. We refer to the potential in this equation,

uBO = v̂HF + v̂BO
corr, (77)

as the Brueckner potential. The correlation part of this potential is represented graphically by the
second-order Goldstone diagrams in Fig. 4 together with all higher-order linked diagrams with a
single pair of free orbital lines.
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The Brueckner potential derived in intermediate normlization is not hermitean, and therefore
the orbitals would not be automatically orthogonal. In order to generate orthonormal orbitals, the
non-diagonal Lagrange multipliers, left out in the treatment above, should be maintained.

That the orbitals generated by the equation (74) are Brueckner orbitals of a certain order can
be shown in the following way. From the Bloch equation in linked-diagram form for a closed-shell
system (26),

[Ωn,H0]|Φ〉 = (QH ′Ω)n,linked|Φ〉, (78)

we obtain by operating with 〈Φr
a| from the left

(εa − εr)〈Φr
a|Ωn|Φ〉 = 〈Φr

a|(H ′Ω)n,linked|Φ〉, (79)

where εr−εa is the excitation energy of Φr
a. The matrix element on the left-hand side, 〈Φr

a|Ωn|Φ〉 =
〈Φr

a|Ψn〉, represents the coefficient for Φr
a in the n:th-order wave function, Ψn. Therefore, if we

have
〈Φr

a|Ωn|Φ〉 = 〈Φr
a|Ψn〉 = 0 (80)

for all occupied orbitals a and all vitual orbitals r, then there would be no singles in the n:th-order
wave function. This is the Brillouin-Brueckner condition, which is equivalent to

〈Φr
a|Hn|Φ〉 = 〈Φr

a|(H ′Ω)n,linked|Φ〉 = 0. (81)

With n → n + 1 this becomes identical to the condition (69), apart from the higher-order terms.
This implies that with orbitals that are solutions of the equations (74) there are no single substi-
tutions in the wave function of order (n + 1), and hence the orbitals are Brueckner orbitals of this
order. Eq. (80) is also the condition for maximum overlap between the zeroth-order determinant
and the correlated wave function, which is another criteria for BO.

The Brillouin-Brueckner condition of a certain order (81) can be represented graphically by all
linked diagrams up to this order with a single pair of free lines, as shown schematically in Fig. 5.
The diagrams are here identical to those of the BO potential of the same order with the addition
of the diagram for −u (see Fig. 1).

???a 666r

= 0

Figure 5: Graphical representation of the generalized Brillouin-Brueckner theorm (81). The graphical
symbol represents all closed and linked MBPT diagram with no other free lines that those explicitly
shown. For the two lowest orders the corresponding diagrams are given in Figs 1 and 4.

The significance of the Brueckner orbital energy of arbitrary order can be shown in the same
way as in second order. The energy associated with an occupied orbital in n:th order is

ea =
〈
Φa

a

∣∣Hn

∣∣Φ〉
, (82)

evaluated in analogy with (66). In all orders this becomes

ea =
〈
Φa

a

∣∣H0 + (H ′Ω)linked

∣∣Φ〉
=

〈
Φa

a

∣∣H0 + H ′ + (H ′χ)linked

∣∣Φ〉
, (83)

using (41), and if we define the diagonal elements of the correlation potential in analogy with (66)
this can be expressed

ea = εa + 〈a|veff + v̂BO
corr|a〉 = εa + 〈a|uBO − u|a〉, (84)
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???a

ea = εa +

Figure 6: Graphical representation of (the negative of) the electron binding energy or ionization energy.
The box is the same as in Fig. 5 and the diagrams represent the correction to the orbital energy eigenvalue.
When the orbitals are Brueckner orbitals, these diagrams vanish in the same way as in Fig. 5.

using (45) and (76). Here, uBO is the Brueckner potential (77) and u is the potential in the zeroth-
order Hamiltonian (3). This is a general relation between the orbital energy eigenvalue and (the
negative of) the electron binding energy and represented graphically as shown in Fig. 6. The box
is here the same as in Fig. 5. When the orbitals are Brueckner orbitals, the second term in (84)
and the diagrams in this figure vanish. We then find that the energy eigenvalues of an occupied
Brueckner orbital is equal to the negative of the corresponding ionization energy,

ea = εa. (85)

This includes correlation and orbital-relaxation effects to all orders of perturbation theory. This
is the generalized Koopmans’ theorem (54). This result has been confirmed by accurate numerical
calculations [52].

In summary, we have shown that minimizing the energy expectation value of a closed-shell
system in a certain order of perturbation theory,

〈E〉n+1 =
〈Ψn|H|Ψn〉
〈Ψn|Ψn〉 =

〈Φ|Ω†nHΩn|Φ〉
〈Φ|Ω†nΩn|Φ〉

, (86)

by varying the partitioning of the Hamiltonian, leads to orbitals that approach Brueckner orbitals
as the order of perturbation increases.

Furthermore, we have shown that the energy eigenvalues of the occupied Brueckner orbitals
are equal to the negative of the corresponding electron binding energies, including relaxation and
correlation effects to all orders. This is the generalized Koopmans’ theorem.

5 Density-functional procedures

We shall now compare the MBPT discussed above with the density-functional theory (DFT). We
shall start by deriving the standard Kohn-Sham scheme, using the Levy constrained search [32]
and the so-called Hartree-Fock–Kohn-Sham scheme of Seidl, Görling et al. [49]. Finally we shall
extent this procedure and propose a new scheme, referred to as the Brueckner–Kohn-Sham scheme,
where also electron correlation is introduced into the model. It will be shown that this leads to a
non-local exchange-correlation potential, and it will be argued that the orbitals of this model are
essentially Brueckner orbitals.
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5.1 Standard Kohn-Sham model

In the constrained-search formalism the Hohenberg-Kohn energy functional for an interacting N -
electron system is

EHK[ρ] = FHK[ρ] +
∫

dr ρ(r) vext(r), (87)

where
FHK[ρ] = min

Ψ→ρ

〈
Ψ

∣∣T̂ + Ŵ
∣∣Ψ〉

=
〈
Ψ[ρ]

∣∣T̂ + Ŵ
∣∣Ψ[ρ]

〉
= THK[ρ] + WHK[ρ] (88)

is the universal Hohenberg-Kohn functional and vext(r) is the (local) external potential. T̂ and
Ŵ are the kinetic-energy and the electron-electron-interaction operators, respectively (1). The
electron-electron-interaction functional WHK[ρ] can be separated into

WHK[ρ] = J [ρ] + EHK
xc [ρ], (89)

where

J [ρ] =
∫∫

drdr′
ρ(r)ρ(r′)
|r − r′| (90)

is the Coulomb interaction (Hartree) functional and EHK
xc [ρ] the universal Hohenberg-Kohn exchange-

correlation energy functional.

Minimizing the HK energy functional with respect to the electron density, keeping the total
electronic charge constant, leads to the exact ground-state energy,

min
ρ

EHK[ρ] = EHK[ρ0] = Eground state, (91)

where ρ0 is the exact ground-state density.

In the standard Kohn-Sham model the interacting system is replaced by a system of non-
interacting electrons, moving in a local potential, vKS(r),

HKS = T̂ + V̂ext =
N∑

i=1

[− 1
2 ∇2

i + vKS(ri)
]
, (92)

with the eigenstates given in the form of single-determinantal wave functions (5).

The Kohn-Sham kinetic-energy functional is according to the constrained search the minimum
of the kinetic energy for all determinants yielding a certain density, ρ(r),

FKS[ρ] = TKS[ρ] = min
Φ→ρ

〈
Φ

∣∣T̂ ∣∣Φ〉
=

〈
Φ[ρ]

∣∣∣T̂
∣∣∣Φ[ρ]

〉
. (93)

TKS is an (implicit) functional of the density but different from THK[ρ] in (88),

∆TKS[ρ] = THK[ρ]− TKS[ρ]. (94)

Minimizing the kinetic energy (93) for a certain ρ(r), leads to the Euler equation

δ
[〈

Φ
∣∣T̂ ∣∣Φ〉

+
∫

d r ρ(r) vKS
eff (r)

]
= 0, (95)

where vKS
eff (r) is a Lagrangian multiplier function. We can vary the orbitals of the Kohn-Sham

wave function (5) and include also the Lagrangian multipliers for the ortho-normality constraint,

δ

δφ∗a

[〈
Φ

∣∣T̂ ∣∣Φ〉
+

∫
d r ρ(r) vKS

eff (r)−
occ∑

a,b

εa,b〈a|b〉
]

= 0. (96)

Alternatively, we can as before (35) include small components of single-substitutions, which yields
〈
Φr

a

∣∣T̂
∣∣Φ〉

+ 〈r|vKS
eff (r)|a〉 = 0. (97)
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Omitting any off-diagonal multipliers, we obtain the standard Kohn-Sham equations

[− 1
2 ∇2 + vKS(r)

]|a〉 = εa|a〉, (98)

where vKS(r) is the local Kohn-Sham potential (92) and identical to the Lagrangian multiplier
function vKS

eff (r).

The Kohn-Sham energy functional is

EKS[ρ] = TKS[ρ] +
∫

dr ρ(r) vKS(r), (99)

and minimizing this functional with respect to the density under the constraint
∫

dr ρ(r) = N ,
leads to the Euler equation

µ =
δTKS[ρ]
δρ(r)

+ vKS(r). (100)

The Hohenberg-Kohn energy functional (87) can be expressed in terms of the Kohn-Sham
kinetic-energy functional as

EHK[ρ] = THK[ρ] + J [ρ] + EHK
xc [ρ] +

∫
dr ρ(r) vext(r) = TKS[ρ] + VKS[ρ], (101)

where
VKS[ρ] = J [ρ] + EHK

xc [ρ] + ∆TKS[ρ] +
∫

dr ρ(r) vext(r). (102)

Minimizing this functional leads to the Euler equation

µ =
δTKS[ρ]
δρ(r)

+
δVKS[ρ]
δρ(r)

. (103)

We then see that this is the same as that of the independent-particle KS model (100) with

vKS(r) =
δVKS[ρ]
δρ(r)

=
δJ [ρ]
δρ(r)

+
δEKS

xc [ρ]
δρ(r)

+ vext(r), (104)

where
EKS

xc [ρ] = EHK
xc [ρ] + ∆TKS[ρ]

is the exchange-correlation functional, including the kinetic-energy difference (94). This can also
be expressed

vKS(r) = vCoul(r) + vKS
xc (r) + vext(r), (105)

where vCoul is the Coulomb (Hartree) potential

vCoul(r) =
δJ [ρ]
δρ(r)

=
∫

dr′
ρ(r′)
|r − r′| (106)

and vKS
xc (r) is the local Kohn-Sham exchange-correlation potential (including a correction due to

the kinetic-energy difference),

vKS
xc (r) =

δEKS
xc [ρ]

δρ(r)
. (107)

When the Kohn-Sham equations (98) are solved self-consistently with the potential above,
the exact ground-state electron density is generated and the energy functional (99) is mini-
mized. This implies that, if the exact potential can be found, the Kohn-Sham model yields the
exact ground-state density and the exact ground-state energy of the system.
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5.2 Including electron exchange: Hartree-Fock–Kohn-Sham

Instead of minimizing only the kinetic energy for a constant electron density, as in the standard
Kohn-Sham model (93), we could minimize the kinetic energy together with the electron-electron
interaction – or part thereof – schemes known as hybrid schemes [50] or generalized Kohn-Sham
schemes [49]. As an illustration, we consider a scheme where the entire interaction W (as in the
Hartree-Fock scheme) is included, which leads to a model known as the Hartree-Fock–Kohn-Sham
(HF-KS) model. The KS functional (93) is here replaced by

FHFKS[ρ] = min
Φ→ρ

〈
Φ

∣∣∣T̂ + Ŵ
∣∣∣Φ

〉
= min

Φ→ρ

{〈
Φ

∣∣T̂
∣∣Φ〉

+ J [ρ] + EHF
ex [{φi}]

}
=

= THFKS[ρ] + J [ρ] + EHFKS
ex [ρ]. (108)

Here, the minimization yields

δ
{〈

Φ
∣∣T̂

∣∣Φ〉
+ J [ρ] + EHF

ex [{φi}] +
∫

dr ρ(r) vHFKS
eff (r)

}
= 0, (109)

where vHFKS
eff (r) is another (local) Lagrange multiplier function. This leads in the same way as

before (96)-(98) to the canonical equations
[− 1

2 ∇2 + v̂HF + vHFKS
eff (r)

]|a〉 = εa|a〉, (110)

where
v̂HF = vCoul(r) + v̂HF

ex (111)

is the standard non-local HF potential (46) with the direct (Coulomb or Hartree) part and the
exchange part.

The energy functional of the present scheme is

EHFKS[ρ] = FHFKS[ρ] +
∫

dr ρ(r) vHFKS
eff (r), (112)

and minimization with respect to the density leads to the Euler equation

µ =
δFHFKS[ρ]

δρ(r)
+ vHFKS

eff (r). (113)

As before, we compare with the HK energy functional (87), which we express as

EHK[ρ] = FHFKS[ρ] + EHFKS
corr [ρ] +

∫
dr ρ(r)vext(r), (114)

where
EHFKS

corr [ρ] = EHK
xc [ρ]− EHFKS

ex [ρ] + THK[ρ]− THFKS[ρ] (115)

is the correlation-energy functional including the differences between the kinetic-energy and exchange-
interaction functionals of the two models. The Euler equation then becomes

µ =
δFHFKS[ρ]

δρ(r)
+

δEHFKS
corr [ρ]
δρ(r)

+ vext(r) =

=
δFHFKS[ρ]

δρ(r)
+ vHFKS

corr (r) + vext(r), (116)

and we find that this is the same as that of the HF-KS model (113) with

vHFKS
eff (r) = vHFKS

corr (r) + vext(r). (117)

vHFKS
corr (r) is a local, effective correlation potential, including a correction due to the kinetic-energy

and exchange differences. The equations for the orbitals then become
[− 1

2 ∇2 + v̂HF + vHFKS
corr (r) + vext(r)

]|a〉 = εa|a〉. (118)
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This can be regarded as generalized Hartree-Fock equations with an additional local correlation
potential, vHFKS

corr (r), and is referred to as the Hartree-Fock–Kohn-Sham scheme (HF-KS) by Seidl,
Görling et al. [49].

If the correlation potential, vHFKS
corr , were known, solving the equations (118) self-consistently

would lead to the exact ground-state electron density and the exact ground-state energy.

5.3 Including exchange-correlation: Brueckner–Kohn-Sham

In the Hartree-Fock–Kohn-Sham scheme considered above the electron exchange is included in the
minimizing functional (108). We shall now extend this model by including also electron correla-
tion into the model – not just in terms of a local potential – and we shall do this by a rather
straightforward extension of the procedure in refs [49, 50]. This will be done in close analogy
with the treatment of the energy expectation value and the Brueckner orbitals in the first part of
the present paper. This leads to a scheme, which we refer to as the the Brueckner–Kohn-Sham
(BKS) scheme, which contains, as we believe, the maximum of correlation that can be included in
a Kohn-Sham-like model. It will be argued that the orbitals generated in such a scheme would be
essentially Brueckner orbitals. From this we shall draw some conclusions also about the orbitals
of the standard Kohn-Sham and related schemes.

5.3.1 Generalized Kohn-Sham model

We start with a general functional of the electron density, FGKS[ρ], which may also include electron
correlation. Based upon that functional, we construct an independent-particle model, where the
electrons move independently of each other in a potential due to this functional and an additional
external local field vGKS(r). This corresponds to the energy functional

EGKS[ρ] = FGKS[ρ] +
∫

dr ρ(r) vGKS(r). (119)

Minimizing this functional with respect to the electron density – keeping the total electron charge,∫
dr ρ(r) = N , constant – leads to the Euler equation

µ =
δFGKS[ρ]

δρ(r)
+ vGKS(r). (120)

Minimizing the universal Hohenberg-Kohn functional (88) with respect to the density, gives

µ =
δFHK[ρ]
δρ(r)

+ vext(r), (121)

and this is the same equation as for the GKS model, if we set

vGKS(r) =
δ

δρ(r)
(
FHK[ρ]− FGKS[ρ]

)
+ vext(r). (122)

(This relation is identical to those in Eq. (9) of ref. [50] and Eq. (2.14) of ref. [49].) Applying this
to the models discussed previously, we find that for the Kohn-Sham model

vKS(r) =
δ

δρ(r)

(
J [ρ] + EHK

xc [ρ] + ∆TKS[ρ]
)

+ vext(r) (123)

with the notations used above, and for the Hartree-Fock–Kohn-Sham model

vHFKS(r) =
δ

δρ(r)

(
EHK

corr[ρ] + ∆THFKS[ρ] + ∆EHFKS
ex [ρ]

)
+ vext(r), (124)
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where EHK
corr[ρ] is the correlation part of the HK exchange-correlation functional and the next two

terms represent the difference between the kinetic-energy and the exchange-interaction functionals
of the HK and HFKS models.

The resulting orbital equations are obtained by minimizing the F functional with respect to
the determinant Φ and including the local potential vGKS(r).

5.3.2 Brueckner–Kohn-Sham

We shall now propose a scheme, which includes electron correlation as well as electron exchange
in the non-local potential. This will be based upon the functional

FBKS[ρ] = min
Ψn→ρ

〈Ψn|T̂ + Ŵ |Ψn〉
〈Ψn|Ψn〉 = min

(ΩnΦ)→ρ

〈Φ|Ω†n(T̂ + Ŵ )Ωn|Φ〉
〈Φ|Ω†nΩn|Φ〉

, (125)

and we shall refer to this as the Brueckner-Kohn-Sham (BKS) scheme. Here, Ψn = ΩnΦ is the
n:th-order approximation of the wave function, where Φ is as before a single Slater determinant
and Ωn is the n:th-order wave operator (26). Since Ψn is not normalized in the intermediate
normalization, we divide by the norm. We see that the expression in this functional is closely
related to the energy expectation value (31) – we simply have to subtract the effect of the external
field –

〈Ψn|V̂ext|Ψn〉
〈Ψn|Ψn〉 =

∫
dr ρ(r) vext(r), (126)

giving

FBKS[ρ] = min
(ΩnΦ)→ρ

[〈E〉n+1 −
∫

dr ρ(r) vext(r)
]
. (127)

Using the identity (33), this can be expressed

FBKS[ρ] = min
(ΩnΦ)→ρ

[〈Φ|Hn+1 + h.o.t.|Φ〉 −
∫

dr ρ(r) vext(r)
]
. (128)

As we have seen above, minimizing 〈E〉n+1 without the constraint, leads, in the limit n → ∞
to Brueeckner orbitals. We shall now investigate the properties of the entire functional with the
constraint.

The functional (125) is quite similar to the HK functional (88), the main difference being that
the search in (125) is more restricted. The function Ψn = ΩnΦ is v-representable [32, 33], which
the function Ψ in the HK functional need not be. Therefore the functionals are (slightly) different.

From the relation (122) we obtain the local potential of the BKS model

vBKS(r) =
δ

δρ(r)

(
FHK[ρ]− FBKS[ρ]

)
+ vext(r) =

δ

δρ(r)

(
∆TBKS[ρ] + ∆Exc[ρ]

)
+ vext(r), (129)

where the first part is due to the differences between the kinetic energy and exchange-correlation
functionals of the two models.

The orbital equations of the BKS model are obtained by minimizing the functional FBKS[ρ]
in analogy with (96)-(98). If the density in (126) were associated with the function Φ, then that
term would yield a potential that cancels vext in (129). Since the density in (126) is associated
with the function ΩnΦ rather than with Φ, the cancellation is not complete. However, as the
process converges, these densities will become more and more equal, and we can omit the potential
difference. In the limit n →∞ the orbital equations of the BKS model would then be

[− 1
2 ∇2 + v̂HF + v̂BO

corr + vext(r) + δvF(r)
]|a〉 = εa|a〉, (130)

where δvF(r) is the local correction potential in (129). These equations are identical to those
of the Brueckner orbitals (75), apart from this correction. We believe that the kinetic-energy
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difference is here even smaller than in the KS and HFKS models discussed above, since the
functionals are generally more similar, and for the same reason we expect the difference be-
tween the exchange-correlation energy functionals to be quite small. It would then follow that
the orbitals of the BKS model are essentially Brueckner orbitals.

6 Discussions and Conclusions.

In the generalized Kohn-Sham model introduced here, the Brueckner–Kohn-Sham (BKS) proce-
dure, we start from a functional (125), which is as close as possible to the exact Hohenberg-Kohn
functional. When the KBS functional is minimized without any restriction, it generates in the limit
n →∞ the exact energy and Brueckner orbitals. When used in a Kohn-Sham-like procedure, the
BKS scheme yields an additional local potential term, δvF(r), which makes the orbitals generate
the exact density. It is well-known that Brueckner orbitals usually reproduce the exact density
quite well, and, therefore, there are strong reasons to believe that the potential correction has
only a minor effect and that the orbitals of the BKS scheme actually are very close to Brueckner
orbitals.

The BKS scheme represents in a way the ultimate scheme of the generalized Kohn-Sham type,
and the standard Kohn-Sham (KS) scheme as well as the Hartree-Fock–Kohn-Sham (HF-KS)
scheme can be regarded as special cases of this scheme. In the KS scheme only the kinetic energy
is used in the first minimizing step, which leads to a local exchange-correlation potential. In the
HF-KS scheme also the electron-exchange interaction is included in the first step, which leads
to a non-local exchange potential of Hartree-Fock type and a local correlation potential. In the
BKS scheme, finally, also the electron correlation is included in the first step, and this leads to
a non-local exchange-correlation potential. We summarize this hierarchy of schemes in the box
below:

Standard Kohn-Sham: local exchange-correlation potential
Hartree-Fock–Kohn-Sham: non-local exchange potential, local correlation poten-
tial
Brueckner–Kohn-Sham: non-local exchange-correlation potential.

We believe, as mentioned, that the BKS scheme generates orbitals that are very close to Brueck-
ner orbitals. We also believe that other schemes, such as the standard Kohn-Sham scheme, generate
orbitals that are close to Brueckner orbitals – closer than to Hartree-Fock orbitals – for the following
reasons.

The HF exchange potential is completely delocalized. For physical reasons, however, one would
expect the electrons to interact more strongly with electrons in the vicinity, and this would lead to
a more ’localized’ exchange potential, such as, for instance, the screened exchange potential, which
has been suggested and applied by a number of authors [49, 58, 59, 60, 61, 62, 63]. In reality there
exists no isolated exchange interaction – only the exchange-correlation has physical significance. It
can be expected that the correlation has the effect of ’screening’ the exchange, so that a screened
exchange potential would automatically include some correlation effect. The Brueckner potential,
which has a non-local exchange-correlation part, is likely to be ’more localized’ than the HF
exchange potential, and we believe that it represents a more ’physical’ potential than does the
HF potential. This might be the underlying reason why local potential approximations work as
well as they do – from the original Slater approximation to the Kohn-Sham scheme – in many
cases considerably better than the HF potential. This would indicate that the local potential
approximations are in some sense closer to the non-local BO potential than to the completely
delocalized HF potential, and that the orbitals generated by the local approximations are closer
to the BO than to the HF orbitals. This is supported by early observations that results obtained
with local exchange potentials often agree better with the Brueckner-orbital result than with the
HF result [51].
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It is well-known that the Brueckner orbitals do have definite physical significance in that the
orbital energies represent closely the ionization energies and that other single-electron properties,
such as the hyperfine interaction or the dipole moments, are well reproduced by such orbitals [51, 52,
53, 54]. This supports the recent observations that the Kohn-Sham orbitals and the orbital energies
do have physical significance, contrary to what was originally anticipated. This is expected to be
the case for the KS orbitals but even more so for the so-called hybrid schemes with partly non-local
potential. It may be true to some extent also for orbitals generated by the local approximations
of Slater type.

The exact form of the exchange-correlation potential in the Brueckner–Kohn-Sham scheme can
at present be obtained only by elaborate many-body calculations. The intention here, however,
has not been to construct a practical computational scheme but rather to shed some light onto the
more traditional schemes. The Brueckner orbitals and the BKS potential have then been used as
tools for this ourpose. It may be possible, though, to find practically useful approximations of the
BKS potential, for instance, by a screened exchange, for which the degree of screening could be
determined by comparing with the Brueckner potential, obtained by means of MBPT.
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[23] J. Paldus and J. Čižek, Adv. Quant. Chem. 9, 105 (1975).

[24] I. Lindgren, Int. J. Quantum Chem. S12, 33 (1978).

[25] I. Lindgren and D. Mukherjee, Physics Reports 151, 93 (1987).

[26] L. H. Thomas, Proc. Cambr. Phil. Soc. 23, 542 (1927).

[27] E. Fermi, Z. Phys. 48, 73 (1928).

[28] J. C. Slater, Phys. Rev. 81, 385 (1951).

[29] J. C. Slater, The Self-Consistent Field for Molecules and Solids (McGraw-Hill, N.Y., 1974).

[30] P. Hohenberg and W. Kohn, Phys. Rev. A 136, B864 (1964).

[31] W. Kohn and L. J. Sham, Phys. Rev. A 140, A1133 (1965).

[32] M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).

[33] R. G. Perdew and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Univ.
Press, New York, 1989).

[34] A. D. Becke, J. Chem. Phys. 84, 4524 (1986).

[35] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

[36] A. D. Becke, J. Chem. Phys. 96, 2155 (1992).

[37] A. D. Becke, J. Chem. Phys. 97, 9173 (1992).

[38] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[39] J. D. Talman and W. S. Shadwick, Phys. Rev. A 14, 36 (1976).

[40] A. Görling and Levy, Phys. Rev. A 50, 196 (1994).

[41] A. Görling and M. Levy, .

[42] A. D. Becke, J. Chem. Phys. 98, 1372 (1993).

[43] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

[44] A. D. Becke, J. Chem. Phys. 107, 8554 (1997).

[45] A. D. Becke, J. Chem. Phys. 109, 2092 (1998).

[46] H. L. Schmider and A. D. Becke, J. Chem. Phys. 108, (1998).

[47] H. L. Schmider and A. D. Becke, J. Chem. Phys. 109, (1998).

[48] A. D. Becke, J. Chem. Phys. 112, 4020 (2000).

[49] A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy, Phys. Rev. B 53, 3764 (1996).

[50] A. Görling and M. Levy, J. Chem. Phys. 106, 2675 (1997).

21



[51] I. Lindgren, J. Lindgren, and A.-M. Mårtensson, Z. Phys. A 279, 113 (1976).
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