Unifying Quantum Electrodynamics and Many-Body Perturbation Theory

Ingvar Lindgren
ingvar.lindgren@physics.gu.se

Department of Physics
University of Gothenburg, Gothenburg, Sweden

New Horizons in Physics

Makutsi, South Africa, 22-28 November, 2015

In honor of Prof. Walter Greiner at his $80^{\text {th }}$ birthday

Coworkers

Sten Salomonson Daniel Hedendahl Johan Holmberg

Combining MBPT and QED

Quantum physics/chemistry follows mainly the rules of Quantum Mechanics (QM)

Some effects lie outside: Lamb shift (electron self-energy and vacuum polarization)

Combining MBPT and QED

Quantum physics/chemistry follows mainly the rules of Quantum Mechanics (QM)

Some effects lie outside: Lamb shift (electron self-energy and vacuum polarization) require Field theory (QED)

Normally these effects are evaluated separately For high accuracy they should be evaluated in a coherent way

QED effects should be included in the wave function

Combining MBPT and QED

QM and QED are seemingly incompatible

QM: single time $\Psi\left(t, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots\right)$
Field theory: individual times $\Psi\left(t_{1}, \boldsymbol{x}_{1} ; t_{2}, \boldsymbol{x}_{2}, \cdots\right)$
Consequence of relativistic covariance
Bethe-Salpeter equation is
relativistic covariant
can lead to spurious solutions

Combining MBPT and QED

Compromise:
Equal-time approximation
All particles given the same time makes FT compatible with QM

Some sacrifice of the full covariance very small effect at atomic energies

Controversy

Chantler (2012) claims that there are significant discrepancies between theory and experiment for X-ray energies of He-like ions
Theory: Artemyev et al 2005, Two-photon QED

Higher-order QED

Higher -order QED can be evaluated by means of the procedure for

combining QED and MBPT using the Green's operator,

a procedure for time-dependent perturbation theory

Time-independent perturbation

$$
\begin{gathered}
H \Psi=(H+V) \Psi=E \Psi \quad \text { target function } \\
\Psi_{0}=P \Psi \quad \text { model function }
\end{gathered}
$$

P projection operator for the model space

$$
\Psi=\Omega \Psi_{0} \quad \Omega \text { wave operator }
$$

Bloch equation

$$
\Omega P=\Gamma(V \Omega-\Omega W) P \quad \Gamma=\frac{1}{E_{0}-H_{0}}
$$

$$
W=P V \Omega P \quad \text { Effective Interaction }
$$

$$
H_{\mathrm{eff}} \Psi_{0}=\left(P H_{0} P+W\right) \Psi_{0}=\left(E_{0}+\Delta E\right) \Psi_{0} \quad \text { Effective Ham. }
$$

Bloch equation

$$
\Omega P=\Gamma(V \Omega-\Omega W) P \quad \Gamma=\frac{1}{E_{0}-H_{0}}
$$

$\Gamma V \Omega P=$

$=[\Gamma V+\Gamma V \Gamma V+Г V \Gamma V \Gamma V+\cdots] P$
Singular when intermediate state in model space (P) Singularity cancelled by the term $-\Gamma \Omega W P$ Leads to Bloch equation

$$
\Omega P=\Gamma_{Q}(V \Omega-\Omega W) P \quad \Gamma_{Q}=\frac{Q}{E_{0}-H_{0}}
$$

The finite remainder is the
Model-Space Contr. $-\Gamma_{Q} \Omega W P$

Time-dependent perturbation

Standard time-evolution operator

$$
\Psi(t)=U\left(t, t_{0}\right) \Psi\left(t_{0}\right)
$$

Time propagates only forwards

Time-dependent perturbation

Standard time-evolution operator

$$
\Psi(t)=U\left(t, t_{0}\right) \Psi\left(t_{0}\right)
$$

Electron propagators make evolution operator covariant

Covariant Evolution Operator (U_{Cov})

Time-dependent perturbation

Covariant evolution ladder $\left(t=0, t_{0}=-\infty\right)$

$$
\begin{aligned}
& U_{\mathrm{Cov}}=1+\operatorname{qunp}_{\mathcal{E}}+\operatorname{quman}_{\mathcal{E}}|+\underset{\mathcal{E}}{\operatorname{fining}}|+\cdots \\
& U_{\mathrm{Cov}}=1+\Gamma V+\Gamma V \Gamma V+\cdots ; \quad \Gamma=\frac{1}{\mathcal{E}-H_{0}}
\end{aligned}
$$

Same as first part of MBPT wave operator
$\Omega=1+\Gamma(V \Omega-\Omega W)$
Singular when intermediate state in model space

Green's operator

The Green's operator is defined

$$
U_{\mathrm{Cov}}(t)=\mathcal{G}(t) \cdot P U_{\mathrm{Cov}}(0)
$$

is the regular part of the Covariant Evolution Oper.

Green's operator

$\underline{\underline{t=0}}:$ First order: $\mathcal{G}^{(1)}=U_{\mathrm{Cov}}^{(1)}=\Gamma_{Q} V=\Omega^{(1)}$
Second order:

$$
\begin{aligned}
& \mathcal{G}^{(2)}=\Gamma_{Q} V \mathcal{G}^{(1)}+\frac{\delta \mathcal{G}^{(1)}}{\delta \mathcal{E}} W^{(1)} ; \quad \Gamma_{Q}=\frac{Q}{\mathcal{E}-H_{0}} \\
& =\Gamma_{Q} V \mathcal{G}^{(1)}-\Gamma_{Q} \mathcal{G}^{(1)} W^{(1)}+\Gamma_{Q} \frac{\delta V}{\delta \mathcal{E}} W^{(1)} \\
& \Omega^{(2)}=\Gamma_{Q} V \Omega^{(1)}-\Gamma_{Q} \Omega^{(1)} W^{(1)}
\end{aligned}
$$

Time- or energy-dependent perturbations can be included in the wave function

QED effects

Non-radiative

Radiative

El. self-energy
Vertex correction
Vacuum polarization

QED effects are time dependent

QED effects are time dependent Can be combined with electron correl.

Continued iterations

Mixing time-independent and time-dependent perturbat. Combining QED and MBPT

Radiative QED

Dimensional regularization in Coulomb gauge

Developed in the 1980's for Feynman gauge
Formulas for Coulomb gauge derived by Atkins in the 80's Workable procedure developed by Johan Holmberg in 2011

First applied by Holmberg and Hedendahl

Self-energy of hydrogen like ions

Hedendahl and Holmberg, Phys. Rev. A 85, 012514 (2012)

z	Coulomb gauge	Feynman gauge
18	$1.216901(3)$	$1.21690(1)$
54	$50.99727(2)$	$50.99731(8)$
66	$102.47119(3)$	$102.4713(1)$
92	$355.0430(1)$	$355.0432(2)$

$$
\Delta E=\frac{\alpha}{\pi} \frac{(Z \alpha)^{4} m c^{2}}{n^{3}} F(Z \alpha)
$$

First calculation of self-energy in Coulomb gauge

He-like systems

Johan Holmberg's PhD thesis
Holmberg, Salomonson and Lindgren, Phys. Rev. A 92, 012509 (2015)

(A)

(B)

(C)

(D)

(E)
(B) and (E) are DIVERGENT

Divergence cancels due to Ward identity

He-like Argon (Z=18) Second order

Irreducible

1621 meV -1707 Feynman gauge
-115.8 11.6 Coulomb gauge

He-like Argon (Z=18) Second order

Irreducible

1621 meV - 1707
-115.8
11.6

Model-space contr. + Vertex correction

3819 -3653 Feynman
-24,8 16.2 Coulomb

He-like Argon (Z=18) Second order

Irreducible

1621 meV -1707
-115.8 11.6

Model-space contr. + Vertex correction

He-like Argon (Z=18) Second order

Irreducible

1621 meV -1707
$-115.8 \quad 11.6$

Model-space contr. + Vertex correction

Gauge independe

Large cancellations in Feynman gauge

He-like Argon (Z=18) Third order

Irreducible

-142
4.79 -0.55 Coul.

Model-space contr. + Vertex correction

He-like Argon (Z=18) Third order

Irreducible

He-like Argon (Z=18) Third order

Irreducible

-142
4.79

71 Feynm. -24
-0.55 Coul. 1.16 Model-space contr. + Vertex correction

He-like Argon (Z=18) Third order

Model-space contr. + Vertex correction

First calculation of radiative QED beyond second order

He-like Argon (Z=18) Third order

 Model-space contr. + Vertex correction

First calculation of radiative QED beyond second order
Has to be performed in Coulomb gauge Holmberg, Salomonson, Lindgren, PRA 92, 012509 (2015)

Summary QED He-like gr. state

Non-radiative and radiative (in meV)

Z	Two-photon		Higher orders	
	Non-radiative	Radiative	Non-radiative	Radiative
18	4	-113	-0.8	4.7
24	10	-230	-1.2	7.0
30	21	-393	-1.5	9.6

Summary QED He-like gr. state

Higher-order QED (in mev)

Z	Holmberg 2015 (calc)	Artemyev 2005 (est'd)
14	$1.6(2)$	0.8
18	$2.0(3)$	0.9
24	$3.9(5)$	
30	$5.6(8)$	-0.2
50	$12(2)$	$-7.7(50)$

Summary QED He-like gr. state

Higher-order QED (in mev)

Z	Holmberg 2015 (calc)	Artemyev 2005 (est'd)
14	$1.6(2)$	0.8
18	$2.0(3)$	0.9
24	$3.9(5)$	
30	$5.6(8)$	-0.2
50	$12(2)$	$-7.7(50)$

The higher-order QED has previously been underestimated but still much too small to correspond to the Chantler discrepances

Dynamical processes

The Green's operator can also be used in dynamical processes

Free particles

Scattering amplitude free particles

$$
\langle q| S|p\rangle=2 \pi \mathrm{i} \delta\left(E_{p}-E_{q}\right) \tau(p \rightarrow q)
$$

Optical theorem for free particles

$$
\left.-2 \operatorname{Im}\langle p| \mathrm{i} S|p\rangle=\sum_{q} \mid 2 \pi \delta\left(E_{p}-E_{q}\right) \tau(p \rightarrow q)\right]^{2}
$$

Forward scattering

Free particles

Scattering amplitude free particles

$$
\langle q| S|p\rangle=2 \pi \mathrm{i} \delta\left(E_{p}-E_{q}\right) \tau(p \rightarrow q)
$$

Optical theorem for free particles

$$
\left.-2 \operatorname{Im}\langle p| i S|p\rangle=\sum_{q} \mid 2 \pi \delta\left(E_{p}-E_{q}\right) \tau(p \rightarrow q)\right]^{2}
$$

The imaginary part of the forward scattering amplitude is proportional to the total cross section

Bound particles

$$
S=U(\infty,-\infty)=U_{\mathrm{Cov}}(\infty,-\infty)
$$

S-matrix becomes singular for bound states with intermediate model-space states

Optical theorem for bound particles

$$
\left.-2 \operatorname{Im}\langle p| \mathrm{i} \mathcal{G}(\infty,-\infty)|p\rangle=\sum_{q} \mid 2 \pi \delta\left(E_{p}-E_{q}\right) \tau(P \rightarrow q)\right]^{2}
$$

$\mathcal{G}(\infty,-\infty)$ is identical to the S-matrix, if there are no intermediate model-space states
\mathcal{G} always regular: "S-matrix cleaned from singularities"

Bound particles

$$
\begin{gathered}
P \mathrm{i} \mathcal{G}(\infty,-\infty)=2 \pi \delta\left(E_{\text {in }}-E_{\text {out }}\right) W \\
\left.-2 \operatorname{Im}\langle p| \mathrm{i} \mathcal{G}(\infty,-\infty)|p\rangle=\sum_{q} \mid 2 \pi \delta\left(E_{p}-E_{q}\right) \tau(p \rightarrow q)\right]^{2} \\
-2 \operatorname{Im}\langle p| W|p\rangle=\sum_{q} 2 \pi \delta\left(E_{p}-E_{q}\right) \tau(p \rightarrow q)^{2}
\end{gathered}
$$

$$
\begin{gathered}
P \mathrm{i} \mathcal{G}(\infty,-\infty)=2 \pi \delta\left(E_{\text {in }}-E_{\text {out }}\right) W \\
\left.-2 \operatorname{Im}\langle p| \mathrm{i} \mathcal{G}(\infty,-\infty)|p\rangle=\sum_{q} \mid 2 \pi \delta\left(E_{p}-E_{q}\right) \tau(p \rightarrow q)\right]^{2}
\end{gathered}
$$

$$
-2 \operatorname{Im}\langle p| H_{\mathrm{eff}}|p\rangle=\sum_{q} 2 \pi \delta\left(E_{p}-E_{q}\right) \tau(p \rightarrow q)^{2}
$$

$$
H_{\mathrm{eff}}=P H_{0} P+W
$$

Optical theorem for free and bound particles
Lindgren, Salomonson, Holmberg, PRA 89, 062504 (2014)

Radiative recombination

Lindgren, Salomonson, Holmberg, PRA 89, 062504 (2014) Shabaev et al, PRA 61, 052112 (2000)

First-order amplitude

Forward scattering Cross section

Radiative recombination

Self-energy insertion

First-order amplitude

Forward scattering Cross section

Radiative recombination

Self-energy insertion leads to singularity
that is taken care of in the Green's operator.

Radiative decay

Forward scattering

Cross section

Radiative decay

$1 s-2 p_{1 / 2}$ transition in H -like Uranium
Magnetic quadrupole to electrical dipole ampitude ratio

	M2/E1
Dirac	0.084229
QED	0.000197

Expt't: Stöhlker et al. PRL 105, 243002 (2010)
JPB 48,144031 (2015)

Theory: Holmberg, Artemyev, Surzhykov, Yerohkin, Stöhlker, SSPRA 92, 042510 (2015)

Conclusions and Outlook

The Green's operator is a time-dependent wave operator

Can combine time-dependent and time-independent perturbations, unifying QED and MBPT

Can be used for stationary as well as dynamical problems (real and imaginary parts, respectively)

Improves the accuracy of theoretical estimates one order of magnitude

Conclusions and Outlook

The Green's operator

has been used to evaluate QED beyond second order, employing Coulomb gauge for radiative QED
applied to dynamical problems to derive
the Optical Theorem for bound systems
to evaluate the QED effect in radiative recombination and in radiative decay (together with GSI, Jena)

This work has been supported by
The Swedish Science Reseach Council

The Humboldt Foundation

Helmholtz Association
Gesellschaft für Schwerionenforschung

Thank you!

Iggay Inseget

Relativistic Many-Body Theory

A Sew Fids-Thecretiol Angreach

Syixger

