Unifying Quantum Electrodynamics and Many-Body Perturbation Theory

Ingvar Lindgren

ingvar.lindgren@physics.gu.se

Department of Physics

University of Gothenburg, Gothenburg, Sweden

New Horizons in Physics

Makutsi, South Africa, 22-28 November, 2015

In honor of Prof. Walter Greiner at his 80th birthday

Coworkers

Sten Salomonson Daniel Hedendahl Johan Holmberg

Quantum physics/chemistry follows mainly the rules of Quantum Mechanics (QM)

Some effects lie outside: Lamb shift (electron self-energy and vacuum polarization)

Quantum physics/chemistry follows mainly the rules of Quantum Mechanics (QM)

Some effects lie outside: Lamb shift (electron self-energy and vacuum polarization)

require Field theory (QED)

Normally these effects are evaluated separately For high accuracy they should be evaluated in a coherent way

QED effects should be included in the wave function

- QM and QED are seemingly incompatible
- QM: single time $\Psi(t, x_1, x_2, \cdots)$ Field theory: individual times $\Psi(t_1, x_1; t_2, x_2, \cdots)$ Consequence of relativistic covariance
- Bethe-Salpeter equation is relativistic covariant can lead to spurious solutions

(Nakanishi 1965; Namyslowski 1997)

Compromise:

Equal-time approximation All particles given the same time makes FT compatible with QM

Some sacrifice of the full covariance very small effect at atomic energies

Controversy

Chantler (2012) claims that there are significant discrepancies between theory and experiment for X-ray energies of He-like ions Theory: Artemyev et al 2005, Two-photon QED

Higher-order QED

Higher -order QED can be evaluated by means of the procedure for

combining QED and MBPT using the **Green's operator**,

a procedure for time-dependent perturbation theory

Time-independent perturbation

 $H\Psi = (H+V)\Psi = E\Psi$ target function

 $\Psi_0 = P\Psi \mod function$

P projection operator for the model space

 $\Psi = \Omega \Psi_0$ Ω wave operator

Bloch equation

 $\Omega P = \Gamma \left(V \Omega - \Omega W \right) P \qquad \Gamma = \frac{1}{E_0 - H_0}$

 $W = PV\Omega P$ Effective Interaction

 $H_{\text{eff}}\Psi_0 = (PH_0P + W)\Psi_0 = (E_0 + \Delta E)\Psi_0$ Effective Ham.

Bloch equation

. .

$$\mathbf{\Omega}P = \Gamma \left(V\mathbf{\Omega} - \mathbf{\Omega}W \right) P \qquad \Gamma = \frac{1}{E_0 - H_0}$$

$$\Gamma V \mathbf{\Omega} P = \left[\begin{array}{c} \mathbf{P} \\ \mathbf{P} \end{array} \right] + \left[\begin{array}{c} \mathbf{P} \end{array} \right] + \left[\begin{array}{c} \mathbf{P} \\ \mathbf{P} \end{array} \right] + \left[\begin{array}{c} \mathbf{P} \end{array} \right] + \left[\begin{array}[\mathbf{P} \end{array} \right] + \left[\begin{array}[\mathbf{P} \end{array} \right] +$$

. . .

$$= [\Gamma V + \Gamma V \Gamma V + \Gamma V \Gamma V \Gamma V + \cdots]P$$

Singular when intermediate state in model space (P) Singularity cancelled by the term $-\Gamma \Omega WP$

Leads to **Bloch equation**

$$\Omega P = \Gamma_Q \left(V \Omega - \Omega W \right) P \qquad \Gamma_Q = \frac{Q}{E_0 - H_0}$$

The finite remainder is the

Model-Space Contr. $-\Gamma_Q \Omega W P$

Time-dependent perturbation

Standard time-evolution operator

 $\Psi(t) = U(t, t_0)\Psi(t_0)$

Time propagates only forwards

Time-dependent perturbation

Standard time-evolution operator

Electron propagators make evolution operator covariant

Covariant Evolution Operator (U_{Cov})

Time-dependent perturbation

Covariant evolution ladder $(t = 0, t_0 = -\infty)$

$$U_{\text{Cov}} = 1 + \left[\begin{array}{c} & & & \\ &$$

Same as first part of MBPT wave operator

 $\mathbf{\Omega} = 1 + \Gamma \big(V \mathbf{\Omega} - \mathbf{\Omega} W \big)$

Singular when intermediate state in model space

Green's operator

The Green's operator is defined

 $U_{\text{Cov}}(t) = \mathcal{G}(t) \cdot PU_{\text{Cov}}(0)$

is the regular part of the Covariant Evolution Oper.

Green's operator

$$\underline{t=0}$$
: First order: $\mathcal{G}^{(1)} = U_{\text{Cov}}^{(1)} = \Gamma_Q V = \Omega^{(1)}$

Second order:

$$\mathcal{G}^{(2)} = \Gamma_Q V \mathcal{G}^{(1)} + \frac{\delta \mathcal{G}^{(1)}}{\delta \mathcal{E}} W^{(1)}; \quad \Gamma_Q = \frac{Q}{\mathcal{E} - H_0}$$
$$= \Gamma_Q V \mathcal{G}^{(1)} - \Gamma_Q \mathcal{G}^{(1)} W^{(1)} + \frac{\Gamma_Q \frac{\delta V}{\delta \mathcal{E}} W^{(1)}}{\delta \mathcal{E}} W^{(1)}$$

 $\Omega^{(2)} = \Gamma_Q V \Omega^{(1)} - \Gamma_Q \Omega^{(1)} W^{(1)}$

Time- or energy-dependent perturbations can be included in the <u>wave function</u>

Non-radiative

Retardation

Virtual pair

Radiative

El. self-energy

Vertex correction

Vacuum polarization

QED effects are time dependent

QED effects are time dependent Can be combined with electron correl.

Continued iterations

Mixing time-independent and time-dependent perturbat. Combining QED and MBPT

Slides with Prosper/LATEX - p. 19/48

Radiative QED

Dimensional regularization in Coulomb gauge

- Developed in the 1980's for Feynman gauge
- Formulas for Coulomb gauge derived by Atkins in the 80's
- Workable procedure developed by Johan Holmberg in 2011
- First applied by Holmberg and Hedendahl

Self-energy of hydrogen like ions

Hedendahl and Holmberg, Phys. Rev. A 85, 012514 (2012)

Ζ	Coulomb gauge	Feynman gauge
18	1.216901(3)	1.21690(1)
54	50.99727(2)	50.99731(8)
66	102.47119(3)	102.4713(1)
92	355.0430(1)	355.0432(2)

$$\Delta E = \frac{\alpha}{\pi} \frac{(Z\alpha)^4 mc^2}{n^3} F(Z\alpha)$$

First calculation of self-energy in **Coulomb gauge**

He-like systems

Johan Holmberg's PhD thesis Holmberg, Salomonson and Lindgren, Phys. Rev. A 92, 012509 (2015)

(B) and (E) are **DIVERGENT** Divergence cancels due to Ward identity

Irreducible

Irreducible

Irreducible

Irreducible

Model-space contr. + Vertex correction

Large cancellations in Feynman gauge

Irreducible

Irreducible

Irreducible

Irreducible Model-space contr. + Vertex correction

First calculation of radiative QED beyond second order

Irreducible Model-space contr. + Vertex correction

First calculation of radiative QED beyond second order

Has to be performed in **Coulomb gauge** Holmberg, Salomonson, Lindgren, PRA 92, 012509 (2015)

Summary QED He-like gr. state

Non-radiative and radiative (in meV)

Z	Two-photon		Higher o	rders
	Non-radiative	Radiative	Non-radiative	Radiative
18	4	-113	-0.8	4.7
24	10	-230	-1.2	7.0
30	21	-393	-1.5	9.6

Summary QED He-like gr. state

Higher-order QED (in meV)

Z	Holmberg 2015 (calc)	Artemyev 2005 (est'd)
14	1.6 (2)	0.8
18	2.0 (3)	0.9
24	3.9 (5)	
30	5.6(8)	-0.2
50	12 (2)	-7.7(50)

Summary QED He-like gr. state

Higher-order QED (in meV)

Z	Holmberg 2015 (calc)	Artemyev 2005 (est'd)
14	1.6 (2)	0.8
18	2.0 (3)	0.9
24	3.9 (5)	
30	5.6(8)	-0.2
50	12 (2)	-7.7(50)

The higher-order QED has previously been underestimated

but still much too small to correspond to the Chantler discrepances

Dynamical processes

The Green's operator can also be used in **dynamical** processes

Free particles

Scattering amplitude free particles

$$\langle q|S|p\rangle = 2\pi \mathrm{i}\delta(E_p - E_q)\,\tau(p \to q)$$

Optical theorem for free particles

Free particles

Scattering amplitude free particles

$$\langle q|S|p\rangle = 2\pi \mathrm{i}\delta(E_p - E_q)\,\tau(p \to q)$$

Optical theorem for free particles

$$-2Im\langle p|iS|p\rangle = \sum_{q} \left| 2\pi\delta(E_p - E_q)\tau(p \to q) \right|^2$$

The imaginary part of the forward scattering amplitude is proportional to the total cross section

Bound particles

$$S = U(\infty, -\infty) = U_{\text{Cov}}(\infty, -\infty)$$

S-matrix becomes singular for bound states with intermediate model-space states

Optical theorem for <u>bound</u> particles

$$-2Im\langle p|i\mathcal{G}(\infty,-\infty)|p\rangle = \sum_{q} \left|2\pi\delta(E_p - E_q)\tau(P \to q)\right|^2$$

 $\mathcal{G}(\infty, -\infty)$ is identical to the S-matrix, if there are no intermediate model-space states

G always regular: "S-matrix cleaned from singularities"

Bound particles

$$P \,\mathrm{i}\,\mathcal{G}(\infty, -\infty) = 2\pi\delta(E_{\mathrm{in}} - E_{\mathrm{out}})\,W$$
$$-2Im\langle p|\mathrm{i}\mathcal{G}(\infty, -\infty)|p\rangle = \sum_{q} \left|2\pi\delta(E_{p} - E_{q})\tau(p \to q)\right|^{2}$$
$$-2Im\langle p|W|p\rangle = \sum_{q} 2\pi\delta(E_{p} - E_{q})\tau(p \to q)^{2}$$

$$P \,\mathrm{i}\,\mathcal{G}(\infty, -\infty) = 2\pi\delta(E_{\mathrm{in}} - E_{\mathrm{out}})\,W$$
$$-2Im\langle p|\mathrm{i}\,\mathcal{G}(\infty, -\infty)|p\rangle = \sum_{q} \left|2\pi\delta(E_{p} - E_{q})\tau(p \to q)\right|^{2}$$

$$-2Im\langle p|\mathbf{H}_{\text{eff}}|p\rangle = \sum_{q} 2\pi\delta(E_p - E_q)\tau(p \to q)^2$$

$$H_{\rm eff} = PH_0P + W$$

Optical theorem for **free and bound** particles

Lindgren, Salomonson, Holmberg, PRA 89, 062504 (2014)

Radiative recombination

Lindgren, Salomonson, Holmberg, PRA **89**, 062504 (2014) Shabaev *et al,* PRA **61**, 052112 (2000)

Radiative recombination

Self-energy insertion

Radiative recombination

Self-energy insertion leads to singularity

that is taken care of in the **Green's operator**.

Radiative decay

Self-energy insertion (MSC)

Radiative decay

 $1s - 2p_{1/2}$ transition in H-like Uranium Magnetic quadrupole to electrical dipole ampitude ratio

	M2/E1
Dirac	0.084229
QED	0.000197

Expt't: Stöhlker et al. PRL **105**, 243002 (2010) JPB 48,144031 (2015) Theory: Holmberg, Artemyev, Surzhykov, Yerohkin, Stöhlker, SSPRA 92, 042510 (2015)

Conclusions and Outlook

The **Green's operator** is a time-dependent wave operator

Can combine time-dependent and time-independent perturbations, unifying QED and MBPT

Can be used for **stationary** as well as **dynamical** problems (**real** and **imaginary** parts, respectively)

Improves the accuracy of theoretical estimates one order of magnitude

Conclusions and Outlook

The Green's operator

- has been used to evaluate **QED beyond second order**, employing **Coulomb gauge** for radiative QED
- applied to dynamical problems to derive
- the **Optical Theorem** for bound systems
- to evaluate the QED effect in **radiative recombination** and in **radiative decay** (together with GSI, Jena)

This work has been supported by The Swedish Science Reseach Council The Humboldt Foundation Helmholtz Association Gesellschaft für Schwerionenforschung

Thank you!

Springer Series on Month, Optical and Plasma Physics III