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Electron correlation and quantum electrodynamics ²

By INGVAR LINDGREN
Department of Physics, Chalmers University of Technology/GoÈ teborg University,

S-412 96 GoÈ teborg, Sweden

A review is given of the coupled-cluster approach for a multi-reference model space. Various
schemes of normalization are discussed, particularly the hermitian formulation. Relativistic
many-body schemes are analysed, starting from the no-virtual-pair approximation (NVPA).
E� ects beyond NVPA are discussed in the framework of QED, and in particular the QED
e� ects on the electron correlation for He-like ions are analysed.

1. Introduction

Non-relativistic many-body procedures have been
extensively used over the past 40 years and can now
be regarded as well developed. The important linked-
diagram expansion (LDE) was discovered by Brueckner
and Goldstone [1]in the middle of the 1950s. The advent
of LDE represented a great progress in the many-body
procedure and is normally regarded as the starting point
of many-body perturbation theory (MBPT). In the 1960s
the procedure was further developed for open-shell sys-
tems by Brandow, Sandars, Kelly and others and later
also for quasi-degenerate or general multi-reference
model space [2]. In an order-by-order expansion, like
LDE, however, the number of terms increases drasti-
cally with the order, and this has the consequence that
the method becomes essentially intractable for open-
shell systems beyond the third-order energy.

Instead of an order-by-order expansion it is often
more e� cient to treat certain e� ectsÐ like one- and
two-particle e� ectsÐ to all orders in a recursive
manner. A particularly useful version of such a proce-
dure is the coupled-cluster approach (CCA), where the
wavefunction (or wave operator) is expressed in expo-
nential form. This approach was developed in nuclear
physics by Coester and KuÈ mmel [3]and introduced into
quantum chemistry by Cizek in the 1960s [4]. It was ® rst
developed and applied to closed-shell systems [5]and in
the 1970s extended to open-shell systems and general
multi-reference model space [6].

The multi-reference CCA (MR-CCA) is a very clean
procedure with many nice features. It satis® es the impor-
tant size-extensivity criterion for the energy and also the
separability or size consistency condition for the wave-
function [5 (b), 5 (c), 7]. In the MR-CCA it isÐ at least in
principleÐ possible to include important mixing states
into the model space, which will improve the accuracy

and speed up the convergence of the iterations. How-
ever, the original formulation was limited to a complete
model space. In practical applications such a space can
be quite large, with the consequence that intruder states
[8], destroying the convergence of the procedure, are
very likely to appear.

A well-known classical example of the intruder prob-
lem is the Be atom. With the orbitals generated in the
HF potential of the 1s2 the core, the con® gurations
1s22s2 and 1s22p2 are closely degenerate and strongly
mixed. An extended model space with the two con® g-
urations contains two 1S states, of which the upper one
is very highly excited, in fact above the 2s ionization
limit. This means that there is an in® nite number of
other 1S states (from the 1s22sns con® gurations) which
will fall between the states originating from the model
space. It was earlier observed that the standard CC
procedure does not converge in this situation [9].
Later, it has been possible to circumvent the intruder
problem in this special case by means of special tricks
[10].

Normally, one is interested in only a limited number
of states originating from a complete model spaceÐ
usually some low-lying statesÐ and it would then be
desirable to work with a more limited model space in
order to reduce the intruder problem. However, the CC
procedures were until recently developed only for com-
plete model spaces. For an incomplete model space the
standard MR-CCA procedure with intermediate normal-
ization (IN) generally leads to disconnected cluster
operators and loss of size extensivity. It was ® rst pointed
out by Mukherjee and co-workers [11]that connectivity
could be restored for very general incomplete model
spaces by abandoning the IN. This opened up quite
new possibilities and turned out to be one e� ective
way of handling the intruder problem in MR-CCA.

Another way of handling the intruder problem is
the intermediate hamiltonian approach, developed by
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Malrieu, Durand and others [12]. Here, only a few of the
eigenstates of the e� ective hamiltonian correspond to
real states. This may give su� cient freedom in con-
structing that hamiltonian so that the intruder problem
could be avoided.

It is also possible to construct a `state-speci® c’ proce-
dure, which is size extensive, as recently demonstrated
by Mukherjee and co-workers [13].

Relativistic many-body procedures were not devel-
oped until the 1980s. Relativistic SCF procedures
(MCDF) were used already in the 1970s but based on
a non-rigorous hamiltonian [14].

Breit had derived already around 1930 the relativistic
corrections to the Coulomb interaction [15]. The ori-
ginal Breit interaction, however, could be used only in
® rst order and was not suitable for many-body proce-
dures. It was demonstrated by Brown and Ravenhall
[16] in the early 1950s that a relativistic hamiltonian
based upon the Coulomb interaction (with or without
the Breit interaction) has eigenvalues that are not bound
from below, due to the presence of the negative energy
states. The problem with the Breit interaction was
further emphasized by Bethe and Salpeter [17], and
this did for a long time hamper the use of the Breit
interaction in many-body applications.

It was demonstrated by Sucher in 1980 [18] that the
problem with negative energy states could be avoided by
the use of projection operators. This leads to the so-
called no-virtual-pair approximation (NVPA). In this
scheme it is perfectly legitimate to iterate also the Breit
interaction to self-consistency. There are other e� ects
(`QED e� ects’ ) that are of the same order as the
second-order Breit interaction, but the important point
here is that the Breit interaction could be treated on the
same footing as the Coulomb interaction without any
fear of f̀alling into the Dirac sea’.

Relativistic e� ects are intimately connected to
quantum electrodynamics (QED), and an analysis of
the relativistic many-body problem must by necessity
start from QED. It turns out that such an analysis
yields an interelectronic interaction that is gauge depen-
dent. SCF calculations performed with the interactions
derived using, for instance, the Coulomb and the
Feynman gauges turned out to yield signi® cantly dif-
ferent results, and this caused confusion for some time
[19].

In order to resolve the problem with the interelec-
tronic interaction, it is necessary to consider also the
two-photon exchange between the electrons (see ® gure
4, section 3.2). It was then demonstrated that the
gauge dependence could be explained to ® rst order by
the e� ects left out of the two-photon exchange [20]. For
instance, the crossed-photon diagram, entirely left out in
any many-body procedure developed so far, is an order

of magnitude larger in the Feynman gauge than in the
Coulomb gauge. In fact, the Coulomb gauge turns out
to be the optimum gauge for many-body applications,
and this gauge leads (in the no-retardation limit) exactly
to the original Breit interaction.

The NVPA, based upon the Coulomb gauge with the
Coulomb and the Breit interactions, is a very e� cient
computational procedure for atomic and molecular sys-
tems that are not highly charged. It has in recent years
been applied by several groups, particularly to atomic
problems [21].

The e� ects left out in NVPA are referred to as QED
e� ects. These are of two kinds: (a) non-radiative e� ects
(sometimes referred to as the Araki± Sucher e� ect [22])
and (b) radiative e� ects. The former are caused by the
negative energy states and the retardation e� ects left out
in NVPA. The radiative e� ects are of Lamb-shift type
and involve self energy and vacuum polarization.

For highly charged systems the single-electron Lamb
shift can be comparable to the ® rst-order Breit interac-
tion. Since it is a single-particle e� ect, however, it has no
e� ect upon the electron correlation. The non-radiative
e� ects and the higher-order Lamb shift, on the other
hand, do have such e� ects. This has recently been
studied for He-like ions [23]and compared with experi-
mental results [24]. The experimental accuracy is not yet
su� cient for detecting the e� ects, but with only a mod-
erate improvement of the accuracy a signi® cant test will
be possible. This will constitute an important test of
QED (beyond ® rst-order Lamb shift) at very strong
® elds.

In the present paper we shall in section 2 review some
recent developments in the non-relativistic CC theory,
particularly regarding incomplete model space and the
hermitian formulation. Some new results will be
reported. In section 3 we shall ® rst analyse the gauge
dependence of the electron± electron interaction in the
NVPA, and ® nally the QED e� ects upon the electron±
electron interaction will be discussed and some new
results for He-like ions be reported.

2. Non-relativistic many-body theory

2.1. Multi-reference model space
As a background for the following treatment and for

de® ning our notations, we will ® rst brie¯ y review the
well-known non-relativistic many-body theory for a
general multi-reference model space. We shall apply
the Bloch formalism, which yields a transparent relation
between di� erent formulations [2 (i)].

We start from the SchroÈ dinger equation for a number
of states (target states),

H W
(a ) = E

(a )
W

(a ) (a = 1,2, . . . ,d ) , (1)
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where H is the hamiltonian and W is the wavefunction of
the system. The corresponding zeroth-order wavefunc-
tions (ZOWF), W

(a )
0 , are con® ned to a model space, P,

which might contain several zeroth-order energies
(multi-reference model space). If the model space con-
tains all possible occupancies of the valence orbitals, it is
said to be complete, but the treatment here holds for a
general, incomplete model space. (For a more extensive
discussion about the incomplete-model-space problem,
see e.g. the review by Lindgren and Mukherjee [11 (d)]).

We assume that a wave operator (W) transforms all
ZOWF into the corresponding exact wavefunctions,

W
( a ) = X W

(a )
0 (a = 1,2, . . . ,d ) . (2)

The ZOWF are eigenfunctions of an e� ective or model
hamiltonian, He� , with eigenvalues equal to the exact
energies

H eff W
( a )
0 = E

(a )
W

(a )
0 (a = 1,2, . . . ,d ) . (3)

The explicit form of this operator depends on the nor-
malization scheme employed (see below).

For the following we shall partition the hamiltonian
into an unperturbed hamiltonian, H0, and a perturba-
tion, V ,

H = H 0 + V , (4)

and we de® ne a corresponding e� ective interaction, Ve� ,
by

V eff = H eff - P H 0P . (5)

The wave operator satis® es the generalized Bloch
equation [2 (g) ± 2 (i)]

[X ,H 0]P = (V X - X V eff )P , (6)

where P is the projection operator of the model space. In
intermediate normalization (IN) we have

W
(a )
0 = P W

(a ) ; P X P = P ;
H eff = P H X P and V eff = P V X P . (7)

Other normalization schemes are discussed below.

2.2. The linked-diagram expansion
In the standard perturbation theory the wave

operator is expanded order by order,

X = X
(0) + X

(1) + X
(2) + ´´´ (8)

[X( 0)= 1 in IN]. Inserting this expansion into the general-
ized Bloch equation (6) yields

[X (n ) ,H 0]P = (V X - X V eff )
(n )

P . (9)

This equation leads to the general Rayleigh± SchroÈ dinger
(RS) expansion for a multi-reference model space.

In the diagrammatic representation the RS expansion
contains `unlinked ’ diagrams, i.e. diagrams with a dis-
connected, closed part. Such diagrams can be shown to
cancel, which leads to the linked-diagram expansion
(LDE) [1, 2]. The LDE can then be expressed by
means of a `modi® ed Bloch equation’

[X ,H 0]P = (V X - X V eff ) linkedP (10)

with the order-by-order expansion

[X (n ) ,H 0]P = (V X - X V eff )
(n )
linkedP . (11)

This form of the perturbation theory is very convenient
for generating the LDE. The term X Ve� represents the
folded or backwards diagrams [2 (a), 2 (f)].

The order-by-order expansion is usually impractical
beyond the third-order energy due to the large number
of diagrams appearing. For many atomic and molecular
systems, which are not highly charged, however, third
order is often insu� cient, and more e� cient methods
have been developed.

2.3. The all-order and coupled-cluster approaches
Instead of an order-by-order expansion (8) we sepa-

rate the wave operator into zero-, one-, two-, . . . body
terms, de® ned by means of second-quantization,

X = X 0 + X 1 + X 2 + ´´´ = X 0 + å
i,j

x
i
j{a

²
i a j}

+ 1
2 å

i j k l

x
i j

k l{a
²
i a

²
j a l a k }+ ´´´. (12)

Solving the corresponding partitions of the Bloch equa-
tion iteratively to self-consistency,

[X n ,H 0]P = (V X - X V eff ) n ,linkedP , (13)

is equivalent to treating the corresponding e� ects to all
orders of perturbation theory.

In the LDE all energy or e� ective-hamiltonian
diagrams are connected. The wave-operator expansion,
on the other hand, also contains disconnected diagrams
with open pieces. For a single-reference model space
such diagrams factorize into an ordinary product of
connected diagrams. This can be generalized to the
exponential Ansatz or coupled-cluster approach (CCA)
[3]

X = exp S = 1 + S +
1
2!

S
2 +

1
3!

S
3 . . . , (14)

where the c̀luster operator’ S is completely connected
[4, 5].

For open-shell systems (multi-reference model space)
the disconnected diagrams factorize into a normal-
ordered rather than an ordinary product. This leads to
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the normal-ordered exponential Ansatz, proposed inde-
pendently by Lindgren [6 (c)] and Ey [6 (e)]

X = {exp S }= 1 + S +
1
2!{S

2}+
1
3!{S

3}. . . . (15)

The cluster operator is under general conditions com-
pletely connected also in this case and satis® es an equa-
tion, which is quite analogous to the wave-operator
equations (6) and (10),

[S ,H 0]P = (V X - X V eff )connP . (16)

For the following we shall make the assumption of
valence universality, which implies that the wave
operator introduced above transforms the wave func-
tions for all valence sectors, m, i.e. for all systems with
one or several valence electrons removed or one or sev-
eral valence holes ® lled (or any combination thereof).
The Bloch cluster equation (16) is then extended to

[S ,H 0]P (m ) = (V X - X V eff )connP
(m ) , (17)

for all sectors m. Here P(m ) is the projections operator
for the model space of the valence sector m. The
assumption of valence universality makes the cluster
operator uniquely de® ned by the Bloch-type equation,
and it leads to connectivity, using general normalization
schemes [11 (c), 11 (d)].

Expanding the cluster operator in analogy with the
wave-operator (12) and truncating after the two-body
term

S = S 1 + S 2 (18)

leads to the frequently used CCSD approximation. The
coupled one- and two-electron equations are in this
approximation [2 (i), 6 (c)]

[S 1,H 0]P (m ) = {V + V S + 1
2 V S

2
1 + V S 1S 2

+ ´´´- S 1V eff ,1}1,connP
(m ) , (19 a )

[S 2,H 0]P (m ) = {V + V S + 1
2 V S

2
1 + V S 1S 2 + 1

2 V S
2
2

+ ´´´- S 2V eff ,2 - ´´ }́2,connP
( m ) . (19 b )

2.4. Incomplete model space
The most frequently used normalization scheme in

many-body theory is the intermediate normalization
(IN) (7), which works well for a complete model
space. Such a model space, however, can in realistic
applications be impractically large and may likely lead
to intruder states [8], which destroy the convergence of
the perturbation expansion.

In most cases only a limited number of states within a
complete model space are of interest for the problem at
hand. One way to avoidÐ or at least reduceÐ the

intruder problem is then to restrict the model space,
and work with an incomplete model space. In such a
scheme, however, the connectivity or size extensivity
cannot be guaranteed, when the IN is employed. It
was ® rst demonstrated by Mukherjee and co-workers
[11] that connectivity and size extensivity can be gener-
ally restored for an incomplete model space by aban-
doning the IN.

Introducing the inverse of the wave operator, oper-
ating to the left on the model space, leads to

P
(m )

X
- 1

X P
(m ) = P

( m ) (20)

instead of the IN relation (7) P(m )
X P(m )= P(m ). The e� ec-

tive hamiltonian then becomes

H
(m )
eff = P

(m )
X

- 1
H X P

(m ) . (21)

In IN the e� ective interaction to be used in the CC
Bloch equation (16) can be given an explicit form (6).
This is not the case with a general normalization scheme.
Instead, we have here to consider the Q as well as the P
projections as coupled equations and solve them itera-
tively [11 (d)],

Q
(m )[S ,H 0]P (m ) = Q

( m ) (V X - c V eff )connP
( m ) (22 a )

P
(m )[S ,H 0]P (m ) = P

(m ) ( V X - X V eff )connP
(m ) (22 b )

with c = X - 1. From the P projection we get an
implicit expression for the e� ective interaction

V
(m )
eff = P

(m ) (V X - c V
(m )
eff - [S ,H 0])connP

(m ) . (23)

There are other ways of handling the intruder prob-
lem, such as the intermediate-hamiltonian (IH) form-
alism, introduced by Malrieu, Durand and co-workers
[12]. Here, the e� ective hamiltonian is de® ned in such a
way that it reproduces the exact energies only for a
subgroup of the target states. With this technique one
can utilize the larger model space with its good repre-
sentation of the ZOWF and simultaneously to a large
extent avoid the intruder problem. Other schemes are
focusing on a single state of a multi-reference model
space, state-speci® c methods, as recently analysed by
Mukherjee and co-workers [13]. We shall not consider
these schemes any further here, since they will be the
subject of special talks later at this workshop.

2.5. Hermitian formulation
The IN (as well as several other schemes) also has the

disadvantage that the e� ective hamiltonian is non-hermi-
tian. Several hermitian schemes have been developed
and applied in many-body theory [25]. We shall particu-
larly consider the scheme of Jù rgensen [26]. Here, the
normalization condition is
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P
(m ) = P

( m )
X

²
X P

(m ) . (24)

and the e� ective hamiltonian becomes

H
( m )
eff = P

( m )
X

² H X P
(m ) , (25)

which is manifestly hermitian. It has been shown by
Lindgren [25 (d)] that connectivity is preserved in the
CCA also in this scheme.

The non-hermiticity caused by IN leads to an
asymmetry in the representation at a particular level,
which can be illustrated by the diagrams in ® gure 1.
In the CCSD procedure (19), where only single and
double excitations are considered in the cluster operator
(with no passive valence orbital), diagram (a) will be
included but not its hermitian adjoint (b). The reason
for this is that the corresponding wave-operator
diagram (d) contains a triple excitation, before it is
closed.

Even with the Jù rgensen condition (24), however,
non-hermiticity can be introduced by truncations. The
general equation for the e� ective interaction (23) leads
obviously with the Jù rgensen condition to hermiticity,
when all e� ects are included, but not necessarily so for a
truncated expansion [25 (d)].

In order to improve hermiticity for truncated
expansions, following the procedure of Lindgren in
[25 (d)], we shall develop more symmetric expressions
by operating on the CC Bloch equation (17) with X

²

from the left,

X
² [S ,H 0]P (m ) = X

² (V X - X V
( m )
eff )connP

(m ) . (26)

Using c = X - 1, this leads to the P and Q projected
equations

Q [S ,H 0]P (m ) = Q (V X - X V
(m )
eff + c ² (V X - X V

(m )
eff

- [S ,H 0]) )connP
(m ) (27)

V
(m )
eff = P

(m ) (V X - c V
( m )
eff - [S ,H 0]

+ c ² (V X - X V
(m )
eff - [S ,H 0]) )connP

(m ) .

(28)

The extra terms, compared to (22) and (23), vanish,
when all e� ects are considered, but not necessarily so
for truncated expansions. The extra terms may improve
the hermiticity for truncated schemes, as will be illus-
trated below.

In the expressions (27) and (28) large cancellations
occur between the terms of the right-hand side, and a
more convenient way of expressing the relations is

Q [S ,H 0]P (m ) = Q (V X - X V
( m )
eff

+ c ² (V X - X V
(m )
eff )+ )connP

(m ) (29 a )

V
(m )
eff = P

(m ) (V X - c V
(m )
eff - [S ,H 0]

+ c ² (V X - X V
(m )
eff )+ )connP

(m ) , (29 b )

where the + sign represents e� ects with the intermediate
state outside the approximation employed [25 (d)].

The extended expressions (29) reduce the non-hermi-
ticity also with other normalizations, such as the IN.
This can be illustrated by means of the diagrams in
® gure 1. Also with the extension terms the diagrams
(b) and (d) will in the CCSD approximation be included
in the e� ective hamiltonian and the wave operator,
respectively. The importance of the hermitian extension
terms was demonstrated in an early calculation on the
sodium atom by Salomonson and Ynnerman [27].

The inclusion of the hermitian extension terms lead to
a systematic extension of the CC equations. This is
illustrated with the single-particle equation. In the case
of a passive valence orbital it can be shown that the
extended equations (29) in the IN lead to the complete
random-phase approximation (RPA), with forward and
backward loops, while the standard procedure only
leads to the Tamm-Danko� approximation (TDA) with
only forward loops (see ® gure 2) [25 (d)].

The hermitized CC procedure has recently been
applied by Salomonson et al. [28] in a calculation of
the electron a� nity of the Ca and Sr atoms. The binding
of the last electron of the negative ion is here very deli-
cate, and it is only recently that this quantity has been
reliably measured [29]. The corresponding theoretical
evaluation has also for a long time challenged the theo-
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Figure 1. In the standard pair-correlation (CCSD) approach
(19), the e� ective-operator diagram (a ) would be gener-
ated in intermediate normalization but not the corre-
sponding hermitian adjoint diagram (b ). Similarly, the
wave-operator diagram (c ) would be included but not
the analogous diagram (d ), which involves a triple
excitation. In the s̀ymmetrized’ hermitian formulation
(29) all these diagrams would be included in the CCSD
approach.



reticians [30]. The technique used by Salomonson et al.
is based on the quasi-particle equation

h HF u (r) + ò d3
rR *(r,rÂ , e ) u (r1) = e u (r) (30)

with an energy-dependent self-energy potential,
R *(r,rÂ , e ) , evaluated by means of the CC procedure,

R *(r, rÂ , e ) = k rÂ |P (V 2S 2 + V 2S 1 + S
²
1 V 2

+ S
²
2 (V 2S 2)+ )1 e ,connP |r l . (31)

The rhs depends on the energy (e) of the valence orbital,
and equations (30) and (31) are iterated until self-con-
sistency is reached. This procedure yields for the ® rst
time good agreement with the experimental results for
Ca- as well as Sr- [28].

3. Relativistic many-body theory and QED

3.1. No-virtual-pair approximation
For relativistic many-body calculations a frequently

used hamiltonian is the Dirac ± Coulomb hamiltonian

H = å h D + å 1
r i j

, (32)

where the single-electron SchroÈ dinger hamiltonian, hS,
of the standard non-relativistic hamiltonian is replaced
by the corresponding Dirac hamiltonian

h D = c a ·p + b m c
2 - Z

r
(33)

(using Hartree atomic units, e= m= »= 4p e 0 = 1). This
hamiltonian has been used, for instance, for a long time
in multi-con® guration Dirac± Fock (MCDF) calcula-
tions [14] and to some extent also in relativistic MBPT
calculations. The eigenvalues of this hamiltonian, how-

ever, are not bound from below, with the consequence
that the eigenstates may dissolve into the negative con-
tinuum [16].

A more rigorous basis for relativistic many-body
work is the projected hamiltonian [18]

H = K + ( å h D + å V i j ) K + , (34)

where K + is the projection operator for positive-
energy states, which prevents the negative-energy states
from entering into the wave function. This is the no-
(virtual-)pair approximation (NVPA), in which virtual
electron± positron pairs are not allowed in intermediate
states.

With the form (34) of the Hamiltonian it is relatively
straightforward to set up a relativistic CC procedure,
following the non-relativistic procedure outlined in the
previous section. This has been done by various groups
during the last 5± 8 years [21].

The form of the interelectronic potential, V ij, can be
derived from QED, but unfortunately it turns out that
this depends on the gauge used, and it is not obvious
which potential is the best to use in relativistic many-
body theory. In the next section we shall analyse this
problem by considering the one- and two-photon
exchange between the electrons.

3.2. One- and two-photon exchange
We consider ® rst the exchange of a single photon

between the electrons, represented by the Feynman dia-
gram in ® gure 3 (a). We employ bound-state QED with
the ® eld operators

W = å a i u i (x ) ; W
² = å a

²
i u *

i (x ) (35)

and the orbitals generated in the external (nuclear) ® eld,
V (x) , (Furry picture [31])

[c a ·p + b m c
2 + V (x)]u (x) = e u (x) . (36)

The S-matrix for the single-photon exchange (® gure
3 (a)) then becomes
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Figure 2. The diagram of the ® rst row with forward loops
only are generated in the single-electron approximation
(with a passive valence orbital) in the standard CCA.
The second-row diagrams with backward loops are gen-
erated by the extension terms in (29). This represents the
complete random-phase approximation (RPA).

Figure 3. The exchange of a single photon between two
electrons (a ) is compared with an e� ective-potential inter-
action (b ).



k c d |S (2) |a b l = - 2p id ( e a + e b - e c - e d )

´ k c d |a ¹

1 a
t
2e

2
D F t ¹ (x2 - x1, x )|a b l , (37)

where D F t ¹ (x 2 - x 1, x ) is the Feynman photon propa-
gator and a

¹ = (1,- a) the Dirac operators in covariant
form. The expression (37) can be compared with the
corresponding expression for single potential scattering
(® gure 3 (b))

k c d |S (1) |a b l = - 2p id ( e a + e b - e c - e d ) k c d |V eff ( x )|a b l ,
(38)

which leads to the è� ective’ interaction potential

V eff ( x ) = a ¹

1 a
t
2e

2
D F t ¹ (x2 - x1, x ) . (39)

This potential is energy dependent, through the energy
parameter x , representing the energy transfer of the
photon, andÐ as mentioned earlierÐ it is also gauge
dependent.

We consider particularly two gauges, the Feynman
and the Coulomb gauges. In these gauges the unretarded
or frequency-independent part of the interaction
becomes

V
F
eff ( x = 0) =

1
r 12

(1 - a 1 ´ a 2) (40 a )

V
C
eff ( x = 0) =

1
r 12

1 - 1
2 a 1 ´ a 2 - ( a 1 ·r12) ( a 2 ·r12)

2r2
12( ) ,

(40 b )

known as the Coulomb ± Gaunt and Coulomb ± Breit inter-
actions, respectively.

In principle, the results of QED are gauge indepen-
dent in each order. Nevertheless, it has been found that
the interactions derived with the two gauges (even with
retardation included) lead to signi® cantly di� erent
results, when used in SCF or MBPT calculations [19].
The single-photon exchange in QED, however, involves
energy conservation (37), and the potential derived is
therefore strictly valid only for evaluating the ® rst-

order energy contribution (in which case the two
gauges yield identical results). When the potential is
used iteratively in many-body procedures, on the other
hand, gauge dependence appears. In order to analyse the
gauge dependence, it is then necessary to consider the
two-photon exchange ( ® gure 4).

In a many-body procedure, where a single-photon
potential of the type (40) is used iteratively, the
crossed-photon diagram is left out completely and the
ladder diagram is only partly included. It can be shown
that the parts left out are much more important in the
Feynman gauge than in the Coulomb gauge. Therefore,
the potential derived in the latter gauge yields more
accurate results in a many-body procedure. In fact, the
Coulomb-gauge potential leads to errors of the order of
a 3 hartrees, while most other gauges would cause errors
of the order of a 2 hartrees. This leads to the recom-
mended no-virtual-pair approximation (NVPA)

H = K + å h D + å 1
r i j

+ B i j( )( ) K +, (41 a )

where

B 12 = - 1
2r 12

a 1 ´ a 2 +
( a 1 ·r12) ( a 2 ·r12)

r 2
12( ) (41 b )

is the Breit interaction (40 b), representing the ® rst-order
magnetic interaction and retardation of the (instanta-
neous) Coulomb interaction.
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Figure 4. Two two-photon exchange between the electrons is
represented by two Feynman diagrams, (a ) the l̀adder’
and (b ) the c̀rossed-photon’ diagram.

Table 1. Two-electron contribution to the ground-state energy of He-like ions. Comparison between theory and experiment
(in eV).

MBPT
Nuclear Experimental
charge First order 2nd 3rd Non-radiative Lamb shift Total theory Marrs et al.

32 567.1 - 5.22 0.02 0.03 - 0.42 562.02 (10) 562.6 6 1.6
54 1036.56 - 7.04 0.03 0.16 - 1.56 1028.15 (10) 1027.2 6 3.5
66 1347.45 (1) - 8.59 0.03 0.36 - 2.66 1336.59 (10) 1341.5 6 4.3
74 1586.93 (2) - 9.91 0.04 0.55 - 3.68 1573.93 (10) 1568.9 6 15
83 1897.56 (4) - 11.77 0.04 0.86 - 5.16 1881.5 (2) 1875 6 14
92 2265.87 (10) - 14.16 0.05 1.28 - 7.12 2245.9 (2)



The NVPA in the Coulomb gauge is nowadays the
standard approximation for relativistic many-body cal-
culations. It forms the basis for the modern versions of
the MCDF procedures [19 (a), 19 (b), 32] and has been
employed in MBPT and coupled-cluster calculations
[21].

3.3. QED e� ects
The e� ects left out in the NVPA are de® ned as QED

e� ects. They are of two types:

(a) non-radiative e� ects, i.e. e� ects of retardation and
of negative-energy states,

(b) radiative e� ects, i.e. self-energy and vacuum-
polarization or Lamb-shift e� ects.

In lowest order the QED e� ect on the electron± elec-
tron interaction is represented by the diagrams shown in
® gure 5. The non-radiative part, represented by the dia-
grams of the ® rst row, have been evaluated for the
ground state of He-like ions by Blundell et al. [23 (a)]
and by Lindgren et al. [23 (b)]. The remaining diagrams
represent the radiative part, involving vacuum polariza-
tion (second row) and self-energy (third row). This part
has been estimated using various approximate schemes,
and a full QED calculation has recently been performed
by Persson et al. [23 (c)]. The results are shown in table 1
together with the non-QED parts and compared with
the experimental results from the Livermore± GSI colla-
boration [24].

In ® gure 6 (a) we have illustrated the ® rst- and second-
order non-QED or NVPA (41) contributions to the two-
body part of the binding energy for the ground state of
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Figure 5. Feynman diagrams of the second-order two-elec-
tron contribution to the binding energy of He-like sys-
tems. The ® rst line represents the many-body part and
the non-radiative QED part, and the remaining lines the
radiative contribution (screening of the Lamb shift).

(a)

(b)
Figure 6. (a ) The relative size of the ® rst- and second-order

contributions to the two-electron part of the binding
energy for He-like ions in the no-virtual-pair approxima-
tion (NVPA). The contributions are related to the single-
electron binding energy. The scale is logarithmic, one unit
corresponding to a factor of a < 1 /137. (b ) Same as ® gure
6 (a ), where the ® rst- and second-order NVPA contribu-
tions are compared with the two-electron Lamb shift and
non-radiative QED contributions. Note that for large Z

the relative ® rst-order contribution is of order a and all
second-order e� ects of order a 2. Note that the QED
e� ects are of the same order as the second-order NVPA
contributions for highly charged ions. The dots represent
the uncertainty in the experimental results, X-ray spectro-
scopy (circular) and electron binding energy (triangular)
[33].



He-like ions. The result is normalized to the single-elec-
tron binding energy, and the scale is logarithmic.
Obviously, the Coulomb interaction dominates for
light elements, but the Breit interaction becomes com-
parable to the second-order Coulomb interaction
already around Z= 20. The second-order relativistic
e� ects, Coulomb± Breit and Breit± Breit contributions,
are quite small for light elements but are of the same
order as the second-order Coulomb interaction for
heavy ions.

In ® gure 6 (b) the corresponding NVPA and QED
results are displayed. The second-order Lamb shift is
for medium and highly charged ions comparable to
the Coulomb± Breit contribution (see ® gure 6 (a)),
while the non-radiative contribution is considerably
smaller and comparable with the Breit± Breit interaction.
Note that all ® rst-order contributions, including the
® rst-order Lamb shift, for very highly charged ions are
of the order of alpha times the one-electron binding
energy, while all second-order e� ects are roughly
another factor of alpha smaller.

In ® gure 6 (b) also the uncertainty of the experimental
results is indicated. This can be seen to be comparable to
the two-electron Lamb shift, which means that this
e� ect is now right on the verge of being detectable.

The experimental uncertainties deduced from X-ray
measurements (® ne-structure separations) are generally
smaller than those deduced from measurements of the
binding-energy. In order to compare ® ne structure
results with theory, however, it is necessary to make
the evaluations also for excited states. Such calculations
have not yet been performed but are now in progress at
our laboratory. One problem here is that the two p
states, p1/2 and p3/2, are strongly mixed, and it will be
necessary to work with an extended model space also for
the QED calculations. However, the standard S-matrix
procedure is based upon energy conservation (37) and
can therefore be employed only for evaluating diagonal
elements of the e� ective hamiltonian. Therefore, in
order to be able to evaluate also non-diagonal elements,
required for an extended model space, some modi® ca-
tion of the formalism is required.

The author wishes to express his thanks to his co-
workers, Ann-Marie Pendrill, Sten Salomonson, Hans
Persson and Per Sunnergren, as well as to the Swedish
Natural Science Research Council, The Knut and Alice
Wallenberg and the Nobel Foundations for ® nancial
support.
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