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A numerical scheme for evaluating the part of the one-photon vacuum-polarization effect not
accounted for by the Uehling potential (the Wichmann-Kroll effect) is presented. The method
can be used with an arbitrary atomic model potential describing the bound electrons. Benchmark
results for this effect are presented for hydrogenlike levels using a uniform nuclear-charge distribution.
The effect of direct and exchange electron screening on the vacuum polarization are discussed in
connection with the accurately measured 2p; /2-2s;/; transition in lithiumlike uranium.
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I. INTRODUCTION

For bound electrons the dominant QED effect is the
one-photon self-energy [see Fig. 1(a)]. Recently devel-
oped methods can now accurately determine the self-
energy for highly charged ions [1-9]. In view of current
level of interest for these highly charged ions, more accu-
rate theoretical calculations of the vacuum polarization
[see Fig. 1(b)], which is the second most important con-
tribution, are desirable.

In the case of free electrons, the completely filled sea of
negative-energy electrons has no observable effects. How-
ever, if we place a charged nucleus in the Dirac sea there
is an observable effect. This is due to the fact that a
virtual electron-positron pair created in a Coulomb field
behaves in such a way that the electrons tend to be at-
tracted to the nucleus while the positrons tend to escape
from the nucleus. As a result the net charge observed at
large but finite distances is smaller than the bare charge
of the nucleus. The correction to a model where this ob-
served charge is confined in the nucleus is referred to as
the vacuum polarization. The total vacuum-polarization
charge is thus zero with, roughly, a negative charge den-
sity outside the nucleus and a positive charge density
inside the nucleus.

The first nonzero term in the (Za) expansion of the
one-photon vacuum polarization, the Uehling potential,
was derived already in 1935 by Uehling [10] using results
of Heisenberg [11]. The remaining part of the one-photon
vacuum polarization we will refer to as the Wichmann-
Kroll potential. The main emphasis in this work will be
given this remaining part. The effect of the Wichmann-
Kroll potential has been evaluated by several authors in
various approximations [12-14]. The most accurate so
far is the calculation by Soff and Mohr [14]. In our
present work we will follow their suggested renormal-
ization scheme. It is based on the potential expansion
of the unrenormalized vacuum polarization into a zero-
potential, a one-potential, and a many-potential term.
Our numerical implementation of their scheme is com-
pletely different, though. We have been able to achieve
better numerical stability and improve the numerical ac-
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curacy substantially. Our method is also applicable for
any atomic potential describing the bound electrons.
Certain two-photon vacuum-polarization effects that
have an extra factor of a in their scaling law have also
been evaluated in the literature. These are the so-called
Kallén-Sabry terms [15-17]. [The corresponding dia-
grams are shown in Figs. 3(j) and 3(k) in the last section.]
This paper is organized as follows. In Sec. II we derive
unrenormalized expressions for the vacuum-polarization
diagram in Fig. 1(b) and for the one-potential part
of this. The finite renormalized contribution from this
one-potential part corresponds to the Uehling poten-
tial. We then discuss the scheme for evaluating the fi-
nite part of the many-potential term corresponding to
the Wichmann-Kroll potential. In Sec. III we discuss
the numerical implementation of this scheme. Finally,
in Sec. IV we present numerical results for hydrogenlike
levels. We also discuss screening effects on the vacuum
polarization in connection with the accurately measured
2p1/2-281 /2 transition in lithiumlike uranium [18].

II. THEORY

The QED diagram for the one-photon vacuum-
polarization (VP) effect is shown in Fig. 1(b). The cor-
responding energy shift for a state a can be expressed in
terms of a vacuum-polarization potential, Uyp (note that

a) (b) (©

FIG. 1. Different one-photon processes. The double lines
denote electrons propagating in an atomic potential field, and
the wavy line a propagating photon. (a) gives rise to the elec-
tron self-energy, (b) describes the vacuum-polarization effect,
and (c) the interaction between two bound electrons.

(
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we do not factor out the electron charge), by writing

ABve(a) = /daxltbl(xl)va(xl)fIJa(xl) L (21)

Using standard Feynman rules and integrating over the
time variables we have,

* d
Uyp(x1) = —iezc/dsxz/ 2—;
x0o”Dpyu(x2 — x1,0)Tr[o* Sp(x2, X2, 2)],
(2.2)

where the time-independent Feynman photon propagator
is given by

ik (x2—x%1)

c d®k e
€0 Jou (2m)3 22 —

and the time-independent Feynman electron propagator

Druu(xz = x1,2) = k2 + in

(2.3)

B, (x2) @] (x1)

Sp(x2,X1,2) = 2 Z— Bl —in) (2.4)

is a sum over all positive- and negative-energy states ¢
for the electron moving in an atomic potential field V.

There is an energy parameter z associated with each
propagator. Since the time integrations have been per-
formed we have energy conservation at each vertex.
Therefore the energy parameter is zero in the photon
propagator while z is a free parameter in the electron
propagator for our considered diagram. The z integra-
tion is over the real axis and the n that occurs in the
propagators is a small positive number that adjust the
poles to the correct side of the real axis. In the elec-
tron propagator the factor (1 — in) is formal and should
be interpreted as to move the poles originating from the
negative energy spectrum to the upper half plane and the
ones originating from positive energy spectrum (also the
ones with negative energy) to the lower half plane.

By performing the trace in Eq. (2.2), integrating over
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sinfk|(xz — 1)

=§:(2l + 1)5i(kry)ji(kre)CH1) - CH(2),

k(%2 — x1)]| 1=0
(2.5)
we obtain
va(xl) = 47:6 71_/.dsxz/’ dk/ dz
x Z(zz + 1)ju(kr1)C' (1)a*(1)
y Z 3] (x2) Jz(krz)cl@)an@)q’t(xz), (2.6)

z — Ey(1 —in)

where one has to remember the scalar product between
the C! tensors, which are related to the spherical har-
monics as C}, = /4r/(2l +1)Y;},. Since we sum over
all orientations m of j,. for a specific « in the t=(n, x, m)
summation, one can show that [ and y have to be zero for
nonvanishing contributions (C° = 1 and a° is an iden-
tity matrix). Performing the z integration, which picks
up half-pole contributions, and summing over m we fi-
nally obtain

e? 1 [ .
Uve(r) = - /0 dk jo(kr)
x 23(2_]',c + 1)sgn(E, . ){(n, & | jo(kr2) | n, K).
' (2.7)

Equation (2.7) is a formal expression that contains the
infinite unrenormalized charge and is divergent. In or-
der to treat the divergency problem, we start with an
expansion of the intermediate electron propagator,

4 (x2) B (x1)
Sp(x2,X1,2) = B e
F(x2,%1,2) ZZ—Et(l_'“?)
— | X1
z — hpou(1l —in)
1
= N Xy
z = (hree + V)(1 — in)

1

_ <x2
_ <x2

2.8
the angular part of k and using the partial-wave expan- (2.8)
sion in terms of the atomic potential V,
J
1 1 1 1
= = = + = |4 =
z— hbou(l - 17’) z = hfl‘ee(l - “7) z— hfree(]- - '”7) z — hfree(l - “7)

1 1 1

= n = —V = —. (2.9)
z — hfree(]- - z"7) z = hbou(]- - ”7) z = hfree(l - 7'77)

Here izbou and izf,ee are the bound and free Dirac opera-
tors, respectively. This is an exact identity that allows us
to write the vacuum polarization as a sum of three terms
as shown in Fig. 2. We shall refer to these terms as the
zero-potential term (Up), the Uehling term (U;), and the
Wichmann-Kroll term (Uz).

A. The zero-potential term

The Furry theorem states that the contribution of any
closed free-electron loop with an odd number of vertices

[

vanishes. Thus the first term in the potential expan-
sion is zero. The expression for this zero-potential term
is given by Eq. (2.7) with the only modification that the
summation is over free electron states. With this partial-
wave expansion there is an exact cancellation between the
positive and negative energy states for the free-electron
spectra with a given | k | value. To be specific, in the case
when | £ |[= 1 the cancellation takes place between the
positive (negative) spectra of the s/, angular symmetry
and the negative (positive) spectra of the p;,» angular
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symmetry. For bound spectra the cancellation is not ex-
act giving rise to the divergent expression for Uyp.

B. The Uehling term

The second term in the potential expansion, the
Uehling term, contains a divergency of the photon self-
energy type and a finite part corresponding to the
Uehling potential. The expression for the Uehling term
is derived by replacing the electron propagator S in Eq.
(2.2) with the one-potential term from the expansion in
Eq. (2.9). Performing the trace and using the partial-
wave expansion Eq. (2.5) we obtain the expression

Ul(xl)
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FIG. 2. The unrenormalized bound-state vacuum polariza-
tion potential (Uvp) decomposed into the zero-potential term
(Uo=0), the Uehling term (Uy = Q1 + Fi), and the Wich-
mann-Kroll term (Uz = Sz + F2). Fi1 and F denote the
finite parts, Q1 the charge divergency, and S; the spurious
gauge-dependent part of Us.

= dz
ie? /d3x2/d3x3/ dk/ z § (21 + 1)1(kr1)CH(1)ak(1)
47reo m i

X3)V(X3)(}3(X3)

1 (x2)71 krz)C (2)a,(2)®, (x2) D!
XZ —B.(1—in)][z — Bu(

where we now sum over free electron states 7 and s. In
principle we should integrate over the continuous spectra
for r and s, but when evaluating the the Uehling term we
shall use numerical “free” electron spectra for electrons
confined in a box chosen to be large enough not to affect
the numerical results. The integrations then go over to
summations.

The expression in Eq. (2.10) for U; corresponds to Eq.
(2.6) for Uyp. As for that expression only | = p = 0 gives
a nonzero contribution. If r;s are both positive (nega-
tive) states, we can close the z integration in the upper
(lower) plane and get zero contribution. Only the situ-
ation with one positive (+) and one negative (—) state
thus contributes in the r, s summation. Performing the
z integration then gives

4meg T

<p,'€|Jo kra) | o', 8) (0,6 | V | P, K)
XZZ Epn~Ep,n ’

(2.11)

where we have summed over the m quantum numbers
and used that r = (p,k,m) and s = (p/, K, m) must have
the same k and m. The extra factor of 2 occurs since we
have restricted r to be a positive-energy state.

The Uehling potential can be derived from Eq. (2.11)
by removing the charge divergency. Despite that there
was no clear formulation of the charge renormalization,
Uehling derived this finite contribution already in 1935
[10] using results achieved by Heisenberg [11]. The first
deduction that was completely satisfactory from a theo-
retical standpoint was given by Schwinger in 1949 [19].
For a detailed and rigorous discussion of the Uehling po-
tential the reader is referred to the book by Greiner,
Miiller, and Rafelski [20]. Here we shall just quote the
result for the Uehling (Ue) potential in the coordinate

(
i) ) (2.10)

representation without any mathematical justification

UUe(T') =

/ dr’ anr?p(r')
47reo s
e 2 1
dtvt2 — 1 —
x /1 (3t2 + 3t4)
sinh(2tr /A¢) exp(— 2t1‘>//\c)
2tr< /Ac TS

(2.12)

where 7 is the lesser and r~ the greater of r and r’ and
p(r') is the probability distribution for the charge gen-
erating the atomic potential V', that is here assumed to
be spherically symmetric. The electron Compton wave-
length (divided by 27) A¢ = A/(mc) that occurs in this
expression is the characteristic length for the induced
vacuum-polarization charge. We will use this expression
for the Uehling potential to evaluate the finite contribu-
tion denoted by F; in Fig. 2.

C. The Wichmann-Kroll term

The last term in the potential expansion given in Eq.
(2.9) is the Wichmann-Kroll (WK) term. To obtain the
correct finite part F» from this term we adopt the sub-
traction scheme suggested by Soff and Mohr [14],

F2 ZUVP—Ul —52, (213)
where we have used the notations introduced in Fig. 2.
S is a spurious gauge-noninvariant piece that must be
removed in order to obtain the correct result. This term
has been discussed by many authors [12,13,21]. By mak-
ing a partial-wave expansion of the S; term, each partial
wave contribution can be shown to vanish [14]. Thus,
performing a spherical-wave decomposition of Eq. (2.13)

yields
Fy=Y Up— (2.14)
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TABLE I. Wichmann-Kroll vacuum-polarization effects on hydrogenlike levels in Xe and U ex-

pressed in terms of H where AE = %(%"3)—4Hmc2. Only terms with | k [< 5 are included in the
values presented in this table. A spherical shell model for the nucleus is used in the first four lines
and a uniform charge distribution in the last two lines.

ers(fm) 131/2 251/2 2Pl/z 2173/2
saXe 4.826 shell 0.005899 0.006402 0.000448 0.000110
0.0059% 0.0064* 0.0004* 0.0001%
92U 5.751 shell 0.020659 0.027232 0.006795 0.000736
0.0207* 0.0272% 0.0068% 0.0007*
92U 5.751 uniform 0.020675 0.027254 0.006798 0.000736
92U 5.860 uniform 0.020640 0.027203 0.006791 0.000736

2Soff and Mohr [14].

if the summation is truncated after a finite number of
terms. In terms of vacuum-polarization potentials we can
write the finite potential contribution Uwgk correspond-
ing to Fy as

Uwk(r) = Uvp(r) — Ui(r), (2.15)
with the partial-wave expansions for Uyp and U; given
by Eq. (2.7) and Eq. (2.11), respectively. The total
renormalized one-photon vacuum-polarization potential
is then the sum of the Uehling (Uy.) and Wichmann-
Kroll (Uwk) potentials.

III. NUMERICAL APPROACH

The Uehling term described by Eq. (2.12) is straight-
forward to implement numerically and we restrict here
the numerical discussion to the Wichmann-Kroll term.
To evaluate this term, we employ the outlined scheme in
Eq. (2.15) evaluating (renormalizing) each partial-wave
contribution separately. In calculating the Wichmann-
Kroll term in this explicit form, we can use the numerical
tools developed for the self-energy calculation [8,9]. Since
there are no poles in the momentum integration we em-
ploy Gaussian quadrature. For the radial integration we
use the method with discrete numerical spectra for elec-
trons confined in a box [22] with the boundary condition
that the orbitals vanishes outside the box. Both bound
spectra, for which the electrons move in an atomic po-
tential V, and “free” spectra (V=0) are used. The radius
of the box has to be chosen large enough not to affect the
numerical result. Considering effects for a bound state,

this implies that the corresponding wave function has to
be small enough at the radius of the box. A typical value
for lithiumlike uranium is one Bohr radius.

There is one ambiguity which has to do with the nu-
merical spectra used. If we consider the partial-wave
expansion of the zero-potential term it vanishes, as dis-
cussed in Sec. ITA, due to exact cancellations between
the positive and negative free electron states for each | & |
value. In a similar manner there are cancellations (but
not exact) for the main term for a given | x | value. To
correctly obtain these cancellations numerically, one has
to be very careful with the boundary conditions in the
box. This was not achieved exactly in our calculation.
Therefore, to purify our numerical spectra we employ, as
in the self-energy calculation, the concept of subtract-
ing a counter term. When we calculate the main term
for a specific value of | k |, we subtract also the cor-
responding contribution to the zero-potential term. (In
principle we shall then re-add the zero-potential term cal-
culated analytically, but this is just exactly zero.) This
results in a stable and accurate evaluation of the main
term. By also subtracting the Uehling term evaluated
with the same numerical grids, we obtain a high numer-
ical accuracy. Our numerical scheme, for evaluating the
Wichmann-Kroll potential (F3) is thus

e
R=Y U -uy-u,

|k]=1

(3.1)

where we calculate each | k | separately up to a | Kmax |
and then extrapolate get the x tail contribution. The
partial-wave expansion in Eq. (2.7) is used for the Uyvp

TABLE II. Wichmann-Kroll vacuum-polarization effects on hydrogenlike levels for various atoms
expressed in terms of H (see Table I). A uniform charge distribution for the nucleus is used.

Rrms(fm) 1s1/2 28172 2p1/2 2p3/2

36 Kr 4.230 0.0027418 0.0028337 0.0000834 0.0000280
saXe 4.826 0.0059211 0.0064231 0.0004548 0.0001142
70Yb 5.273 0.0102488 0.0228636 0.0015179 0.0002817
s2Pb 5.505 0.0150482 0.0185794 0.0034731 0.0004935
92U 5.860 0.0206789 0.0272515 0.0068240 0.0007494
100Fm 5.976 0.0269434 0.0377244 0.0118317 0.0010235
170X 7.100 0.52639 0.77519 3.81914 0.01747
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TABLE III. A comparison between the Wichmann-Kroll (WK) and the Uehling (Ue) vac-
uum-polarization effects on the lowest hydrogenlike levels for various atoms using a uniform charge

density for the nucleus (eV).

Rims(fm) 1s1/2 2812 2p1/2 2p3/2

36 Kr 4.230 Ue —1.35582 —0.17798 —0.00348 —0.00053
WK 0.01550 0.00200 0.00006 0.00002

saXe€ 4.826 Ue —7.3250 —1.0234 —0.0492 —0.0056
WK 0.1695 0.0230 0.0016 0.0004

70Yb 5.273 Ue —23.4016 —3.5384 —0.3121 —0.0252
WK 0.8283 0.1198 0.0153 0.0028

82Pb 5.505 Ue —50.6976 —8.2702 —1.0781 —0.0638
WK 2.2900 0.3534 0.0660 0.0094

92U 5.860 Ue —93.5868 —16.4610 —2.9055 —0.1266
WK 4.9863 0.8214 0.2057 0.0226

100Fm 5.976 Ue —152.071 —28.654 —6.405 —0.209
WK 9.069 1.587 0.498 0.043

170X 7.100 Ue —12413.0 —2380.5 —11051.0 —6.76
WK 1479.8 272.4 1342.0 6.14

and Uy terms using bound and free electron spectra, re-
spectively, and for the U; term Eq. (2.11) is used involv-
ing free electron spectra.

IV. NUMERICAL RESULTS AND DISCUSSION

To check our numerical method for evaluating the WK
contribution to the vacuum-polarization we compare in
Table I our results for hydrogenlike levels in Xe and
U with the calculation by Soff and Mohr [14]. They
present results evaluated with a spherical-shell model for
the nucleus. Due to strong cancellations only terms with
| & |< 5 are included in their work. With this approxima-
tion we get perfect agreement with their results. In Table
I we also present values for U using a uniform nuclear-
charge distribution with the same R;,s=5.751 fm as for
the nuclear shell model. One can see that the effect of
the nuclear model is very small. To see the effect of the
nuclear radius we also present values with R;,s=5.860
fm taken from Zumbro et al. [23]. This also gives small
changes.

Compared with the calculation by Soff and Mohr we
have been able to improve the accuracy significantly. The

main reason for this is our numerical stability that allows
us to include partial waves up to | x |= 15. Therefore we
can also accurately estimate the small contribution from
the x tail. Our results indicate that the k contributions
fall off as k™% and the k sum thus converges faster than
for the self-energy for which the terms fall off as {73 [9].
Our very accurate k-extrapolated values are presented in
Table II. A comparison with the uranium values in Table
I reveals that for the 1s and 2s states the | k |> 5 tail is
small and almost cancels the nuclear-radius effect in Ta-
ble I. However, for the 2p states the relative importance
of the « tail is much larger.

In Table III we compare the WK and the Uehling con-
tributions to the vacuum polarization for hydrogenlike
levels in selected atoms from Kr to Fm and also for a
gedanken superheavy atom with Z = 170. Since there
is an extra (Za)? in the scaling law for the WK term
compared to the Uehling term, the WK term becomes
more important for higher Z. For the 2s,/, state in U
it accounts for about 5% of the vacuum polarization and
increases to about 10% for the same state with Z =170.
For the 2p3,, state the WK term is more important and
becomes almost equal to the Uehling term for Z = 170.

To examine the electron-screening effects on the vac-

TABLE IV. Electron screening effects on the vacuum polarization for lithiumlike uranium using
a uniform charge density with Rrme = 5.860 for the nucleus (eV).

Model potential 2812 2p1/2 2ps/2
Bare nucleus Ue —16.4610 —2.9055 —0.1266
WK 0.8214 0.2057 0.0226

Direct screening Ue nucleus —15.7722 —2.6370 —0.1158
electron core 0.0407 0.0238 0.0067

WK nucleus 0.7892 0.1876 0.0208

electron core —0.0043 —0.0019 —0.0004

Ue plus WK sum —14.9466 —2.4276 —0.0887

Ue plus WK Ae —14.9846 —2.4317 —0.0887

Coulomb exchange Ue plus WK Ae —14.9532 —2.4511 —0.0898
Breit exchange added Ue plus WK Ae —14.9318 —2.4271 —0.0890
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uum polarization we consider in Table IV the n = 2 states
in lithiumlike uranium. In the first two lines we repeat
the bare-nucleus values from Table III. In lines 3 and
5 we use the same nuclear Uehling and WK vacuum-
polarization potentials as in the first two lines but take
the expectation values with states screened by two di-
rect interactions with 1s [direct part of Fig. 3(e)]. Con-
sidering the 2s state this screening changes the Uehling
contribution by 0.689 eV and the WK contribution by
—0.032 eV. Taking into account the 1s% charge density
when evaluating the vacuum polarization [direct part of
diagram 3(f)] gives much smaller contributions, 0.041 eV
for the Uehling term (almost canceling the screening of
the WK term) and —0.004 for the WK term. Summing
all contributions we get the values labeled “Ue plus WK
sum” in this table.

To get the effect of the vacuum-polarization potential
self-consistently (not only to first order) we include this
potential when generating the orbitals and let it affect the
eigenvalues. The change induced in the eigenvalue, Ag,
then includes the higher-order vacuum-polarization dia-
gram [Fig. 3(i)]. This “self-consistency” effect amounts
to —0.038 eV for the 2s state. By letting the n = 2 states
also be affected by the exchange Coulomb and Breit inter-
action with the 152 core we get slightly different changes
A€ induced by including the full vacuum-polarization po-
tential as presented in the last two lines in Table IV.
From these values we can, e.g., deduce a 0.031-eV effect
from the Coulomb exchange and 0.021 eV from Breit ex-
change on the 2s state [exchange part of Fig. 3(e)].

In Table V we summarize the vacuum-polarization ef-
fects on the 2p; /2-2s1 /2 transition in lithiumlike uranium
and compare with results by Blundell [5]. The agree-
ment is perfect for results including direct screening by
the 1s? core. However, the contribution from the ex-
change screening by the core differs significantly. This
effect is calculated quite differently in our work, where
we let the exchange interaction affect the orbitals self-
consistently, while Blundell calculates the first-order per-
turbation with the restriction that the perturbation is
orthogonal to the 1s orbital. The discrepancy is resolved
to a large extent, however, if we also take into account
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FIG. 3. Two-photon effects.

the change in the 1s2 vacuum-polarization effect in the
2p1/2-281/2 transition. Including the direct screening of
the core by the valence electron we get again results in
perfect agreement with Blundell, while our core results
for the exchange screening by the valence electron differ.
We note, however, that the sum of the core and valence
exchange screening effects agrees better between the two
different calculations.

The previously discussed self-consistency effect is not
included in the result by Blundell given in Table V.
Adding this effect to his results reduces the difference
between our final vacuum-polarization results to about
0.01 eV.

A more systematic way of evaluating the effect of the
vacuum-polarization potential would be to include this

TABLE V. Vacuum-polarization effects on the 2p;/2-2s, /2 transition in Li-like U (eV).

This work Blundell [5]
Valence
Direct screening Uehling (Ue) 13.118 13.12
Wichmann-Kroll (WK) —0.599 —0.60
Ue plus WK sum 12.519 12.52
Self-consistency effect 0.034
Ue plus WK Ae 12.553
Exchange screening effect —0.048 —0.08
Coulomb exchange added Ue plus WK Ae 12.502
Breit exchange added Ue plus WK Ae 12.505
Core
Direct screening —0.082 —0.08
Exchange screening effect 0.163 0.21
Total vacuum polarization 12.586 12.56
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TABLE VI. A comparison with the experimental 2p,/2-25;,/2 transition energy in lithium-like

uranium (eV).

This work Blundell [5]
Vacuum polarization (VP) 12.586 12.56
Self-energy (SE) —54.32% —54.24
Combined SE and VP —0.19°
Nuclear polarization and recoil 0.10° 0.10
Relativistic MBPT 322.33¢ 322.41
Total 280.51 280.83
Experiment 280.59(9)° 280.59(9)°

*Reference. [9].
*This work. See also Ref. [24].

“With —0.08(8) eV for nuclear recoil [4] and 0.18(5) eV for nuclear polarization [25].
9Reference [26]. The difference 0.04 eV to the value given in [9] is due to a previous double counting

of the mass polarization effect.
°Schweppe et al. [18].

potential from the beginning in the relativistic many-
body perturbation theory calculation. This would give
both the valence and core effects self-consistently.

In order to compare with the experimental 2p;/2-2s1 2
transition energy we give in Table VI previously cal-
culated effects, the screened self-energy [Figs. 1(a) and
3(c)], the nuclear polarization and recoil and the result
of relativistic many-body calculations. We have also cal-
culated the effect of including the vacuum-polarization
potential in the orbitals when evaluating the self-energy.
This corresponds to Figs. 3(g) and 3(h) and gives a —0.19
eV contribution to the transition energy. This is the
largest contribution to the difference between our final
transition energy and that given by Blundell. Adding
this effect to the result by Blundell changes also his value
to fall inside the experimental error bars. This almost
perfect agreement between theory and experiment can

be assumed to be partly fortuitous since one can expect,
e.g., the two-photon self-energy diagrams 3(m)-3(o0), not
calculated so far, to be more important than the cal-
culated combined self-energy vacuum-polarization effect.
In conclusion one can state that all diagrams with two
virtual photons need to be calculated to achieve a reli-
able theoretical value with an uncertainty comparable to
the experimental one.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to Steve
Blundell, Leonti Labzowsky, Eva Lindroth, Ann-Marie
Martensson-Pendrill, Gerhard Soff, and Hakan Warston
for helpful discussions. We also acknowledge support
from the Swedish Natural Science Research Council.

[1] P. Indelicato and P. J. Mohr, Theor. Chem. Acta 80, 207
(1991).
[2] K. T. Cheng, W. R. Johnson, and J. Sapirstein, Phys.
Rev. Lett. 66, 2960 (1991).
3] N. J. Snyderman, Ann. Phys. (N.Y.) 211, 43 (1991).
4] S. Blundell, Phys. Rev. A 46, 3762 (1992).
5] S. Blundell, Phys. Rev. A 47, 1790 (1993).
6] K. T. Cheng, W. R. Johnson, and J. Sapirstein, Phys.
Rev. A 47, 1817 (1993).
[7] H. M. Quiney and I. P. Grant, Phys. Scr. T46, 132
(1993).
[8] H. Persson, I. Lindgren, and S. Salomonson, Phys. Scr.
T46, 125 (1993).
[9] I. Lindgren, H. Persson, S. Salomonson, and A. Ynner-
man, Phys. Rev. A 47, R4555 (1993).
[10] E. A. Uehling, Phys. Rev. 48, 55 (1935).
[11] W. Heisenberg, Z. Phys. 90, 209 (1934).
[12] E. H. Wichmann and N. M. Kroll, Phys. Rev. 101, 843
(1956).
[13] M. Gyulassy, Nucl. Phys. A 244, 497 (1975).
[14] G. Soff and P. J. Mohr, Phys. Rev. A 38, 5066 (1988).
[15] G. Kallén and A. Sabry, Mat. Fys. Medd. Dan. Vid.
Selsk. 29, 17 (1955).
[16] J. Blomqvist, Nucl. Phys. B 48, 95 (1972).

[
[
[
[

[17] T. Beier and G. Soff, Z. Phys. D: Atoms, Molecules and
Clusters 8, 129 (1988).

[18] J. Schweppe, A. Belkacem, L. Blumenfeld, N. Clay-
torand, B. Feynberg, H. Gould, V. Kostroun, L. Levy,
S. Misawa, R. Mowat, and M. Prior, Phys. Rev. Lett.
66, 1434 (1991).

[19] J. Schwinger, Phys. Rev. 75, 651 (1949).

[20] W. Greiner, B. Miiller, and J. Rafelski, Quantum Elec-
trodynamics of Strong Fields (Springer-Verlag, Berlin,

1985).

[21] E. Borie and G. A. Rinker, Rev. Mod. Phys. 54, 67
(1982).

[22] S. Salomonson and P. Oster, Phys. Rev. A 40, 5548
(1989).

[23] J. D. Zumbro, E. B. Shera, Y. Tanaka, C. E. Bemis, Jr.,
R. A. Naumann, M. V. Hoehn, W. Reuter, and R. M.
Steffen, Phys. Rev. Lett. 53, 1888 (1984).

[24] 1. Lindgren, H. Persson, S. Salomonson, V. Karasiev, L.
Labzowsky, A. Mitrushenkov, and M. Tokman, J. Phys.
B (to be published).

[25] G. Plunien, B. Miiller, W. Greiner, and G. Soff, Phys.
Rev. A 43, 5853 (1991).

[26] A. Ynnerman, J. James, I. Lindgren, H. Persson, and S.
Salomonson (unpublished).



