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Analysis of the electron self-energy for tightly bound electrons
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A general scheme for mass renormalization of the electron self-energy in strong nuclear fields is developed.
In second order the results agree with those recently obtained by Labzowsky and Mitrusffeim@vRev. A
53, 3029(1996], and, in particular, it is shown that the extra counterterm observed by these authors appears
quite naturally in the more general scheme developed h88£50-29478)08407-9
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[. INTRODUCTION part forms the main subject of the present investigation.
Since these effects should be about a factat gmaller than

Considerable progress has recently been made in meastihe first-order self-energy effects, they can be expected to be
ing the hyperfine structure and Lamb shift of I@&systems, of the order of 1-2 eV.
such as hydrogen, positronium, muonium, and helium atoms. In order to evaluate the higher-order self-energy contribu-
Corresponding progress has been made in the theoretical déons, it is necessary to reconsider the renormalization proce-
velopment, and a remarkable agreement between theory aflire. This will be done in the present paper in a way that is
experiment has in most cases been achidie?]. The cal- easily generalized to arbitrary order. In a recent publication
culations on these systems are carried out by means of tHey Labzowsky and Mitrushenkoy17] the second-order
Za expansion of the nuclear field,being the nuclear charge problem has been considered and an expression is derived
and « the fine-structure constant. for the corresponding energy shift. The treatment of Lab-

Recently, considerable progress has also been made #wsky and Mitrushenkov is based on the potential-
measuring the level shiftamb shify of highly charged ions interaction expansion of the bound-state orbitals, which is
[3]. The Lamb shift of the & level of hydrogenlike uranium, the standard procedure for treating the first-order self-energy.
for instance, has been measured by Begeal. [4] to be In the second-order case, this leads to a rather lengthy deri-
470+ 16 eV, relative to the Dirac value for a point nucleus. vation, and the procedure can hardly be generalized beyond
This experimental result can be well explained theoreticallythat order. In the present paper we shall analyze the mass
by considering the effect of the finite nucleus and the first-enormalization in a more general way, which will lead to a
order (one-photoh quantum electrodynamicaQED, correc-  Procedure for generating renormalized self-energy expres-
tion, which can now be calculated with high accurdéy. sions that can more easily be extended to higher orders.
Experiments are in progress, however, for reducing the unSecond-order expressions, identical to those of Labzowsky
certainty, hopefully below the 1-eV level. As discussed in a

recent papef6], the second-order QED contributions, as
well as nuclear recoil and nuclear polarization effects, will
then be of significance. @
The Feynman diagrams for the second-or@en-photor)
(@) (&) ©

QED shift in hydrogenlike ions are shown in Fig. 1. The first
line (a,b,9 of the figure represents the double vacuum polar-
ization (VP-VP), the second line(d,e,f the combined
vacuum-polarization self-energy contributiof®E-VP, and W@ I:©
the third line (g,h,) the second-order self-energy contribu-
tions (SE-SH.
At strong nuclear fields, th&« expansion is no longer @ © 0
applicable, and numerical all-order techniques have to be
applied. Here, the basic electron orbitals are generated in the
field of the nucleus—and in some cases also of the inner I;
electrons. Such techniques have been developed and em-
ployed during the last ten yeai$-16]. Specifically, the
VP-VP and SE-VP contributions have all been calculated )
numerically(a) by Perssoret al.[7], (b,c) by Beier and Soff ) ® 0
and by Schneideet al. [8], (d,) by Lindgrenet al.[9], and FIG. 1. The second-order Lamb-shift diagrams for a single-
(f) by Perssoret al. [6] and by Mallampalli and Sapirstein electron system. The double lines represent orbitals and propagators
[10]. It should be noted that diagrants,f) have only been generated in the nuclear field. The first row of diagrafas,o
calculated in the Uehling approximation. The SE-SE COﬂtI’i-represents the double vacuum polariza(igR-VP), the second row
butions(g,h,)) in Fig. 1, on the other hand, have not yet been(d,e,h the combined self-energy vacuum-polarizati®E-VP, and
calculated by numerical techniques, and the analysis of thithe last row(g,h,) the second-order self-ener¢$E-SE.
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free
SF (p ) dressed = =

FIG. 2. The dressed electron propagator is
represented by the bare electron propagator with
all possible SE insertions. This can be expressed
as a Dyson equation by means of fh®per SE
diagrams, represented by the square box. Note
that all internal lines inside the self-energy dia-

! grams ardare electron linesrepresented by dot-
ted lines.
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and Mitrushenkov, are presented. whereh is the single-electron Hamiltonian, afig and E,

The main purpose of the present paper is to analyze thgre the corresponding eigenfunctions and eigenvalues. Inser-
mass-renormalization procedure for higher-order self enetion of all possible self-energy operators into the electron
gieS, particularly at strong external fields. For that reason W%ropagator, leads to thedtessed propaga’[or(for Simp“c-

start in Sec. Il by analyzing the free-electron self-energy angty |eaving out the infinitesimal imaginary part
the free-electron propagator in a general way, starting from

the bare electron mass. Dressing the free-electron propagator . 1

by self-energies in all possible ways, leads to the dressed SF(“’)dressed:TE()-
free-electron propagator, and—after mass renormalization— @ @
this propagator is e>§pressed as the propagator q§h|yeica! Here, 3.(w) denotes theproper self-energy(SE) operator,
electron, dressed witmass-renormalizedelf-energies. This  represented by all SE diagrams that cannot be separated into
yields a recursive renormalization scheme, which can ea5|_I)(N0 allowed diagrams by cutting a single-electron line. This

be extended to higher orders. In Sec. Ill the treatment i$mplies, for instance, that the diagrarfgh in Fig. 1 are
extended to electrons in external electri¢alicleay fields, proper SE diagrams, while diagraf is not.

and in Sec. IV general expressions for the corresponding \ve consider now dree electronwith the “bare’ mass
energy shift are given, using energy-dependent perturbatiog, ' (with no electromagnetic self-interactionsvhich is rep-

theory. Explicit expressions for the diagrams involved in seCyagented by the Hamiltoniafusing relativistic unitsi=c
ond order are given in Appendix C. The question of numeri-_ . _ 1 e?=4ma)

cal evaluation is not considered in any detail in the present
paper. However, one part of the second-or(l&-SH has Afree(mg) = a- p+ M.
been calculated numerically by Mitrushenketval. [18] and

very recently some additional parts have been calculated byhe free-electron propagator in operator form is then
Mallampalli and Sapirstein19].

(2.9

~ 1
SEe(w,mg) = — (2.2
Il. FREE ELECTRONS w— @ p— Mg
We start by analyzing the free-electron propagator, andvith the Fourier transfornisee Appendix A
we use the followingoperator form 1
free _
Se (w’p’mO)_—w—a-p—ﬂmo' (2.3
& (w)= 1 _ ) (t| _ _
" o-_h(l-ig T o-E(l-in’ or in covariant form
1
- SE(p,mo) = ———B. (2.4
) * H p_ Mo
Zf’eep - foee(plmo) = E =

(This differs from the standard definition by a fact(l Bf

because we base the definition on usifigrather thany.)

The interaction with the electromagnetic field gives rise to
all possible SE interactions, as indicated in Fig. 2. This leads
to the “dressed free-electron propagator

free _ 1
SF (p)dressed_ lb_mo""ﬁzfree(p) ,81 (25)

FIG. 3. The proper free-electron self-energy is given by all
proper free-electron self-energy diagrams, with the internal linesvhich can also be expressed by means of a Dyson equation,
associated with theare electron mass. illustrated in the bottom line of Fig. 2. Thproper free-
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Z (p) = Z** (p,m*) = @ = D + +.- mass o
free free Zcounter =X free('p'm*)

FIG. 4. The proper free-electron self-energy can also be ex-
pressed as the sum of all self-enegkeletonsrepresented by the

circle, with fully dressed internal lines, represented by heavy solid
lines (cf. Fig. 2. mass(re)n
free P
on-shell

electron self energys denoted by3¢,..(p) and is repre-
sented by the sum of all proper, free-electron SE diagrams FIG. 5. The mass counterterm is given by all free-electron self-
with the internal lines associated with the unphysitalye  energy skeletons with fully dressed internal lines, evaluatethe

I!,_m on-shell

electron massn, , mass shellp=m. Themassrenormalized free-electron self-energy
is obtained by subtracting the mass counterterm from the free-
Efree(p)zz? (p,My) electron self-energy, displayed in Fig. 4.
ree 1 !
as illustrated in Fig. 3. ?oausnster:|2free(p)|yﬁ=m:|E?ree(pvm0)|b=m: —pém.
The free-electron SE exhibits two kinds of divergences, (2.6)

which we refer to as the mass and the charge divergence, . )
respectively. The mass divergence is eliminated by means diiS éads to thenass-renormalizetree-electron SE,
the mass renormalization, which is the main issue of the 5 massren mass

present paper. The charge divergence of the SE is canceled Ziree (P)=2free(P) ~ 2 counter

by the corresponding divergence of the vertex modification
(Ward identity [20]). In performing the renormalization, a
proper regularization scheme has to be employed. At thi
stage we shall not make any specific choice of regularization 1
scheme, although it will be assumed in the following—when
needed—that all quantities are properly regularized.

and the dressed, free-electron propag#&®®) can alterna-
gvely be expressed

free —
SF (p)dressed_ I15_m_l_ﬁzmassren(p) ,B (27)

free

A Renormalization After proper regularization, the free-electron SE can be
: expanded aroung=m,
The dressed electron propagai@.5 should have the
same pole positions as the propagator of phesicalelec- Stree(P)=A+(Pp—m)B+ (p—m)2C(p),
tron with the massn,
whereA andB are constants,

free —
SF (p1m)_¢)—mﬂ’ A:|Efree(p)|15:m:_,85m
i.e., atp=m. This implies that and
|Efree(p)|y§:m= |E’fkree(p:m0)|b:m=3(m0_ m)=—gém. ‘ pzfree(p)

Instead of working with the bare masg,, we can use the
physicalmassm, and introduce anass counterterrimto the ~ C(p) is finite for p=m and associated with theass-and

Hamiltonian, charge-renormalized free-electr®E, 2 {Fo.(p),
° [ ]
fr L lj?
ee !
]
SF (p ) dressed = = 1 o+ +. =

i If;:

i . . FIG. 6. The(charge-unrenormalizediressed
electron propagator in Fig. 2 can also be obtained
from thebare electron propagator by inserting all

e o SE skeletonwith dressednternal linegsee Egs.
® * * : (2.5 and(2.9)].
() y
= ! 4+ d} + 1+ = E +
: - (D !
1 1 '
¢ ¢ °
é
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free
St (p)

dressed = = + + + +... = +

FIG. 7. The dressed, free-electron electron propagator in Fig. 6 can also be obtained from the urphgss=dfree-electron propa-
gator by inserting almass-renormalize®E skeletongshaded with dressed internal linegsee Eqs(2.7) and (2.10]. The procedures
represented by Figs 5 and 7 have to be carried out recursively in higher orders.

(p—m)2C(p) =30 (p)=3Masse(p)— (h—m)B. such ef_fects, after proper renormalization, could also be in-
cluded in the procedure presented here.

It follows from the above that the free-electron SE, given

all proper free-electron SE diagrams, can also be ex-

pressed as the sum alfl skeletonswith fully dressednternal

It should be noted that the dressed, free-electron propag%—
tors in the form of Eq(2.7) is free from mass divergence, y
since it has beemassrenormalized. Thehargedivergence,

on the other hand, is still present due to Bieerm of the SE, lines
and this will be further analyzed in Appendix D. S tree(P) = 35X (p,m*), 2.9
B. Skeletons as illustrated in Fig. 43}% . represents here all SE skeletons,

.o : i
We shall find it convenient in the following to work with andm* indicates that all internal lines are fully dressed. We

skeletondiagrams. A skeleton is defined as a proper SE diaS@n then express the mass counterté2rd) as

gram that cannot be obtained from another SE diagram by mass < %% .
modifying an internal electron line by an SE insertion. This counter= | =Tree(P,m )|¢’=m'
implies, for instance, that diagrafg) in Fig. 1 is a skeleton,
while diagram(h) is not.(The latter can be obtained from the
first-order diagram by an SE insertipzrom this definition

(2.9

Thus, the mass counterterm equals the sum of all free-
electron SE skeletons with fully dressed electron lines,

: . . valuated on the mass sh¢ik-m, as is illustrated schemati-
it follows that all proper SE diagrams either are skeletons Ogally in the upper part of Fig. 5. We then obtain the final

can be obtained from skeletons {successivemodifications :
by SE insertions on electron lines. It is also obvious that aIIform of the mass-renormalized free-electron SE that we shall

such modifications of skeletons lead to allowed, proper Sr__employ in the following:
diagrams. A systematic way of generating all proper SE dia- massren, -\ _ < %% . x .
grams is therefore to insert successively—starting with the free  (P)=Zfee(P.M") ~ [Zi%e(pm )|¢’=m'(2 10
skeletons—new skeletons on internal lines of the diagrams in '
all possible ways. All internal lines of the diagrams will then 1is is illustrated in a schematic way in the bottom part of
be fully dressed. This is the procedure we shall adopt in th%ig, 5
following.

It should be noted that we consider here only modifica
tions of theelectronlines. This implies that with this defini-

In order to apply the expressi@@.10, we need a way of
“evaluating the fully dresse(tharge-unrenormalizecdelec-
. e X ~tron propagator. This is defined as the bare electron propa-
tion vertex modifications will lead to new skeletons. In prin- 4o with all possible self-energy insertions with bare inter-
ciple, also polarization insertions on the photon lines will 5 jines, hut, of course, we need to reexpress this in terms of
lead t0 new skeletons_._ In _the present papet, hOW?Ve_“ Whe propagator of th@hysicalelectron. For that reason we
shall not consider modifications of photon lines. In principle, ¢« express the fully dressed electron propagator as the bare

_ E Ky
2 bou (@)= Z bou (wm) =

GD ODm-shell
FIG. 9. The dressed bound-state electron propagator(32),

FIG. 8. The(unrenormalizeg bound-state self-energy is given can be obtained from the undressgthysica) bound-state propa-
by all bound-state self-energy skeletons with dressed internal linegator by inserting almass-renormalizedelf-energy skeletons with
[see Eq(3.1)]. The mass renormalization is obtained by removingfully dressed internal lines, in analogy with the free-electron case
the mass counterterifsee Eqs.(3.3) and (2.8) and Fig. §. The illustrated in Fig. 7. The thir(fat) double line represents the un-
shaded area represents, as before, the mass renormalization. Thedetssed(dresseyl bound-state propagator. As in the free-electron
double line represents here the dressed bound-state propagator arase(Fig. 7) the relations in Figs. 8 and 9 have to be treated recur-
the fat single line, as before, the dressed free-electron propagatoisively.

S bou (p)

F dressed

]
+

mass-ren
Zbou (('0) =
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AN
p=m

0 il

p=m

b:
FIG. 10. The mass counterterm is, according to &9 and (I) D %‘;}
Fig. 5, given by all free-electron skeletons with dressed internal

lines, evaluated on the mass shell. Its matrix elements between

bound states Eq4.2) can be evaluated by expressing these statesin FIG. 11. Expansion of the dressed free-electron propagator to

the momentum representati¢inere represented by the triangles  first order(cf. Fig. 7) and the free-electron self-energy to second
order.

(o |

‘counter

electron propagator, dressed with skeletonswith dressed

internal lines, using Eq2.8) and illustrated in Fig. 6. After bound electrons with thbare massm,. This propagator is
renormalization, this can be expressed asphgsicalelec- represented by the same diagrams as the free-electron propa-
tron propagator dressed with ainormalizedskeletons with  gator in Fig. 2, with the dotted lines now representiioyind
dressed internal lines, according to Ef.7) and illustrated states(still with the bare electron mas#n,). As in the free-

in Fig. 7. Obviously, the procedure of dressing and renormalelectron case, the bound-state SE can also be represented by
ization, illustrated in Figs. 5 and 7, has to be carried outall bound-state SE skeletons with fully dressed internal lines
recursively This is of vital importance and has important

consequences, as we shall demonstrate below. Yo @) =255 (0,m*), (3.1

Ill. ELECTRONS IN EXTERNAL FIELD as illustrated in Fig. 8upper park (cf. Fig. 4). The fat double
) , o . line represents here the fully dressed bound-state propagator.
In treating atomic electrons, moving in the field of the By introducing themass counterterni2.6), we can ex-

nucleus, the standard procedure is to start from free electrorb?fess the(charge-unrenormalizédiressed bound-state elec-
and use the nuclear field as a perturbation. In order to avoig,, propagator in analogy with E€.7) as

the double perturbation expansion, we define here a “bound-

state” electron propagator, using electron orbitals generated R 1
in the nuclear field. The electron propagator associated with SE"“(w)dressed: —— raseen (3.2
the bare massn, , then becomes @—hP%%(m) + 25" (w)
R 1 to)(to where 2 0255¢"() is the mass-renormalized bound-state
Sbou _ _ bou . .
P (@,Mp)= w—hPoY(m )_ = —EPOV self-energyoperator. Using Eqs(3.1) and (2.8), this be-
ol 0 0 comes
where
2{)noaussren(o"):Ebou(‘“)_ ?oausnster
Rbou — A
my) = a-p+ my+V
h”°%(mg)=a-p+ Bmq :Ez;;u(w’m*)_|2?£e(p,m*)|b:m'
is the external-field ofbound-state” Hamiltonian.V is the 3.3

external (nucleay field, |ty) represents the eigenstates of

ﬁbou(mo) (in the following referred to as Bound' states, which is illustrated in the bottom part of Fig. 8.

and EPOU represents the corresponding eigenval(igs the The fully dressed, bound-state propagator can then be rep-
0

o . ) in Fig. 9 i | ith th
bound case we shall find it more convenient to work with theresented as shown in Fig. 9 in complete analogy with the

free-electron case in Fig. 7; i.e., by inserting aflass-
operatorform, 'Eqs.(2.1) and(2.2), O.f the propagator rather renormalized bound-stategself-energy skeletons with fully
than the Fourier transform, used in the free-electron case,
Egs.(2.3) and(2.4).]
The interaction with the electromagnetic field gives rise to
all possible self-energy insertions, as in the free-electron
case. According to Eq2.1) this leads to thelressed bound-

state electron propagatdrcf. Eq. (2.5)]

n
+

1

cbo _
SF u(w)dressed_

w_ﬁbou(mo)'l'zbou(w) , qD
whereX o (@) =25, ,(w,mp) is theproper bound-state self-
bou

b-d-b-d- &
energy operatarrepresented by all proper bound-state SE

diagrams, with the internal electron lines associated with FIG. 12. Same as Fig. 11 for bound states.



1006 LINDGREN, PERSSON, SALOMONSON, AND SUNNERGREN PRA 58

- + - + -
“:; 'ig :} i: FIG. 13. Expansion of the mass-renormalized
proper bound-state self-energy to second order.

The renormalization terms are defined in Fig. 10
and Eq.(4.2).

I
+
+

renorm

dressedinternal bound-state lines. Again, of course, thecorrection. This shift is given by the shift in the pole posi-
dressing and renormalization procedures have to be carridin, corresponding to the state considered, of the dressed

out recursively propagator(3.2). The pole positions are given by the eigen-

values of the operatdi®®!(m) — 3 11assren( )y s massrenc,y

can here be regarded as anergy-dependergerturbation,

and we get the shift by applying the expressions for energy-
In the present section we shall outline a general procedurdependent perturbation theof#1], derived in Appendix B.

for evaluating the energy shift of an external-field or The energy shift of the unperturbed bound statewith the

“bound” state due to the SE, which is the major radiative unperturbed energg, is then given by

IV. EXPRESSION FOR THE SELF-ENERGY SHIFT

<a| _ Egoaussren( Ea)|t><t| _ zbmoaussren( E.) | a>
AE.=(a|—>Mmassren g yigy 4
a < | bou ( a)| > E;Ea Ea_Et

1%
+ ... +<a| _E?OauSSfen(Ea)|a>< a (g[—zbmoajsren(w)]}

a>+~~-, 4.9

0=E,

where the last term represents tleéerence-state contributio(E,=E,) [9].
In order to evaluate the expressi@hl), we first have to interpret the quantity

<a|zg103ussren( Ea) | b> = <a|2bou( Ea)— ::noahsnsterl b>v

where the mass counterterm is given by E19). The latter should be evaluated on finee-electron mass shelind for that
reason we expand the bound-state states in the momentum representation

(@2 fumeld)= 2 (alp.r)(p.rSdimelp’r')p'r|b), (4.2
pprr

wherep represents the three-dimensional momentum ratite spinor state. The matrix element of the mass counterterm is
represented graphically in Fig. 10, where the triangles represent the expansion of the bound state in free-electron states.
In second order the formul@.1) yields

(ol SR () [t) (1 — S eV (Ey|2)
E.—E,

AED = (al - ST E o+ S
t

)

0
+<a| _Erbnoaussren(l)(Ea)|a>< a {%[ —Egﬂoaussren(l)(w)]]

a> , (4.3

where 3 massren(l) gng ymassren(2) represent the mass- Sucher formuld22] to that diagram in combination with the
renormalized first- and second-order proper self-energies, résingulay disconnected second-order diagram.

spectively. The second and third terms of E4.3) corre- In order to find a graphical representation of the mass-
spond to the “irreducible”(nondegenerajand “reducible”  renormalized SE to second order, we apply the recursion
(degenerate parts, respectively, of the improper second-procedure outlined above. Using the expansion in Fig. 7, the
order SE[cf. the diagram(i) in Fig. 1]. The last term of Eq. dressed free-electron propagator is to second order repre-
(4.3 can also be obtained by applying the Gell-Mann—Low-sented by the diagrams in Fig. Wpper par, and using Fig.
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a a 2 : 3 FIG. 14. Graphical representation of the
A E(z) = + + E,7E, + * | o second-order energy shift due to the self-energy
a interaction, given by Eq4.3). The shaded parts
a R a a o) o =E represent mass-renormalized SE diagrams, dis-
renorm a

@ ) © @ played in more detail in Fig. 13.

4 this leads to the corresponding free-electron SE, given imalization. In second order, our results are shown to be iden-
the lower part of that figure. The corresponding expansion irical to those recently derived by Labzowsky and Mitrushen-
the bound case is given in Fig. 12. The mass-renormalizeHov, using the potential-expansion method.

SE is obtained by removing the mass counterterm, i.e., the

matrix element of the on-shell free-electron SE according to ACKNOWLEDGMENTS

Egs.(2.9) and(4.2). Using the notations of Fig. 10, this leads

to the diagrammatic representation in Fig. 13 of the first- and Financial support was provided by the Swedish Natural
second-order mass-renormalized SE;[)nassren(l) and Science Research Counc¢iNFR) and the Knut and Alice
ou

. Wallenberg Foundation. The authors wish to acknowledge
s,massren(2) -eyaluated in the bound sta). : A ; \ )
The complete graphical representation of the Second_ord§t|mulat|ng discussions with Leonti Labzowsky and Gerhard

energy contribution is obtained by adding the representatio off.

of the last two terms of Eq4.3). This is exhibited in Fig. 14. .

In order to see the identity of our results with those of APPENDIX A: FREE-ELECTRON PROPAGATOR
Labzowsky and Mitrushenko(LM) [17] in more detail, we In this appendix we collect, for convenience, various for-
can replace the renormalized first-order SE on the internglylations of the free-electron propagator, which are used in

malized first-order SE minus the corresponding mass courfyrm is

terterm, as shown in the first set of brackets of the same

figure. This leads to a graphical representation that is identi- ., 1 [p,r){p,r|

cal to that of LM. In particular, we can see that the “extra”  SF (@)=~ = = —
. . o—h"%1-in) bpr @ Epr(1—in)

terms observed by LM appear quite naturally in our proce- '

dure.

In principle, the scheme described here can be extended
arbitrary order. Applying the recursive schemes displayed i
Figs. 5 and 7 for the free electrons and in Figs. 8 and 9 for hiree= . p+ Bm
the bound electrons yields the expansion of the self-energy to '
successively higher orders. Insertion in the general perturbawith the eigenfunctions in discrete and continuous case, re-
tion scheme, generated according to the principles shown igpectively,

Appendix B, then yields the expansion of the corresponding
energy shift. 1 ip-x

The analytical expressions corresponding to the second- <x|p,r)—\/—vur(p)e =(2m
order diagrams are given in Appendix C. There we have
chosen to perform the integration explicitly (for positive  Herer=1,2,3,4, represents different spinor states, and the
intermediate stat¢sThese expressions are fully equivalent corresponding eigenvalues are denotecERy .
to those of LM, the only difference being that LM have In the coordinate representatiothe free-electron propa-
performed thek integration explicitly. gator becomes

Several of the individual terms of the energy expression
are infrared as well as ultraviolet divergent, although the , PN
entire expression is finite. For the numerical evaluation the SFEX' %, 0) =(x |S'f=ree(“’)|x>:;
various contributions have to be regularized, e.g., by the '
Pauli-Villars procedure or by dimensional regularization. InThis can also be expressed
first order it is found that the partial-wave expansion works
without any further regularization. This is not generally the

here hf'e® is the Dirac Hamiltonianoperator for a free
r@article

)% (p)e'P,

(X'|p.r)(p.r(x)
w—Ep(1-in) -

case, as we have recently demonstrd®g]. In the present b
paper we are not particularly concerned with the numerical d
evaluation. This will be addressed in a forthcoming paper, B
where the regularization procedure has to be considered in

more detail. 7 k t

The main purpose of the present paper has been to de-
velop a general procedure for the mass renormalization of
the self-energies to arbitrary order. The conventional poten- o8
tial expansion of the bound-state wave functions and propa- a
gators is largely avoided. It is believed that the generalized
procedure gives some additional insight into the mass renor- FIG. 15. First-order self-energy.
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b b
W '
u Zl k' “’
|
zkiv Av z k
t u
H a
a
FIG. 16. Vertex correction of first-order self-energy. FIG. 18. Reduction of the diagram (.
si"ee(x’ %, w) This can be written in covariant foreaving out the imagi-
o nary parj
1
= x' - P, r|X
; < |w_hfree(p)(1_|77) |p ><p | > S'f:ree(w p): 1 _ 1 B
' wo—a-p—m p—m"’
3| 43 eP t
=(2m) f d pz w— P ) (1=i7) ur(p)ur(p) where with our notationg= B(py— a- p).
el (X' %) APPENDIX B: ENERGY-DEPENDENT PERTURBATION
:(277)73’[ d°p free —, (A1) W find th i I f the Hamil-
w—hp)(1-in) e want to find the energy eigenvalues of the Hami
tonian
using
H' =H+V(E),
E ur(p)uj(p)=l(4><4). whereV(E) is an energy-dependent perturbation and the ei-
r genvalues and eigenfunctions ldfare known:
Here, h"®¢(p) is the Dirac Hamiltoniarfunction for a free
particle Hoi=Ed;. (B1)
We assume thai is Hermitian and that the set of eigenfunc-
h'"®¢(p) = a-p+ Bm. tions{ ¢y} is orthonormal. We consider in particular the en-

ergy corresponding to the unperturbed sthag= ¢, and
The momentum representatiaf the free-electron propa- want to solve the eigenvalue equation

gator is
[H+V(Ea+ 6E)](hat 6p)=(Ea+ SE)(¢pat 6¢).

1
SIe%(p'r’,pr,w)= 5p’,p5r’,rm- In view of Eq.(B1) this leads to
It follows from Eq. (A1) that theFourier transformof the (H—EL) 8+ [V(Ez+ SE)—SE](d,+ 64h)=0. (B2)

coordinate representation of the free-electron propagator is o
We assume for simplicity that the unperturbed state

|a)= ¢, is nondegenerateln intermediate normalizatign
=S"*%(w,p). (ol pat 80) = (Pl ba) = 1, we can then make the expan-
sion

1
w—h"%(p)(1-in)

(9) (h) (i) a

FIG. 17. Second-order self-energy. FIG. 19. Self-energy modified electron propagator.
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SE={pa|V(Ea+ OE)| o+ & B3
5¢:|§a°k‘/’k* Ce={ il 6). (palV( ) pat 5) (B3)

and fori#a

Operating on Eq(B2) with { ¢;| from the left,
perating on Eq(B2) with (4] (Ei—Ea)ei= 0ECi— (| V(Eq + 6E)| o+ 66)

(¢ilH—E4|8¢)=(i| SE—-V(Ea+ 5E)| pat+ 5) or

gives fori=a C.:<¢i|V(Ea+ OE)| pat 5)
| E,+ 0E—E,

(B4)

¢a| S E—V(E + SE)|p,+ 6d)=0
(d ? |2 ) In expandingV(E,+ SE) and 1/€,+ SE—E,) in Taylor
or series, we can write the expressigBs8) and (B4) as

oV 1 ) IV
5E:<¢a|V(Ea+5E)|¢a+5¢>:<¢a|V(Ea)|¢a>+5E ba o'?_E ba +§(5E) b4 o'?_Ez Pa)t---
E=E, E=E,
AY
+<</>a|V(Ea)|5¢>+5E< ba (0—E) 5¢> +---
E=E,
and
_<¢i|V(Ea+5E)|¢a+5¢>
Gi= E,+ 0E—E,
IV
(diIV(Ea) | da) <¢i (£> ¢a> (dilV(Ey)|6¢) (diIV(Ea) | ba)
i a a E=E, i a i a a
" E-E % ECE 7T E-E T E-ES

An order-by-order expansion then yields

SEM=(a|V(E,)|a),

Lo_GIVEIa)

I Ea_Ei
AYA
SE@= (alV(Ei)c+ 5EW | a _) .
1#a aE E_E
(alV(E )i )(i|V(E,)|a) )
= +(a|V(Ey|a)( a|| = al,
2 E-E @VEIa) |5
a
<_ (av >
. . . | E a
(2) _ <||V(Ea)|J> (1) (1)<||V(Ea)|a> (1) E:Ea
c@=> W sEL L SE ,
I J';a Ea—E ! (Ea—Ej) E,—E;
1 PV oV N
PR _Ez) a)+2 (alVEpli)e”+ 2, B _E) i\t sE?| a _E) a),
J E=E, i#a iza J E-E, 9 _—
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For anenergy-independemerturbation, all derivative terms where S¢ and D¢, represent the electron and photon

vanish, and we retrieve the standard Rayleigh-Sdinger  propagators, respectively. The Feynman amplitude between

perturbation expansion. the statesa andb, which can be free states or bound states
(generated in an external potentia given by E,=E,)

APPENDIX C: EVALUATION OF TWO-PHOTON W
SELF-ENERGIES M=(bliZM(E,)|a).

In this appendix we shall derive analytical expressions forThe corresponding energy contribution is
the second-order self-energy. For completeness we start by
deriving the expression for the first-order self-energy, used in E=iM —(mass counterterin
our previous workg13,15. It should be noted that, since ] o ,
most expressions involved here are divergent, some scheme USINg tzhe Feynman gauge and relativistic units=c
of regularization has to be employed. We shall not considef~ €0=1, € =4ma, the photon and electron propagators are
that any further here, but we shall assume in the following" the coordinate representation

that, when needed, the expressions are properly regularized. Pk ek Cox)

<X2|DFV/.L(Z)|X1>: _gv,uJ (271_)3 2—k2+i 77'

1. First-order

a. Self-energy (Xa|t)(t[xq)

The first-order self-energgsee Fig. 1pis in the operator (el Se(@)|x2) = Et
form represented by

w—E+in’

d where 7; has the same sign as the electron endtgy This
Z . . .
i (D)) — e iAo , gives the coordinate representation of the mass-
1%5(w) J’Zw'ea ISe(@=2)iea”iDe,u(2), unrenormalized first-order self-energy operator

dzf d3k a,e Xty (te o

i (1) - _ —
(el Zpou( @) xa)= 4”“J.2w 2m> (o 2 Erin) @ Keiin)’

and after thez integration

d3k 1 a e,ik.x2|t><t|eik-xla;¢
s (D) - i - Ll
(Xali Zpgu(@)[X1) 27-ra|f (2m)3 kZ o—E;—k sgn(E,)

The corresponding energy contribution then becomes
AESE=i(aliZpe ™" (w)]a)=(a| - 2 {5, w)|a)—(al ~ 2 {ginieia), (€Y
where

(el - 3wy - 2 [ 2K Ly (Al il arla)

(2m)° k4 o—E,—k sgnE,)
and using Eqgs(2.9) and (4.2
alosmasstia— ana [ SK Ig 5 s @RORrla.e s asiet ke e la)
counter (277)3 kp'r p',l” q,s Ep,r_Eq,s_k SgI’(Eq’s) '

For the numerical evaluation the expressions above can be expanded in partial waves.

b. Vertex correction

The first-order vertex correctiofsee Fig. 15is in operator form represented by

dz ,
Ziea“ iSp(w’ —Z)iea”A,,iS,:(a)—Z)iea'“iD,:’urM(Z)=ieA(l)"(w',w)AV. (C2

Using the Feynman gauge, the coordinate representation becomes

d3k a,e " %lu)(ula’|t)(t]e* Xar
2m)* T (o' —z—E +in)(0—z—E+in)(z—k*+in)’

] dz
Oli A (@ 0)) = dme [ 57
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It then follows that

E)lo)u(w) Ao, ®)diag»
where the subscript “diag” indicates the diagonal part of the vertex function twith. This is a general form of the Ward
identity.

Integration oveiz gives (for simplicity restricting ourselves tpositiveintermediate energigs

d*k 1 a,e” " %lu)(ula’|t)(t]|e'k X1ar
(27)® k€ (o' —Ey—K)(w—E{—k)

(X[I AV (0", 0)|X)=—27ai
The corresponding energy contribution is then

EZ=i(aiA® (o', 0)A,|a)
d3k 1

ala,e " %|u)(ula’A |t)(t|e* *1a”|a
o K Ly Cleae * AN )

(0" —Ey—Kk)(w—E{—Kk)

2. Second-order

We consider now the second-order self-energy diagrams in Figg-ilL7

a. Diagram (g)
The two-photon self-energy diagram in Fig.(@)is represented by the operatdE = E,)

zZ (dz, . N . e ) ) N
j Ef Zlea” iISp(Ea—2')iea” iSp(Ey—z—2')iea"iSg(E;—2z)ieaiDg,,(2')iDg, ,(2).

With the vertex correction, EqC2), this amplitude becomesee Fig. 18

dz_ 1. : _—
EIGA # (Ea,Ea—2)iSp(E;—2)iea*iDg,/ ,(2).

This is the same as the first-order self-energy opei@6P(E,) with «*" replaced byA V', Performing thez integrations,
yields for positive intermediate energies the energy contribution

k1 d*k 1 (ala,e ™ Mo)(ula"e® t)(v]a,e” N u)(t|are’ N a) ot
2mk ] (2m)° ks, (Ea—K —E,)(Eak—K —Ey)(Ea—k—Ey) mass counterterm.

(C3

AEg2)=4'n'2a2

The corresponding expressions for negative intermediate energies can be derived in a similar way but are not given here. The
mass-counterterm can be evaluated in complete analogy with the corresponding first-order terCit) Esge Fig. 1R

b. Diagram (h)

After mass-renormalizing the inner part, diagrémin Fig. 17 can be represented by the diagram in Fig. 19 and in operator
form by

dZ- '~ abou s massren(l) s abou f P
zlea" IS (Ea—2)i2 00y (Ea—2)iSE°(E;—2)ieatiDg,,(2).

This is the same as the vertex correction, (0, with the potential replaced by the renormalized self-energy operator,
s massren(l)(g_— 7). The z-integration yields the energy contribution for positive intermediate states

d*k 1 (ala,e ™ o) (v|2pasrem M (E,—k)|t)(t|a e’ a)
(2) = - _
AEj, 27Taf 2 kt,Ev (E.—E,—K(E._E—K (mass counterterm (C4

The mass counterterm can be evaluated in analogy with the previous case&C Bagmnd (C3) (see also Fig. 13
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c. Diagram (i)

Using the first-order self-energy operator, EG1), the energy contribution of the irreducible or nondegenerate part of
diagram(i) in Fig. 17 can be expressed as

AE@= S (alZpes "V (Ea) lu){ulZ5es " Y (Ea) @)
' EFE, E.—E, ’

The reducible or degenerate cdsg=E, leads, together with the product of the first-order diagrams, to the derivative term
(see Appendix B

The expressions for the individual second-order diagrams are infrared divergent, but the sum of the three diagrams is
convergent, as can be shown as follows.

We consider the diagrams above for the cBse E,=E_, andE, being positive(leaving out trivial constants and integra-
tions), which for the mass-unrenormalized parts leads to

[izglassren(l)(w)]
ou

AEi(Z)/:<a|2[)noaussren(l)(Ea)|a>< a o

w=E,

3. The infrared divergences

@ <a|ave—ik/.x|a><u|aveikhx|a><a|a’ue—ik-x|u><a|aﬂeik.x|a>
oC

AEqg E.—E,—Kk—K ' (€5
L2, K (@laye " ayalate’ a)(alae ™ Hu)(ulare Ha)
h "k E,—E,—k—k’ '
. k' (aa,e”™ ¥u)(u|a’e® ¥|a) . .
()" _ d —ik-x maik-x
AE{? K E_E,—K (ala,e |a)(a|a*e™ *|a).
The last two contributions are logarithmically divergent, wiken 0, but the sum of them,
AED s A2 o Blaue Ha)(alare Hay(ala e u)(ulate *a)
" I (Ea—Ey—K')(Eqa—Ey—k—k’) ’
|
is convergent foE,# E, . ForE,=E, this expression is still and
divergent but is exactly cancelled by the first contribution
(C5). Therefore, the sum of all three energy contributions is 9
infrared convergent. In a similar way it can be shown that the B= ‘%Efree(p) .
corresponding mass counterterms cancel. p=m
APPENDIX D: CHARGE DIVERGENCES A andB are logarithmically divergent constants and associ-

_ ) ) ated with the mass and charge divergence, respectively. The
In this appendix we show that the charge divergences ofast term is finite and represents the mass- and charge-

the diagrams in Figs. 1g-i) cancel. renormalized free-electron self-energy.
Each diagram of the free-electron self-energy operator
1. Zero- and one-potential terms contains in the momentum representation one or several free-

The free-electron self-energy in the momentum represen(?lectron propagators of the tyisee Appendix A

tation can generally be expressed as

1 1
S tree(P) =A+B(p—m)+C(p—m)?, (D1) SFeé(p)=

w—h™e @ (a-ptBm  p-m

B.

where
In the corresponding bound self-energy, the free-electron
A= |2free(p)|,5=m propagators are replaced by the bound-state propagators



PRA 58 ANALYSIS OF THE ELECTRON SELF-ENERGY FOR ... 1013

+ _ Xe=- - FIG. 20. Charge divergences in the diagram
= e-- + R 17(g).
- ==X
===
1 1 teractions is finite, and hence the first-order bound self-

S™(p)=

B. energy is free from charge divergence, when acting on the

w—hPou  w—(a-p+pm+V) p_m-—gy energy shell.

It then follows that we can expand the bound self-energy in
terms of the free-electron self-energy and its derivatives in 2. Multipotential terms

the following way: a. Diagram (g)

We shall now consider the diagrar(gi) in Fig. 17 spe-

Jd . .
Ebou(p)=2free(P)—V£2free(p) C|_f|cally and show that the_ charge dlve_rgences of_ the three
diagrams cancel. Performing a potential expansion of the
1 52 bound-state propagators, we know that the charge diver-
+§V2§72f,ee(p)— e gences of the zero- and one-potential terms cancel. Remain-

ing to be considered are the two-potential terms. In diagram
(g) the only possible divergence lies in the diagrams given in

=Ef,ee(p)—BV%2free(P) Fig. 20. If we include also the remaining parts of the poten-
tial expansion (after eliminating the cancelling charge-
2 divergent parts of the zero- and one-potential interac}ions
+§VZszEfree(P)— R we can express this after mass renormalization as the dia-

grams in Fig. 21.

The first term represents the self-energy with internal free- The vertex function involved hereA™M%(E,,E,~2),
electron lines, the second term the same with one potentigontains a divergent par3B, as follows from the Ward-
interaction in all possible places, etc. Takahashi theorer20],
The free-electron self-energys,..(p) contains a charge
ld;\;te:,gngnhtaﬁ)grtB(p m). When operating on a bound state (P=p )AL (P.P") =P B+ StreeP) ~ tree(P)
=B(p—p’)+ (finite par).

p—m)la)y=(p—m a
(b=mla)=(p=mlp)pla) Hence, the charge-divergent part of diagrdg) is 2B
= B(Po— a-p— Bm)|p)(p|a) times the first-order mass-renormalized self-energy

= B(po—hP*oU+V)la). v
AEghargedl = 2,BB<a| - Ebmoaussren(l)( Ea) | a>'
Thus, forpy=w=E,,

b. Diagram (h)

B(p—m)|ay=BAV|a). The diagram(h) in Fig. 17 can be expanded as shown in
Fig. 22, leaving out the finite many-potential term. The zero-

But potential part is represented by the Feynman amplitude

14
5 > free(P) = BB+ (finite pary, a a

which implies that—for a bound self-energy operator acting
on the energy shellpgp= w=E_)—the charge divergence of
the first two terms of the expansion cancel or, in other words, +
that the charge divergence of diagrams with zero and one
potential interaction generally canceThus, the diagram is |
charge divergent only to the extent that the corresponding
diagrams with free-electron lines with two or more potential a a
interactions are divergent. In first order it is well-known that

the free-electron self-energy diagram with two potential in- FIG. 21. Diagram 1{®) renormalized.
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FIG. 22. Potential expansion of the self-
energy modified propagator contribution.

(a

Using Eq.(D1), the charge-divergent part of this amplitude becomes

(a

with po=E_,—z. But with the form of the bound-state propagator given in Sec. Ill we have

dz ,
J S-iea” iSPOYE,—2)iZas " V(E,—2)i SR (Ea—2)ieatiDg ./ ,(2)

J

a> (D2)

dz , -
f S-iea” iSEY(Ea—2)iB(p—m)iSP°YE,—2)ieatiDg, ,(2)

p—m)SLOYE,—z)= B(E,— z— hP°U+ V) —————
(P—m)SE”(Ea—2)=B(E, )Ea—z—hb°“

= B[1+VSUE,—2)], (D3)

and it can then be shown that the second term in (B) gives rise to a contribution that is exactly cancelled by the
one-potential diagram. Since the many-potential term is finite, the remaining charge divergence of the Feynman amplitude
becomes

(a

dZ_ u'icbou 2 ; Wi — bou
S-iea iSE*Y(Ea—2)i°BBieatiDg, ,(z)|a)=—1BB(a|2"°Y(E,)|a).

The corresponding energy contribution is then AE;=(a|—3qassrenl) (g j|a)
AEﬁhargediU=,BB<a|2bou(Ea)|a>. 9
imi i izati i @ a_w[—EE“o%“’e““)(m] a).
A similar analysis of the mass-renormalization term in w=E,

Fig. 13 leads to the charge-divergent energy contribution

BB(a|p)(p|=%(E,)|p)(p|a)=BB(a|SMmass |a), The first matrix element is free from charge divergence, ac-
cording to the discussion above. The derivative contains a
using Eq.(4.2). This removes the mass divergence from thecharge-divergent pagB from the free component. The re-
expressior(D2), and the final result for the charge-divergent maining parts are finite. Therefore, the charge-divergent part
part of diagramh) after mass-renormalization becomes of diagram(i) is

chargediv _ massren(1)
AEh(massren) BB<a|EbOU (Ea)|a>- AEphargediv:BB<a|Eg1assren(l)(E )|a>

i ou a :
c. Diagram (i)

The charge divergence of diagrai in Fig. 17 comes This completes the proof that the charge divergences of the

from the reference-state contributi¢.1) three diagrams cancel.
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