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Analysis of the electron self-energy for tightly bound electrons

Ingvar Lindgren, Hans Persson, Sten Salomonson, and Per Sunnergren
Department of Physics, Chalmers University of Technology and Go¨teborg University, S-41296 Go¨teborg, Sweden
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A general scheme for mass renormalization of the electron self-energy in strong nuclear fields is developed.
In second order the results agree with those recently obtained by Labzowsky and Mitrushenkov@Phys. Rev. A
53, 3029~1996!#, and, in particular, it is shown that the extra counterterm observed by these authors appears
quite naturally in the more general scheme developed here.@S1050-2947~98!08407-8#

PACS number~s!: 31.30.Jv, 31.10.1z
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I. INTRODUCTION

Considerable progress has recently been made in me
ing the hyperfine structure and Lamb shift of low-Z systems,
such as hydrogen, positronium, muonium, and helium ato
Corresponding progress has been made in the theoretica
velopment, and a remarkable agreement between theory
experiment has in most cases been achieved@1,2#. The cal-
culations on these systems are carried out by means o
Za expansion of the nuclear field,Z being the nuclear charg
anda the fine-structure constant.

Recently, considerable progress has also been mad
measuring the level shift~Lamb shift! of highly charged ions
@3#. The Lamb shift of the 1s level of hydrogenlike uranium
for instance, has been measured by Beyeret al. @4# to be
470616 eV, relative to the Dirac value for a point nucleu
This experimental result can be well explained theoretica
by considering the effect of the finite nucleus and the fir
order~one-photon! quantum electrodynamical, QED, correc-
tion, which can now be calculated with high accuracy@5#.
Experiments are in progress, however, for reducing the
certainty, hopefully below the 1-eV level. As discussed in
recent paper@6#, the second-order QED contributions,
well as nuclear recoil and nuclear polarization effects, w
then be of significance.

The Feynman diagrams for the second-order~two-photon!
QED shift in hydrogenlike ions are shown in Fig. 1. The fi
line ~a,b,c! of the figure represents the double vacuum po
ization ~VP-VP!, the second line~d,e,f! the combined
vacuum-polarization self-energy contributions~SE-VP!, and
the third line ~g,h,i! the second-order self-energy contrib
tions ~SE-SE!.

At strong nuclear fields, theZa expansion is no longe
applicable, and numerical all-order techniques have to
applied. Here, the basic electron orbitals are generated in
field of the nucleus—and in some cases also of the in
electrons. Such techniques have been developed and
ployed during the last ten years@5–16#. Specifically, the
VP-VP and SE-VP contributions have all been calcula
numerically~a! by Perssonet al. @7#, ~b,c! by Beier and Soff
and by Schneideret al. @8#, ~d,e! by Lindgrenet al. @9#, and
~f! by Perssonet al. @6# and by Mallampalli and Sapirstei
@10#. It should be noted that diagrams~c,f! have only been
calculated in the Uehling approximation. The SE-SE con
butions~g,h,i! in Fig. 1, on the other hand, have not yet be
calculated by numerical techniques, and the analysis of
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part forms the main subject of the present investigati
Since these effects should be about a factor ofa smaller than
the first-order self-energy effects, they can be expected to
of the order of 1–2 eV.

In order to evaluate the higher-order self-energy contri
tions, it is necessary to reconsider the renormalization pro
dure. This will be done in the present paper in a way tha
easily generalized to arbitrary order. In a recent publicat
by Labzowsky and Mitrushenkov@17# the second-order
problem has been considered and an expression is de
for the corresponding energy shift. The treatment of La
zowsky and Mitrushenkov is based on the potenti
interaction expansion of the bound-state orbitals, which
the standard procedure for treating the first-order self-ene
In the second-order case, this leads to a rather lengthy d
vation, and the procedure can hardly be generalized bey
that order. In the present paper we shall analyze the m
renormalization in a more general way, which will lead to
procedure for generating renormalized self-energy exp
sions that can more easily be extended to higher ord
Second-order expressions, identical to those of Labzow

FIG. 1. The second-order Lamb-shift diagrams for a sing
electron system. The double lines represent orbitals and propag
generated in the nuclear field. The first row of diagrams~a,b,c!
represents the double vacuum polarization~VP-VP!, the second row
~d,e,f! the combined self-energy vacuum-polarization~SE-VP!, and
the last row~g,h,i! the second-order self-energy~SE-SE!.
1001 © 1998 The American Physical Society
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FIG. 2. The dressed electron propagator
represented by the bare electron propagator w
all possible SE insertions. This can be express
as a Dyson equation by means of theproper SE
diagrams, represented by the square box. N
that all internal lines inside the self-energy di
grams arebare electron lines, represented by dot-
ted lines.
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and Mitrushenkov, are presented.
The main purpose of the present paper is to analyze

mass-renormalization procedure for higher-order self en
gies, particularly at strong external fields. For that reason
start in Sec. II by analyzing the free-electron self-energy a
the free-electron propagator in a general way, starting fr
the bare electron mass. Dressing the free-electron propag
by self-energies in all possible ways, leads to the dres
free-electron propagator, and—after mass renormalizatio
this propagator is expressed as the propagator of thephysical
electron, dressed withmass-renormalizedself-energies. This
yields a recursive renormalization scheme, which can ea
be extended to higher orders. In Sec. III the treatmen
extended to electrons in external electrical~nuclear! fields,
and in Sec. IV general expressions for the correspond
energy shift are given, using energy-dependent perturba
theory. Explicit expressions for the diagrams involved in s
ond order are given in Appendix C. The question of nume
cal evaluation is not considered in any detail in the pres
paper. However, one part of the second-order~SE-SE! has
been calculated numerically by Mitrushenkovet al. @18# and
very recently some additional parts have been calculated
Mallampalli and Sapirstein@19#.

II. FREE ELECTRONS

We start by analyzing the free-electron propagator, a
we use the followingoperator form:

ŜF~v!5
1

v2ĥ~12 ih!
5(

t

ut&^tu
v2Et~12 ih!

,

FIG. 3. The proper free-electron self-energy is given by
proper free-electron self-energy diagrams, with the internal li
associated with thebare electron mass.
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where ĥ is the single-electron Hamiltonian, andut& and Et
are the corresponding eigenfunctions and eigenvalues. In
tion of all possible self-energy operators into the electr
propagator, leads to the ‘‘dressed’’ propagator~for simplic-
ity leaving out the infinitesimal imaginary part!

ŜF~v!dressed5
1

v2ĥ1S~v!
. ~2.1!

Here, S(v) denotes theproper self-energy~SE! operator,
represented by all SE diagrams that cannot be separated
two allowed diagrams by cutting a single-electron line. Th
implies, for instance, that the diagrams~g,h! in Fig. 1 are
proper SE diagrams, while diagram~i! is not.

We consider now afree electronwith the ‘‘bare’’ mass
m0 ~with no electromagnetic self-interactions!, which is rep-
resented by the Hamiltonian~using relativistic units,\5c
5e051, e254pa)

ĥf ree~m0!5a•p̂1bm0 .

The free-electron propagator in operator form is then

ŜF
f ree~v,m0!5

1

v2a•p̂2bm0

, ~2.2!

with the Fourier transform~see Appendix A!

SF
f ree~v,p,m0!5

1

v2a•p2bm0
, ~2.3!

or in covariant form

SF
f ree~p,m0!5

1

p”2m0
b. ~2.4!

~This differs from the standard definition by a factor ofb,
because we base the definition on usingc† rather thanc̄.)

The interaction with the electromagnetic field gives rise
all possible SE interactions, as indicated in Fig. 2. This le
to the ‘‘dressed’’ free-electron propagator

SF
f ree~p!dressed5

1

p”2m01bS f ree~p!
b, ~2.5!

which can also be expressed by means of a Dyson equa
illustrated in the bottom line of Fig. 2. Theproper free-
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electron self energyis denoted byS f ree(p) and is repre-
sented by the sum of all proper, free-electron SE diagra
with the internal lines associated with the unphysical,bare
electron massm0 ,

S f ree~p!5S f ree* ~p,m0!,

as illustrated in Fig. 3.
The free-electron SE exhibits two kinds of divergenc

which we refer to as the mass and the charge diverge
respectively. The mass divergence is eliminated by mean
the mass renormalization, which is the main issue of
present paper. The charge divergence of the SE is canc
by the corresponding divergence of the vertex modificat
~Ward identity @20#!. In performing the renormalization,
proper regularization scheme has to be employed. At
stage we shall not make any specific choice of regulariza
scheme, although it will be assumed in the following—wh
needed—that all quantities are properly regularized.

A. Renormalization

The dressed electron propagator~2.5! should have the
same pole positions as the propagator of thephysicalelec-
tron with the massm,

SF
f ree~p,m!5

1

p”2m
b,

i.e., atp”5m. This implies that

uS f ree~p!up”5m5uS f ree* ~p,m0!up”5m5b~m02m!52bdm.

Instead of working with the bare massm0, we can use the
physicalmassm, and introduce amass counterterminto the
Hamiltonian,

FIG. 4. The proper free-electron self-energy can also be
pressed as the sum of all self-energyskeletons, represented by the
circle, with fully dressed internal lines, represented by heavy s
lines ~cf. Fig. 2!.
s
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Scounter
mass 5uS f ree~p!up”5m5uS f ree* ~p,m0!up”5m52bdm.

~2.6!

This leads to themass-renormalizedfree-electron SE,

S f ree
mass-ren~p!5S f ree~p!2Scounter

mass ,

and the dressed, free-electron propagator~2.5! can alterna-
tively be expressed

SF
f ree~p!dressed5

1

p”2m1bS f ree
mass-ren~p!

b. ~2.7!

After proper regularization, the free-electron SE can
expanded aroundp”5m,

S f ree~p!5A1~p”2m!B1~p”2m!2C~p!,

whereA andB are constants,

A5uS f ree~p!up”5m52bdm

and

B5U ]

]p”
S f ree~p!U

p”5m

.

C(p) is finite for p”5m and associated with themass-and
charge-renormalized free-electronSE,S f ree

ren (p),

x-

d

FIG. 5. The mass counterterm is given by all free-electron s
energy skeletons with fully dressed internal lines, evaluatedon the
mass shell, p”5m. Themass-renormalized free-electron self-energ
is obtained by subtracting the mass counterterm from the f
electron self-energy, displayed in Fig. 4.
ed
ll
FIG. 6. The~charge-unrenormalized! dressed
electron propagator in Fig. 2 can also be obtain
from thebareelectron propagator by inserting a
SEskeletonswith dressedinternal lines@see Eqs.
~2.5! and ~2.8!#.
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FIG. 7. The dressed, free-electron electron propagator in Fig. 6 can also be obtained from the undressed,physicalfree-electron propa-
gator by inserting allmass-renormalizedSE skeletons~shaded! with dressed internal lines@see Eqs.~2.7! and ~2.10!#. The procedures
represented by Figs 5 and 7 have to be carried out recursively in higher orders.
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~p”2m!2C~p!5S f ree
ren ~p!5S f ree

mass-ren~p!2~p”2m!B.

It should be noted that the dressed, free-electron prop
tors in the form of Eq.~2.7! is free from mass divergence
since it has beenmassrenormalized. Thechargedivergence,
on the other hand, is still present due to theB term of the SE,
and this will be further analyzed in Appendix D.

B. Skeletons

We shall find it convenient in the following to work with
skeletondiagrams. A skeleton is defined as a proper SE d
gram that cannot be obtained from another SE diagram
modifying an internal electron line by an SE insertion. Th
implies, for instance, that diagram~g! in Fig. 1 is a skeleton,
while diagram~h! is not.~The latter can be obtained from th
first-order diagram by an SE insertion.! From this definition
it follows that all proper SE diagrams either are skeletons
can be obtained from skeletons by~successive! modifications
by SE insertions on electron lines. It is also obvious that
such modifications of skeletons lead to allowed, proper
diagrams. A systematic way of generating all proper SE d
grams is therefore to insert successively—starting with
skeletons—new skeletons on internal lines of the diagram
all possible ways. All internal lines of the diagrams will the
be fully dressed. This is the procedure we shall adopt in
following.

It should be noted that we consider here only modifi
tions of theelectronlines. This implies that with this defini
tion vertex modifications will lead to new skeletons. In pri
ciple, also polarization insertions on the photon lines w
lead to new skeletons. In the present paper, however,
shall not consider modifications of photon lines. In princip

FIG. 8. The~unrenormalized! bound-state self-energy is give
by all bound-state self-energy skeletons with dressed internal l
@see Eq.~3.1!#. The mass renormalization is obtained by removi
the mass counterterm@see Eqs.~3.3! and ~2.8! and Fig. 5#. The
shaded area represents, as before, the mass renormalization. T
double line represents here the dressed bound-state propagato
the fat single line, as before, the dressed free-electron propaga
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such effects, after proper renormalization, could also be
cluded in the procedure presented here.

It follows from the above that the free-electron SE, giv
by all proper free-electron SE diagrams, can also be
pressed as the sum ofall skeletonswith fully dressedinternal
lines

S f ree~p!5S f ree** ~p,m* !, ~2.8!

as illustrated in Fig. 4.S f ree** represents here all SE skeleton
andm* indicates that all internal lines are fully dressed. W
can then express the mass counterterm~2.6! as

Scounter
mass 5uS f ree** ~p,m* !up”5m . ~2.9!

Thus, the mass counterterm equals the sum of all fr
electron SE skeletons with fully dressed electron lin
evaluated on the mass shell,p”5m, as is illustrated schemati
cally in the upper part of Fig. 5. We then obtain the fin
form of the mass-renormalized free-electron SE that we s
employ in the following:

S f ree
mass-ren~p!5S f ree** ~p,m* !2uS f ree** ~p,m* !up”5m .

~2.10!

This is illustrated in a schematic way in the bottom part
Fig. 5.

In order to apply the expression~2.10!, we need a way of
evaluating the fully dressed~charge-unrenormalized! elec-
tron propagator. This is defined as the bare electron pro
gator with all possible self-energy insertions with bare int
nal lines, but, of course, we need to reexpress this in term
the propagator of thephysicalelectron. For that reason w
first express the fully dressed electron propagator as the

es

fat
and
r.

FIG. 9. The dressed bound-state electron propagator, Eq.~3.2!,
can be obtained from the undressed~physical! bound-state propa-
gator by inserting allmass-renormalizedself-energy skeletons with
fully dressed internal lines, in analogy with the free-electron c
illustrated in Fig. 7. The thin~fat! double line represents the un
dressed~dressed! bound-state propagator. As in the free-electr
case~Fig. 7! the relations in Figs. 8 and 9 have to be treated rec
sively.
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electron propagator, dressed with allskeletonswith dressed
internal lines, using Eq.~2.8! and illustrated in Fig. 6. After
renormalization, this can be expressed as thephysicalelec-
tron propagator dressed with allrenormalizedskeletons with
dressed internal lines, according to Eq.~2.7! and illustrated
in Fig. 7. Obviously, the procedure of dressing and renorm
ization, illustrated in Figs. 5 and 7, has to be carried
recursively. This is of vital importance and has importa
consequences, as we shall demonstrate below.

III. ELECTRONS IN EXTERNAL FIELD

In treating atomic electrons, moving in the field of th
nucleus, the standard procedure is to start from free elect
and use the nuclear field as a perturbation. In order to av
the double perturbation expansion, we define here a ‘‘bou
state’’ electron propagator, using electron orbitals genera
in the nuclear field. The electron propagator associated w
the bare mass,m0 , then becomes

ŜF
bou~v,m0!5

1

v2ĥbou~m0!
5(

t0

ut0&^t0u
v2Et0

bou ,

where

ĥbou~m0!5a•p̂1bm01V

is the external-field or‘‘bound-state’’ Hamiltonian.V is the
external ~nuclear! field, ut0& represents the eigenstates
ĥbou(m0) ~in the following referred to as ‘‘bound’’ states!,
and Et0

bou represents the corresponding eigenvalues.@In the

bound case we shall find it more convenient to work with
operator form, Eqs.~2.1! and~2.2!, of the propagator rathe
than the Fourier transform, used in the free-electron c
Eqs.~2.3! and ~2.4!.#

The interaction with the electromagnetic field gives rise
all possible self-energy insertions, as in the free-elect
case. According to Eq.~2.1! this leads to thedressed bound-
state electron propagator@cf. Eq. ~2.5!#

ŜF
bou~v!dressed5

1

v2ĥbou~m0!1Sbou~v!
,

whereSbou(v)5Sbou* (v,m0) is theproper bound-state self
energy operator, represented by all proper bound-state
diagrams, with the internal electron lines associated w

FIG. 10. The mass counterterm is, according to Eq.~2.9! and
Fig. 5, given by all free-electron skeletons with dressed inter
lines, evaluated on the mass shell. Its matrix elements betw
bound states Eq.~4.2! can be evaluated by expressing these state
the momentum representation~here represented by the triangles!.
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bound electrons with thebare massm0. This propagator is
represented by the same diagrams as the free-electron p
gator in Fig. 2, with the dotted lines now representingbound
states~still with the bare electron massm0). As in the free-
electron case, the bound-state SE can also be represent
all bound-state SE skeletons with fully dressed internal lin

Sbou~v!5Sbou** ~v,m* !, ~3.1!

as illustrated in Fig. 8~upper part! ~cf. Fig. 4!. The fat double
line represents here the fully dressed bound-state propag

By introducing themass counterterm~2.6!, we can ex-
press the~charge-unrenormalized! dressed bound-state ele
tron propagator in analogy with Eq.~2.7! as

ŜF
bou~v!dressed5

1

v2ĥbou~m!1Sbou
mass-ren~v!

, ~3.2!

where Sbou
mass-ren(v) is the mass-renormalized bound-sta

self-energyoperator. Using Eqs.~3.1! and ~2.8!, this be-
comes

Sbou
mass-ren~v!5Sbou~v!2Scounter

mass

5Sbou** ~v,m* !2uS f ree** ~p,m* !up”5m ,

~3.3!

which is illustrated in the bottom part of Fig. 8.
The fully dressed, bound-state propagator can then be

resented as shown in Fig. 9 in complete analogy with
free-electron case in Fig. 7; i.e., by inserting allmass-
renormalizedbound-state self-energy skeletons with ful

l
en
in FIG. 11. Expansion of the dressed free-electron propagato
first order ~cf. Fig. 7! and the free-electron self-energy to seco
order.

FIG. 12. Same as Fig. 11 for bound states.
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FIG. 13. Expansion of the mass-renormaliz
proper bound-state self-energy to second ord
The renormalization terms are defined in Fig. 1
and Eq.~4.2!.
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dressed internal bound-state lines. Again, of course, t
dressing and renormalization procedures have to be ca
out recursively.

IV. EXPRESSION FOR THE SELF-ENERGY SHIFT

In the present section we shall outline a general proced
for evaluating the energy shift of an external-field
‘‘bound’’ state due to the SE, which is the major radiati
-
, r

d

–

ed

re

correction. This shift is given by the shift in the pole pos
tion, corresponding to the state considered, of the dres
propagator~3.2!. The pole positions are given by the eige
values of the operatorĥbou(m)2Sbou

mass-ren(v). Sbou
mass-ren(v)

can here be regarded as anenergy-dependentperturbation,
and we get the shift by applying the expressions for ener
dependent perturbation theory@21#, derived in Appendix B.
The energy shift of the unperturbed bound stateua& with the
unperturbed energyEa is then given by
m is
tates.
DEa5^au2Sbou
mass-ren~Ea!ua&1 (

EtÞEa

^au2Sbou
mass-ren~Ea!ut&^tu2Sbou

mass-ren~Ea!ua&
Ea2Et

1•••1^au2Sbou
mass-ren~Ea!ua&K aU H ]

]v
@2Sbou

mass-ren~v!#J
v5Ea

UaL 1•••, ~4.1!

where the last term represents thereference-state contribution(Et5Ea) @9#.
In order to evaluate the expression~4.1!, we first have to interpret the quantity

^auSbou
mass-ren~Ea!ub&5^auSbou~Ea!2Scounter

mass ub&,

where the mass counterterm is given by Eq.~2.9!. The latter should be evaluated on thefree-electron mass shell, and for that
reason we expand the bound-state states in the momentum representation

^auScounter
mass ub&5 (

pp8rr 8
^aup,r &^p,r uScounter

mass up8r 8&^p8r 8ub&, ~4.2!

wherep represents the three-dimensional momentum andr the spinor state. The matrix element of the mass counterter
represented graphically in Fig. 10, where the triangles represent the expansion of the bound state in free-electron s

In second order the formula~4.1! yields

DEa
~2!5^au2Sbou

mass-ren~2!~Ea!ua&1 (
EtÞEa

^au2Sbou
mass-ren~1!~Ea!ut&^tu2Sbou

mass-ren~1!~Ea!ua&
Ea2Et

1^au2Sbou
mass-ren~1!~Ea!ua&K aU H ]

]v
@2Sbou

mass-ren~1!~v!#J
v5Ea

UaL , ~4.3!
e

ss-
ion
the
pre-
where Sbou
mass-ren(1) and Sbou

mass-ren(2) represent the mass
renormalized first- and second-order proper self-energies
spectively. The second and third terms of Eq.~4.3! corre-
spond to the ‘‘irreducible’’~nondegenerate! and ‘‘reducible’’
~degenerate! parts, respectively, of the improper secon
order SE@cf. the diagram~i! in Fig. 1#. The last term of Eq.
~4.3! can also be obtained by applying the Gell-Mann–Low
e-

-

Sucher formula@22# to that diagram in combination with th
~singular! disconnected second-order diagram.

In order to find a graphical representation of the ma
renormalized SE to second order, we apply the recurs
procedure outlined above. Using the expansion in Fig. 7,
dressed free-electron propagator is to second order re
sented by the diagrams in Fig. 11~upper part!, and using Fig.
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FIG. 14. Graphical representation of th
second-order energy shift due to the self-ener
interaction, given by Eq.~4.3!. The shaded parts
represent mass-renormalized SE diagrams, d
played in more detail in Fig. 13.
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4 this leads to the corresponding free-electron SE, give
the lower part of that figure. The corresponding expansion
the bound case is given in Fig. 12. The mass-renormal
SE is obtained by removing the mass counterterm, i.e.,
matrix element of the on-shell free-electron SE according
Eqs.~2.9! and~4.2!. Using the notations of Fig. 10, this lead
to the diagrammatic representation in Fig. 13 of the first- a
second-order mass-renormalized SE,Sbou

mass-ren(1) and
Sbou

mass-ren(2) , evaluated in the bound stateua&.
The complete graphical representation of the second-o

energy contribution is obtained by adding the representa
of the last two terms of Eq.~4.3!. This is exhibited in Fig. 14.

In order to see the identity of our results with those
Labzowsky and Mitrushenkov~LM ! @17# in more detail, we
can replace the renormalized first-order SE on the inte
lines in the second set of brackets of Fig. 13 by the unren
malized first-order SE minus the corresponding mass co
terterm, as shown in the first set of brackets of the sa
figure. This leads to a graphical representation that is ide
cal to that of LM. In particular, we can see that the ‘‘extra
terms observed by LM appear quite naturally in our pro
dure.

In principle, the scheme described here can be extende
arbitrary order. Applying the recursive schemes displayed
Figs. 5 and 7 for the free electrons and in Figs. 8 and 9
the bound electrons yields the expansion of the self-energ
successively higher orders. Insertion in the general pertu
tion scheme, generated according to the principles show
Appendix B, then yields the expansion of the correspond
energy shift.

The analytical expressions corresponding to the seco
order diagrams are given in Appendix C. There we ha
chosen to perform thez integration explicitly~for positive
intermediate states!. These expressions are fully equivale
to those of LM, the only difference being that LM hav
performed thek integration explicitly.

Several of the individual terms of the energy express
are infrared as well as ultraviolet divergent, although
entire expression is finite. For the numerical evaluation
various contributions have to be regularized, e.g., by
Pauli-Villars procedure or by dimensional regularization.
first order it is found that the partial-wave expansion wo
without any further regularization. This is not generally t
case, as we have recently demonstrated@23#. In the present
paper we are not particularly concerned with the numer
evaluation. This will be addressed in a forthcoming pap
where the regularization procedure has to be considere
more detail.

The main purpose of the present paper has been to
velop a general procedure for the mass renormalization
the self-energies to arbitrary order. The conventional pot
tial expansion of the bound-state wave functions and pro
gators is largely avoided. It is believed that the generali
procedure gives some additional insight into the mass re
in
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malization. In second order, our results are shown to be id
tical to those recently derived by Labzowsky and Mitrushe
kov, using the potential-expansion method.
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APPENDIX A: FREE-ELECTRON PROPAGATOR

In this appendix we collect, for convenience, various fo
mulations of the free-electron propagator, which are used
the main text. The free-electron propagator in theoperator
form is

ŜF
f ree~v!5

1

v2ĥf ree~12 ih!
5(

p,r

up,r &^p,r u
v2Ep,r~12 ih!

,

where ĥf ree is the Dirac Hamiltonianoperator for a free
particle

ĥf ree5a•p̂1bm,

with the eigenfunctions in discrete and continuous case,
spectively,

^xup,r &5
1

AV
ur~p!eip•x⇒~2p!23/2ur~p!eip•x.

Here r 51,2,3,4, represents different spinor states, and
corresponding eigenvalues are denoted byEp,r .

In the coordinate representationthe free-electron propa
gator becomes

SF
f ree~x8,x,v!5^x8uŜF

f ree~v!ux&5(
p,r

^x8up,r &^p,r ux&
v2Ep,r~12 ih!

.

This can also be expressed

FIG. 15. First-order self-energy.
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SF
f ree~x8,x,v!

5(
p,r

^x8u
1

v2hf ree~p!~12 ih!
up,r &^p,r ux&

⇒~2p!23E d3p(
r

eip•~x82x!

v2hf ree~p!~12 ih!
ur~p!ur

†~p!

5~2p!23E d3p
eip•~x82x!

v2hf ree~p!~12 ih!
, ~A1!

using

(
r

ur~p!ur
†~p!5I ~434!.

Here,hf ree(p) is the Dirac Hamiltonianfunction for a free
particle

hf ree~p!5a•p1bm.

The momentum representationof the free-electron propa
gator is

SF
f ree~p8r 8,pr ,v!5dp8,pd r 8,r

1

v2Ep,r~12 ih!
.

It follows from Eq. ~A1! that theFourier transformof the
coordinate representation of the free-electron propagator

1

v2hf ree~p!~12 ih!
5SF

f ree~v,p!.

FIG. 16. Vertex correction of first-order self-energy.

FIG. 17. Second-order self-energy.
s

This can be written in covariant form~leaving out the imagi-
nary part!

SF
f ree~v,p!5

1

v2a•p2bm
5

1

p”2m
b,

where with our notationsp”5b(p02a•p).

APPENDIX B: ENERGY-DEPENDENT PERTURBATION

We want to find the energy eigenvalues of the Ham
tonian

H85H1V~E!,

whereV(E) is an energy-dependent perturbation and the
genvalues and eigenfunctions ofH are known:

Hf i5Ef i . ~B1!

We assume thatH is Hermitian and that the set of eigenfun
tions $fk% is orthonormal. We consider in particular the e
ergy corresponding to the unperturbed stateua&5fa and
want to solve the eigenvalue equation

@H1V~Ea1dE!#~fa1df!5~Ea1dE!~fa1df!.

In view of Eq. ~B1! this leads to

~H2Ea!df1@V~Ea1dE!2dE#~fa1df!50. ~B2!

We assume for simplicity that the unperturbed st
ua&5fa is nondegenerate. In intermediate normalization,
^faufa1df& 5 ^faufa& 5 1, we can then make the expan
sion

FIG. 18. Reduction of the diagram 17~g!.

FIG. 19. Self-energy modified electron propagator.
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df5 (
kÞa

ckfk , ck5^fkudf&.

Operating on Eq.~B2! with ^f i u from the left,

^f i uH2Eaudf&5^f i udE2V~Ea1dE!ufa1df&

gives for i 5a

^faudE2V~Ea1dE!ufa1df&50

or
dE5^fauV~Ea1dE!ufa1df& ~B3!

and for iÞa

~Ei2Ea!ci5dEci2^f i uV~Ea1dE!ufa1df&

or

ci5
^f i uV~Ea1dE!ufa1df&

Ea1dE2Ei
. ~B4!

In expandingV(Ea1dE) and 1/(Ea1dE2Ei) in Taylor
series, we can write the expressions~B3! and ~B4! as
dE5^fauV~Ea1dE!ufa1df&5^fauV~Ea!ufa&1dEK faUS ]V

]ED
E5Ea

UfaL 1
1

2
~dE!2K faUS ]2V

]E2D
E5Ea

UfaL 1•••

1^fauV~Ea!udf&1dEK faUS ]V

]ED
E5Ea

UdfL 1•••

and

ci5
^f i uV~Ea1dE!ufa1df&

Ea1dE2Ei

5
^f i uV~Ea!ufa&

Ea2Ei
1dE

K f iUS ]V

]ED
E5Ea

UfaL
Ea2Ei

1
^f i uV~Ea!udf&

Ea2Ei
2dE

^f i uV~Ea!ufa&
~Ea2Ei !

2 1•••.

An order-by-order expansion then yields

dE~1!5^auV~Ea!ua&,

ci
~1!5

^ i uV~Ea!ua&
Ea2Ei

,

dE~2!5(
iÞa

^auV~Ea!u i &ci
~1!1dE~1!K aUS ]V

]ED
E5Ea

UaL
5(

iÞa

^auV~Ea!u i &^ i uV~Ea!ua&
Ea2Ei

1^auV~Ea!ua&K aUS ]V

]ED
E5Ea

UaL ,

ci
~2!5(

j Þa

^ i uV~Ea!u j &
Ea2Ei

cj
~1!2dE~1!

^ i uV~Ea!ua&
~Ea2Ei !

2 1dE~1!

K iUS ]V

]ED
E5Ea

UaL
Ea2Ei

,

dE~3!5
1

2
~dE~1!!2K aUS ]2V

]E2D
E5Ea

UaL 1(
iÞa

^auV~Ea!u i &ci
~2!1(

iÞa
dE~1!K aUS ]V

]ED
E5Ea

U i L ci
~1!1dE~2!K aUS ]V

]ED
E5Ea

UaL ,

A
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For anenergy-independentperturbation, all derivative term
vanish, and we retrieve the standard Rayleigh-Schro¨dinger
perturbation expansion.

APPENDIX C: EVALUATION OF TWO-PHOTON
SELF-ENERGIES

In this appendix we shall derive analytical expressions
the second-order self-energy. For completeness we sta
deriving the expression for the first-order self-energy, use
our previous works@13,15#. It should be noted that, sinc
most expressions involved here are divergent, some sch
of regularization has to be employed. We shall not consi
that any further here, but we shall assume in the follow
that, when needed, the expressions are properly regular

1. First-order

a. Self-energy

The first-order self-energy~see Fig. 15! is in the operator
form represented by

iS~1!~v!5E dz

2p
ieam8iSF~v2z!ieamiD Fm8m~z!,
r
by
in

me
r

g
ed.

where SF and DFm8m represent the electron and photo
propagators, respectively. The Feynman amplitude betw
the statesa andb, which can be free states or bound sta
~generated in an external potential! is given by (Ea5Eb)

M5^bu iS~1!~Ea!ua&.

The corresponding energy contribution is

E5 iM 2~mass counterterm!.

Using the Feynman gauge and relativistic units,\5c
5e051, e254pa, the photon and electron propagators a
in the coordinate representation

^x2uDFnm~z!ux1&52gnmE d3k

~2p!3

e2 ik•~x22x1!

z22k21 ih
,

^x2uSF~v!ux1&5(
t

^x2ut&^tux1&
v2Et1 ih t

,

whereh t has the same sign as the electron energyEt . This
gives the coordinate representation of the ma
unrenormalized first-order self-energy operator
^x2u iSbou
~1! ~v!ux1&524paE dz

2pE d3k

~2p!3(
t

ame2 ik•x2ut&^tueik•x1am

~v2z2Et1 ih t!~z22k21 ih!
,

and after thez integration

^x2u iSbou
~1! ~v!ux1&52pa i E d3k

~2p!3

1

k(t

ame2 ik•x2ut&^tueik•x1am

v2Et2k sgn~Et!
.

The corresponding energy contribution then becomes

DESE
~1!5 i ^au iSbou

mass-ren~1!~v!ua&5^au2Sbou
~1! ~v!ua&2^au2Scounter

mass~1!ua&, ~C1!

where

^au2Sbou
~1! ~v!ua&522paE d3k

~2p!3

1

k(t

^auame2 ik•xut&^tueik•xamua&
v2Et2k sgn~Et!

,

and using Eqs.~2.9! and ~4.2!

^au2Scounter
mass~1!ua&522paE d3k

~2p!3

1

k(p,r
(

p8,r 8
(
q,s

^aup,r &^p,r uame2 ik•xuq,s&^q,sueik•xamup8,r 8&^p8,r 8ua&
Ep,r2Eq,s2k sgn~Eq,s!

.

For the numerical evaluation the expressions above can be expanded in partial waves.

b. Vertex correction

The first-order vertex correction~see Fig. 16! is in operator form represented by

E dz

2p
ieam8iSF~v82z!ieanAniSF~v2z!ieamiD Fm8m~z!5 ieL~1!n~v8,v!An . ~C2!

Using the Feynman gauge, the coordinate representation becomes

^x2u iL~1!n~v8,v!ux1&54paE dz

2pE d3k

~2p!3(
t,u

ame2 ik•x2uu&^uuanut&^tueik•x1am

~v82z2Eu1 ihu!~v2z2Et1 ih t!~z22k21 ih!
.
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It then follows that

]

]v
Sbou

~1! ~v!5L~1!0~v,v!diag ,

where the subscript ‘‘diag’’ indicates the diagonal part of the vertex function witht5u. This is a general form of the Ward
identity.

Integration overz gives ~for simplicity restricting ourselves topositiveintermediate energies!

^x2u iL~1!n~v8,v!ux1&522pa i E d3k

~2p!3

1

k(t,u
ame2 ik•x2uu&^uuanut&^tueik•x1am

~v82Eu2k!~v2Et2k!
.

The corresponding energy contribution is then

Evert
~2! 5 i ^au iL~1!n~v8,v!Anua&

52paE d3k

~2p!3

1

k(t,u
^auame2 ik•x2uu&^uuanAnut&^tueik•x1amua&

~v82Eu2k!~v2Et2k!
.

2. Second-order

We consider now the second-order self-energy diagrams in Figs. 17~g-i!.

a. Diagram (g)

The two-photon self-energy diagram in Fig. 17~g! is represented by the operator (Ea5Eb)

E dz8

2p E dz

2p
iean8iSF~Ea2z8!ieam8iSF~Ea2z2z8!ieaniSF~Ea2z!ieamiD Fn8n~z8!iD Fm8m~z!.

With the vertex correction, Eq.~C2!, this amplitude becomes~see Fig. 18!

E dz

2p
ieL~1!m8~Ea ,Ea2z!iSF~Ea2z!ieamiD Fm8m~z!.

This is the same as the first-order self-energy operatoriS (1)(Ea) with am8 replaced byL (1)m8. Performing thez integrations,
yields for positive intermediate energies the energy contribution

DEg
~2!54p2a2E d3k8

~2p!3

1

k8
E d3k

~2p!3

1

k (
t,u,v

^auane2 ik8•xuv&^uuaneik8•xut&^vuame2 ik•xuu&^tuameik•xua&
~Ea2k82Ev!~Ea2k2k82Eu!~Ea2k2Et!

2mass counterterm.

~C3!

The corresponding expressions for negative intermediate energies can be derived in a similar way but are not given
mass-counterterm can be evaluated in complete analogy with the corresponding first-order term in Eq.~C1! ~see Fig. 13!.

b. Diagram (h)

After mass-renormalizing the inner part, diagram~h! in Fig. 17 can be represented by the diagram in Fig. 19 and in ope
form by

E dz

2p
ieam8iSF

bou~Ea2z!iSbou
mass-ren~1!~Ea2z!iSF

bou~Ea2z!ieamiD Fn8n~z!.

This is the same as the vertex correction,iL (1)0, with the potential replaced by the renormalized self-energy opera
Sbou

mass-ren(1)(Ea2z). Thez-integration yields the energy contribution for positive intermediate states

DEh
~2!52paE d3k

~2p!3

1

k(t,v
^auame2 ik•xuv&^vuSbou

mass-ren~1!~Ea2k!ut&^tuameik•xua&

~Ea2Ev2k!~Ea2Et2k!
2~mass counterterm!. ~C4!

The mass counterterm can be evaluated in analogy with the previous cases, Eqs.~C1! and ~C3! ~see also Fig. 13!.
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c. Diagram (i)

Using the first-order self-energy operator, Eq.~C1!, the energy contribution of the irreducible or nondegenerate par
diagram~i! in Fig. 17 can be expressed as

DEi
~2!5 (

EuÞEa

^auSbou
mass-ren~1!~Ea!uu&^uuSbou

mass-ren~1!~Ea!ua&
Ea2Eu

.

The reducible or degenerate caseEu5Ea leads, together with the product of the first-order diagrams, to the derivative
~see Appendix B!

DEi
~2!85^auSbou

mass-ren~1!~Ea!ua&K aU H ]

]v
Sbou

mass-ren~1!~v!J
v5Ea

UaL .

3. The infrared divergences

The expressions for the individual second-order diagrams are infrared divergent, but the sum of the three dia
convergent, as can be shown as follows.

We consider the diagrams above for the caseEt5Ev5Ea andEu being positive~leaving out trivial constants and integra
tions!, which for the mass-unrenormalized parts leads to

DEg
~2!}

^auane2 ik8•xua&^uuaneik8•xua&^auame2 ik•xuu&^auameik•xua&
Ea2Eu2k2k8

, ~C5!

DEh
~2!}

k8

k

^auame2 ik•xua&^auameik•xua&^auane2 ik8•xuu&^uuaneik8•xua&
Ea2Eu2k2k8

,

DEi
~2!8}2

k8

k

^auane2 ik8•xuu&^uuaneik8•xua&
Ea2Eu2k8

^auame2 ik•xua&^auameik•xua&.

The last two contributions are logarithmically divergent, whenk→0, but the sum of them,

DEh
~2!1DEi

~2!8}k8
^auame2 ik•xua&^auameik•xua&^auane2 ik8•xuu&^uuaneik8•xua&

~Ea2Eu2k8!~Ea2Eu2k2k8!
,

on
i

th

s

e

ci-
The
rge-

tor
ree-

ron
s

is convergent forEuÞEa . ForEu5Ea this expression is still
divergent but is exactly cancelled by the first contributi
~C5!. Therefore, the sum of all three energy contributions
infrared convergent. In a similar way it can be shown that
corresponding mass counterterms cancel.

APPENDIX D: CHARGE DIVERGENCES

In this appendix we show that the charge divergence
the diagrams in Figs. 17~g-i! cancel.

1. Zero- and one-potential terms

The free-electron self-energy in the momentum repres
tation can generally be expressed as

S f ree~p!5A1B~p”2m!1C~p”2m!2, ~D1!

where

A5uS f ree~p!up”5m
s
e

of

n-

and

B5U ]

]p”
S f ree~p!U

p”5m

.

A andB are logarithmically divergent constants and asso
ated with the mass and charge divergence, respectively.
last term is finite and represents the mass- and cha
renormalized free-electron self-energy.

Each diagram of the free-electron self-energy opera
contains in the momentum representation one or several f
electron propagators of the type~see Appendix A!

SF
f ree~p!5

1

v2hf ree
5

1

v2~a•p1bm!
5

1

p”2m
b.

In the corresponding bound self-energy, the free-elect
propagators are replaced by the bound-state propagator
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FIG. 20. Charge divergences in the diagra
17~g!.
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s
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SF
bou~p!5

1

v2hbou
5

1

v2~a•p1bm1V!
5

1

p”2m2bV
b.

It then follows that we can expand the bound self-energy
terms of the free-electron self-energy and its derivatives
the following way:

Sbou~p!5S f ree~p!2V
]

]v
S f ree~p!

1
1

2
V2

]2

]v2 S f ree~p!2•••

5S f ree~p!2bV
]

]p”
S f ree~p!

1
1

2
V2

]2

]p” 2 S f ree~p!2•••.

The first term represents the self-energy with internal fr
electron lines, the second term the same with one pote
interaction in all possible places, etc.

The free-electron self-energyS f ree(p) contains a charge
divergent part,B(p”2m). When operating on a bound sta
ua&, we have

~p”̂2m!ua&5~p”̂2m!up&^pua&

5b~p02a•p̂2bm!up&^pua&

5b~p02ĥbou1V!ua&.

Thus, forp05v5Ea ,

B~p”̂2m!ua&5BbVua&.

But

]

]v
S f ree~p!5bB1~finite part!,

which implies that—for a bound self-energy operator act
on the energy shell (p05v5Ea)—the charge divergence o
the first two terms of the expansion cancel or, in other wor
that the charge divergence of diagrams with zero and o
potential interaction generally cancel. Thus, the diagram is
charge divergent only to the extent that the correspond
diagrams with free-electron lines with two or more potent
interactions are divergent. In first order it is well-known th
the free-electron self-energy diagram with two potential
n
n

-
ial

g

s,
e

g
l
t
-

teractions is finite, and hence the first-order bound s
energy is free from charge divergence, when acting on
energy shell.

2. Multipotential terms

a. Diagram (g)

We shall now consider the diagrams~g-i! in Fig. 17 spe-
cifically and show that the charge divergences of the th
diagrams cancel. Performing a potential expansion of
bound-state propagators, we know that the charge di
gences of the zero- and one-potential terms cancel. Rem
ing to be considered are the two-potential terms. In diagr
~g! the only possible divergence lies in the diagrams given
Fig. 20. If we include also the remaining parts of the pote
tial expansion ~after eliminating the cancelling charge
divergent parts of the zero- and one-potential interaction!,
we can express this after mass renormalization as the
grams in Fig. 21.

The vertex function involved here,L (1)0(Ea ,Ea2z),
contains a divergent part,bB, as follows from the Ward-
Takahashi theorem@20#,

~p2p8!mLm~p,p8!5p”2p” 81S f ree~p8!2S f ree~p!

5B~p”2p” 8!1~finite part!.

Hence, the charge-divergent part of diagram~g! is 2bB
times the first-order mass-renormalized self-energy

DEg
charge-div52bB^au2Sbou

mass-ren~1!~Ea!ua&.

b. Diagram (h)

The diagram~h! in Fig. 17 can be expanded as shown
Fig. 22, leaving out the finite many-potential term. The ze
potential part is represented by the Feynman amplitude

FIG. 21. Diagram 17~g! renormalized.
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K aU E dz

2p
ieam8iSF

bou~Ea2z!iS f ree
mass-ren~1!~Ea2z!iSF

bou~Ea2z!ieamiD Fm8m~z!UaL .

Using Eq.~D1!, the charge-divergent part of this amplitude becomes

K aU E dz

2p
ieam8iSF

bou~Ea2z!iB~p”̂2m!iSF
bou~Ea2z!ieamiD Fm8m~z!UaL ~D2!

with p05Ea2z. But with the form of the bound-state propagator given in Sec. III we have

~p”̂2m!SF
bou~Ea2z!5b~Ea2z2ĥbou1V!

1

Ea2z2ĥbou

5b@11VSF
bou~Ea2z!#, ~D3!

and it can then be shown that the second term in Eq.~D3! gives rise to a contribution that is exactly cancelled by
one-potential diagram. Since the many-potential term is finite, the remaining charge divergence of the Feynman a
becomes

K aU E dz

2p
ieam8iSF

bou~Ea2z!i 2bBieamiD Fm8m~z!UaL 52 ibB^auSbou~Ea!ua&.

FIG. 22. Potential expansion of the sel
energy modified propagator contribution.
in

h
n

ac-
s a
-

part

the
The corresponding energy contribution is then

DEh
charge-div5bB^auSbou~Ea!ua&.

A similar analysis of the mass-renormalization term
Fig. 13 leads to the charge-divergent energy contribution

bB^aup&^puS f ree~Ea!up&^pua&5bB^auScounter
mass ua&,

using Eq.~4.2!. This removes the mass divergence from t
expression~D2!, and the final result for the charge-diverge
part of diagram~h! after mass-renormalization becomes

DEh~mass-ren!
charge-div 5bB^auSbou

mass-ren~1!~Ea!ua&.

c. Diagram (i)

The charge divergence of diagram~i! in Fig. 17 comes
from the reference-state contribution~4.1!
-

e
t

DEi5^au2Sbou
mass-ren~1!~Ea!ua&

3K aU H ]

]v
@2Sbou

mass-ren~1!~v!#J
v5Ea

UaL .

The first matrix element is free from charge divergence,
cording to the discussion above. The derivative contain
charge-divergent partbB from the free component. The re
maining parts are finite. Therefore, the charge-divergent
of diagram~i! is

DEi
charge-div5bB^auSbou

mass-ren~1!~Ea!ua&.

This completes the proof that the charge divergences of
three diagrams cancel.
y-
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