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Radiative corrections to the electrong-factor in H-like ions
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In view of the current interest of QED in strong fields, a complete set of one-photon radiative corrections to
the bound-electrong factor is evaluated for several hydrogenlike ions. The calculations are performed to all
orders in the nuclear potential and compared to earlier results, based on the (Za) expansion, which includes
the Schwinger and the Grotch terms. For lowZ our all-order result approaches the (Za) expansion, but for
high Z there is a substantial deviation. Furthermore, for highZ our calculations show that the uncertainty due
to nuclear structure is small and thus strongly motivate the boundg-factor experiment in progress.
@S1050-2947~97!50410-0#

PACS number~s!: 31.10.1z, 12.20.Ds, 31.15.Ar, 31.30.Jv
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Several different types of experiments on highly charg
ions are currently carried out in order to test the validity
quantum electrodynamics~QED! in strong nuclear fields
@1–4#. The critical point is to find systems where uncerta
ties in the nuclear description do not restrict the test
ground. A good candidate, which fulfills the above requi
ment, is the bound-electrong factor in H-like ions. A
Penning-trap experiment is presently being prepared b
Mainz-GSI collaboration to perform such measurements@5#.
In the first stage of the experiment, ions in the rangeZ
56 – 20 will be measured. At a later stage this will be e
tended to heavier ions up to H-like uranium. The expec
relative uncertainty of the measurements is of the orde
1027 and this stimulates theoretical efforts to reach a co
parable accuracy.

In Dirac quantum theory theg factor of a free electron is
exactly g52. Due to self-interactions with the radiatio
field, the free electron possesses an anomalous magnetic
mentge . The investigations ofge have reached very far, an
give at present the outstanding agreement at the level of
part in 1011 between theory and experiment@6#.

The corrections to theg factor of an atomic electron origi
nate not only from the interactions with the radiation fie
but also from the interaction with the nuclear field. Beyo
the relativistic Breit correction@7#, Grotch and Hegstrom
@8–10# did pioneering work in deriving the leading boun
radiative correction of ordera(Za)2 and the leading recoi
corrections of order (Za)2m/M , a(Za)2m/M and
(Za)2(m/M )2, wherem/M is the electron-nucleus mass r
tio. However, to obtain accurate theoretical results for he
ions, one has to go beyond the (Za) expansion and include
the nuclear interaction nonperturbatively.

In this paper we present a calculation of the nonrec
radiative part@Figs. 1~b!–1~e!# to all orders in (Za). Se-
lected results for various H-like ions are presented in Tab
I and II. As seen from Fig. 2, our self-energy result a
proaches the Grotch prediction for lowZ, but for higherZ
there is a substantial deviation. This deviation is due to
calculated higher-order terms@in (Za)] that are significant
for medium and highZ. A similar calculation of the self-
energy effects has recently been performed by Blund
Cheng, and Sapirstein@11#. In the high-Z region we agree
561050-2947/97/56~4!/2499~4!/$10.00
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well with their calculation, but for lowZ our results are
slightly larger. Furthermore, for highZ our calculations
show that the uncertainty due to nuclear structure is sm
and thus strongly motivates the boundg-factor experiment
being set up in Mainz.

The magnetic dipole moment of a bound electron is c
ventionally expressed in terms of theg factor as

m52gj

e

2m
j52gjmB

j

\
,

and the energy in an external magnetic field is given by
scalar product between the dipole moment and the magn
field. Throughout this paper we will consider a bound ele
tron in a 1s state withmj51/2 (ua&5u1s1&) interacting with
a static homogeneous magnetic field aligned in thez direc-
tion. The variousg-factor corrections can then be extract
from different energy contributions via the relation~in units
where\5e05c51)

DE52^aum•Bua&5gjmB^au j zua&Bz5
1

2
gjmBBz . ~1!

By introducing the minimal coupling in the Dirac equa
tion for an electron in an external homogeneous magn
field, described by the vector potentialA52(r3B)/2, the
first-order contribution to theg factor @see Fig. 1~a!# can, in
the point nucleus case, be evaluated analytically,

gj
Breit5

2

mBBz
^aua•eAua&5

2

3
@112A12~Za!2#. ~2!

FIG. 1. Feynman diagrams representing the first-order inte
tion ~a! and the one-photon radiative corrections~b!–~e! to the
bound-electrong factor. The triangle represents the external ma
netic field.
R2499 © 1997 The American Physical Society
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This expression was first derived by Breit in 1928@7#.
In the following, we will consider the one-photo

~second-order! radiative energy corrections that can be
lated to theg factor by Eq.~1!. The Feynman diagrams fo
these effects can be divided into vacuum polarization@Figs.
1~b! and 1~c!# and self-energy@Figs. 1~d! and 1~e!# parts. The
expressions for the one-photon effects can be derived
formal way, using theS-matrix formalism and the Gell-
Mann–Low–Sucher formula@12#

DE5 lim
h→0

1

2
ih@3^auSh

~3!ua&23^auSh
~2!ua&^auSh

~1!ua&#.

~3!

Here, the second term represents products of disconne
lower-order diagrams. The calculations of the radiative c
rections are performed in a way similar to our recently pu
lished works@13–15#.

The contribution from diagram 1~b!, the vacuum polariza-
tion wave-function correction, is given by

DEVP
WF5(

t

^auVVPut&^tua•eAua&
ea2e t

,

with e tÞea . The singular reference-state contributione t5ea
is completely cancelled here by the product of lower-or
disconnected diagrams in Eq.~3!. The vacuum-polarization
potential VVP consists of the charge renormalized Uehli

TABLE I. Numerically calculated one-photon QED correctio
given in terms of the functionC(2)(Za).

Z VP SE ~VP1SE!

1 20.0 0.500 004 47 0.500 004 47
2 20.000 000 02 0.500 018 15 0.500 018 13
3 20.000 000 12 0.500 041 82 0.500 041 70
4 20.000 000 37 0.500 076 50 0.500 076 14
5 20.000 000 9 0.500 123 4 0.500 122 5
6 20.000 001 8 0.500 183 5 0.500 181 7
7 20.000 003 4 0.500 258 4 0.500 255 0
8 20.000 005 7 0.500 349 2 0.500 343 5
9 20.000 009 1 0.500 457 6 0.500 448 5

10 20.000 013 7 0.500 584 6 0.500 570 9
11 20.000 019 8 0.500 732 5 0.500 712 7
12 20.000 027 8 0.500 902 0 0.500 874 2
13 20.000 038 0.501 095 0.501 057
14 20.000 051 0.501 313 0.501 262
15 20.000 067 0.501 556 0.501 489
16 20.000 086 0.501 829 0.501 743
17 20.000 109 0.502 130 0.502 021
18 20.000 133 0.502 463 0.502 330
24 20.000 408 0.505 194 0.504 786
32 20.001 244 0.511 23 0.509 99
44 20.004 306 0.527 19 0.522 88
54 20.009 738 0.549 01 0.539 27
66 20.022 28 0.589 41 0.567 14
74 20.036 49 0.627 95 0.591 46
83 20.061 4 0.686 3 0.624 9
92 20.100 6 0.765 5 0.664 9
-

a

ted
r-
-

r

part and the remaining many-potential Wichmann-Kroll p
@15#. This diagram is readily evaluated using the techniqu
described in@15#.

Diagram 1~c! can also be divided into a Uehling part an
a Wichmann-Kroll part. In momentum space, ther operator
in the vector potential transforms into the gradient of ad
function

r→ i¹kd~k!. ~4!

The Uehling contribution of diagram 1~c! is thus propor-
tional to the integral

E d3k

~2p!3
Ca

†~k!$¹kd~k!%P ren~k2!Ca~k!,

whereP ren(k2) is the renormalized free-electron polarizatio
function. By means of partial integration and utilizing th
the polarization function behaves ask2 for small momenta,
this contribution can be seen to vanish. The Wichmann-K
part, however, is nonvanishing and has been evaluated in
same way as in previous work@13#.

More care has to be taken when considering the s
energy contributions. The nondegenerate part of diag
1~d!, the self-energy wave-function correction, can be w
ten as

TABLE II. The total (gj22) correction~see text! is collected
for some H-like ions. For convenience we have also tabulated
nuclear size correction on the Breit term and the nuclear re
effect. All values are given in terms of 1026.

Z Rrms ~fm! Nuc. size Nuc. recoil Total

1 0.0 0.029 2 283.853
2 0.0 0.029 2 177.406
3 0.0 0.037 1 999.988
4 0.0 0.051 1 751.573
5 0.0 0.066 1 432.121
6 0.0 0.087 1 041.590
7 2.540~20! 0.0 0.10 579.91
8 2.737~8! 0.0 0.12 47.02
9 2.90~2! 0.0 0.12 2557.17

10 2.992~8! 0.0 0.14 21 232.72
11 2.94~6! 0.01 0.15 21 979.78
12 3.08~5! 0.01 0.17 22 798.42
13 3.035~2! 0.01 0.18 23 688.80
14 3.086~18! 0.02 0.20 24 651.04
15 3.191~5! 0.03 0.21 25 685.31
16 3.230~5! 0.04 0.23 26 791.75
17 3.388~17! 0.05 0.24 27 970.55
18 3.423~14! 0.07 0.23 29 221.91
24 3.643~3! 0.27 0.3 218 265.6
32 4.088~8! 1.24 0.4 234 495.1
44 4.480~22! 6.92~6! 0.6 268 165.8
54 4.782~2! 23.4~2! 0.6 2105 359.5
66 5.211~26! 90.9~8! 0.8 2162 107.5
74 5.374~22! 205.6~14! 0.9 2208 166.2
83 5.519~4! 500.0~6! 1.0 2268 988.6
92 5.860~2! 1 274.1~6! 1.0 2340 793.4
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DESE
WF5(

t

^au~S2dm!ut&^tua•eAua&
ea2e t

,

with e tÞea . HereS denotes the unrenormalized bound se
energy operator anddm the mass counter term. The dive
gences in this expression are isolated and subtracted
means of a potential expansion of the self-energy oper
into a free self-energy operator, a one-potential term, an
finite many-potential part. The many-potential part is trea
in coordinate space in a similar way as in previous wo
@13,14,16,17#. The divergent zero- and one-potential term
are grouped together with the mass counter term, and by
use of dimensional regularization the finite parts can be
tracted and calculated in momentum space@18#.

The degenerate part of diagram 1~d! is singular and one
has to subtract products of disconnected lower-order
grams to cancel the reference-state singularity@see Eq.~3!#.
After the subtraction, the remainder is given by

DESE
ref5^aua•eAua&3K aUS ]

]e
S~e! D

e5ea

UaL . ~5!

The contribution due to the vertex diagram 1e is

DESE
vert5^auL•eAua&, ~6!

whereL is the vector vertex function@18#. The two expres-
sions in Eqs.~5! and ~6! are both infrared and ultraviole
divergent, but the divergences cancel between the two te
To formulate an unambiguous regularization, we expand
intermediate bound electron propagators in Eqs.~5! and ~6!
into free-electron propagators interacting zero, one, or s
eral times with the nuclear potential. After separating out a
cancelling the infrared divergences@13#, the one-potential
and many-potential terms are finite and can readily be ca
lated in coordinate space using basis-set procedures@19#.
The zero-potential terms can be grouped together, and by
use of dimensional regularization the ultraviolet divergen

FIG. 2. The one-photon self-energy contributions after subtr
ing the Schwinger term and dividing with the Grotch term. The d
~a! show our numerical values and the line~c! is a fit to these
values. As a comparison the values of Blundellet al., crosses~b!,
are also shown.
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can be identified and cancelled. The finite remainder w
evaluated in momentum space.

A difference from earlier elaborations of a similar typ
@13,14# is that the momentum space expression involves
gradient of ad function @see Eq.~4!#. We have chosen to
represent this highly singular function numerically by intr
ducing a Gaussian cutoff function in coordinate space t
yields the gradient of a Gaussiand function in the Fourier
transform

re2~rr /2!2→ i¹k

1

p3/2r3 e2~k/r!2
52 ik

2

p3/2r5
e2~k/r!2

.

Eventually, the limitr→0 should be taken, but in practice
is enough to have a small finite value ofr so that the intro-
duced inhomogeneity in the magnetic field is negligible ov
the extension of the ion.

To discuss the results, it is convenient to expand theg
factor into zero-, one-, etc. photon contributions. Spec
cally, for an electron bound to an infinitely heavy poi
nucleus, the expansion is given by~the power ofa/p indi-
cates the number of virtual photons!

gj52H 1

3
@112A12~Za!2#1

a

pS 1

2
1

~Za!2

12
1••• D

1S a

p D 2

~A~4!1••• !1S a

p D 3

~A~6!1••• !1•••J , ~7!

where A(4)520.328 478 . . . andA(6)51.18 . . . are the
known free-electron contributions@6#. Focus now on the
one-photon contributions in Eq.~7! described by the function
C(2)(Za)51/21(Za)2/121•••, where the first term is the
Schwinger correction and (Za)2/12 is the Grotch term@9#.
For low Z, 1/2 strongly dominates~for Z51 by five orders
of magnitude!. Thus, to achieve the QED corrections beyo
the Schwinger term, one needs a very high numerical ac
racy in the calculations for lowZ. To reach this accuracy fo
Z51 in the one-potential vertex part, one has to go w
beyond 100 partial waves. The results are given in Tab
and the self-energy contributions beyond Schwinger divid
by Grotch are displayed in Fig. 2. For the self-energy ter
we agree well with the results of@11# except forZ510, 15,
and 20, where there is minor deviation.

From a (Za) expansion consideration, beyond th
Schwinger and Grotch term, one would expect terms of or
a(Za)4 @20#. ForZ<30 we have performed different fitting
of our numerical values, beyond the Schwinger correction
formulas of the type

Aa~Za!21a~Za!4@B1Cln~Za!1D~Za!#

and obtained the Grotch coefficientA with an accuracy bette
than 1%. Since the displayed ratio in Fig. 2 becomes v
sensitive forZ51 we get a safer prediction by using diffe
ent fittings of the results from higherZ. Our fitted result of
this ratio forZ51 is 1.007~2!, where the uncertainty come
from excluding the log term in the fitting function. Thi

t-
s
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value is also consistent with our numerical value forZ51
given in Table I.

To make a comparison with experiment one has to
clude the effects of nuclear recoil, finite nuclear size, a
QED corrections from diagrams involving two and more v
tual photons. Additionally, for very highZ also effects from
nuclear polarization might come in at the 1027 level.

The nuclear recoil correction can be obtained from
formulas derived by Grotch and Hegstrom@10#, and is to the
demanded accuracy given by the leading te
gj

recoil5(Za)2m/M . For highZ this can only be considere
as a reliable order-of-magnitude estimation@21#. However,
in this region this is sufficient since the recoil effect is sm
compared to the bound-state QED corrections.

Furthermore, a careful investigation of the nuclear s
effect on the dominating first-order contribution has be
performed. A two-parameter Fermi distribution was used
the nuclear description. For all nuclei the defaulta-parameter
a50.524 was used, except for uranium wherea50.6023
was taken to simulate a deformed Fermi model@22#. The
uncertainty assigned to the nuclear-size effect in Table
corresponds to the experimental uncertainty in theRrms val-
ues@23#.
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Concerning the QED effects involving two and more v
tual photons, the free-electron part is significant. The co
sponding bound-state corrections, which are still uncal
lated, should be a factor (a/p) smaller than the calculate
one-photon bound-state corrections.

In the last column of Table II we have added all differe
contributions, i.e., the one-photon bound-state correction,
nuclear-size effect~column 3!, the nuclear recoil~column 4!,
the (gj22) from the Breit term@Eq. ~2!#, and the free-
electron (ge22) value.

The uncertainty in the theoretical values are small co
pared to the bound-state QED effects for allZ. With an an-
ticipated experimental uncertainty of 1027, this implies that
the bound-stateg-factor measurements will constitute a goo
test of bound-state QED for allZ>10.
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