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Radiative corrections to the electrong-factor in H-like ions

Hans Persson, Sten Salomonson, Per Sunnergren, and Ingvar Lindgren
Department of Physics, Chalmers University of Technology antelfaog University, S-412 96 @eborg, Sweden
(Received 8 July 1996; revised manuscript received 29 April 1997

In view of the current interest of QED in strong fields, a complete set of one-photon radiative corrections to
the bound-electroig factor is evaluated for several hydrogenlike ions. The calculations are performed to all
orders in the nuclear potential and compared to earlier results, based abdahexXpansion, which includes
the Schwinger and the Grotch terms. For l@dwour all-order result approaches th2«) expansion, but for
high Z there is a substantial deviation. Furthermore, for Hgbur calculations show that the uncertainty due
to nuclear structure is small and thus strongly motivate the bogsfdctor experiment in progress.
[S1050-294{@7)50410-0

PACS numbsgs): 31.10+z, 12.20.Ds, 31.15.Ar, 31.30.Jv

Several different types of experiments on highly chargedwvell with their calculation, but for lowZ our results are
ions are currently carried out in order to test the validity ofslightly larger. Furthermore, for higlz our calculations
guantum electrodynamicéQED) in strong nuclear fields show that the uncertainty due to nuclear structure is small
[1-4]. The critical point is to find systems where uncertain-and thus strongly motivates the bougefactor experiment
ties in the nuclear description do not restrict the testingoeing set up in Mainz.
ground. A good candidate, which fulfills the above require- The magnetic dipole moment of a bound electron is con-
ment, is the bound-electrog factor in H-like ions. A  ventionally expressed in terms of tigefactor as
Penning-trap experiment is presently being prepared by a e :

Mainz-GSI collaboration to perform such measuremgbis p=—0j5—i= _ngBJ_,
In the first stage of the experiment, ions in the rarfje 2m h

=6-20 will be'me.asured. At a !ater stage this will be ex-o,q he energy in an external magnetic field is given by the
tended to heavier ions up to H-like uranium. The expectedicg|ar product between the dipole moment and the magnetic
relative uncertainty of the measurements is of the order ofig|q. Throughout this paper we will consider a bound elec-
10 7 and this stimulates theoretical efforts to reach a COMtron in a 1s state withm, = 1/2 (a)=|1s")) interacting with
parable accuracy. a static homogeneous magnetic field aligned inztdirec-

In Dirac quantum theory thg factor of a free electron is  tion. The variousg-factor corrections can then be extracted
exactly g=2. Due to self-interactions with the radiation from different energy contributions via the relatiGn units
field, the free electron possesses an anomalous magnetic mghere = e;=c=1)
mentg. . The investigations of, have reached very far, and
give at present the outstanding agreement at the level of one
part in 13* between theory and experimei.

The corrections to thg factor of an atomic electron origi- ) _ o o )
nate not only from the interactions with the radiation field, ~BY introducing the minimal coupling in the Dirac equa-
but also from the interaction with the nuclear field. Beyondtion for an electron in an external homogeneous magnetic
the relativistic Breit correctior{7], Grotch and Hegstrom field, described by the vector potentidl= —(rxB)/2, the
[8—10 did pioneering work in deriving the leading bound first—orgjer contribution to thg factor[see Fig._ @] can, in
radiative correction of ordes(Za)? and the leading recoil the point nucleus case, be evaluated analytically,
corrections of order Za)’m/M, a(Za)?’m/M and
(Za)?(m/M)?, wherem/M is the electron-nucleus mass ra- gBreit:i<a| a-eAla)= E[1+ 21-(Za)?]. (2
tio. However, to obtain accurate theoretical results for heavy ! HBB; 3
ions, one has to go beyond th&«) expansion and include
the nuclear interaction nonperturbatively.

In this paper we present a calculation of the nonrecoil
radiative part[Figs. 1b)-1(e)] to all orders in Za). Se-
lected results for various H-like ions are presented in Tables
| and Il. As seen from Fig. 2, our self-energy result ap-
(@) (b) © (@

proaches the Grotch prediction for lody but for higherz ©
there is a substantial deviation. This deviation is due to un-

calculated higher-order ternig (Za)] that are significant FIG. 1. Feynman diagrams representing the first-order interac-
for medium and hlth A similar calculation of the self- tion (@) and the one-photon radiative correctiof®—(e) to the
energy effects has recently been performed by Blundellpound-electrorg factor. The triangle represents the external mag-
Cheng, and Sapirsteifl1]. In the highZ region we agree netic field.

) 1
AE= _<a|l"' B|a>:ngB<a|Jz|a>Bz:§ngBBz- 1
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TABLE |. Numerically calculated one-photon QED corrections ~ TABLE Il. The total (g;—2) correction(see text is collected

given in terms of the functio€®(Za). for some H-like ions. For convenience we have also tabulated the
nuclear size correction on the Breit term and the nuclear recoil
z VP SE (VP+SB) effect. All values are given in terms of 16,
1 -0.0 0.500 004 47 0.500 004 47 Z ers (fm) Nuc. size Nuc. recoil Total
2 —0.000 000 02 0.500 018 15 0.500 018 13
3 —0.000 000 12 0.500 041 82 0.500 041 70 1 0.0 0.029 2283.853
4 —0.000 000 37 0.500 076 50 0.500 076 14 2 0.0 0.029 2177.406
5 —0.000 000 9 0.500 123 4 0.500122 5 3 0.0 0.037 1999.988
6 —0.000 001 8 0.500 1835 0.500 181 7 4 0.0 0.051 1751.573
7 —0.000 003 4 0.500 258 4 0.500 255 0 5 0.0 0.066 1432.121
8 —0.000 005 7 0.500 349 2 0.500 3435 6 0.0 0.087 1041.590
9 —0.000 009 1 0.500 457 6 0.500 448 5 7 2.54Q20 0.0 0.10 579.91
10 —0.000 0137 0.500584 6 0.500 570 9 8 27379 0.0 0.12 47.02
11 —0.000 019 8 0.5007325 0.500712 7 9 2902 0.0 0.12 —557.17
12 —0.000 027 8 0.500 902 0 0.500 874 2 10 2.9928) 0.0 0.14 —1232.72
13 —0.000 038 0.501 095 0.501 057 11 2.946) 0.01 0.15 —1979.78
14 —0.000 051 0.501 313 0.501 262 12 3.085) 0.01 0.17 —2798.42
15 —0.000 067 0.501 556 0.501 489 13 3.03%2) 0.01 0.18 —3688.80
16 —0.000 086 0.501 829 0.501 743 14 3.08618) 0.02 0.20 —4651.04
17 —0.000 109 0.502 130 0.502 021 15 3.1915 0.03 0.21 —5685.31
18 —0.000 133 0.502 463 0.502 330 16 3.23@5) 0.04 0.23 —6791.75
24 —0.000 408 0.505 194 0.504 786 17 3.38817) 0.05 0.24 —7970.55
32 —0.001 244 0.511 23 0.509 99 18 3.42314) 0.07 0.23 —922191
44 —0.004 306 0.527 19 0.522 88 24 3.6433) 0.27 0.3 —18265.6
54 —0.009 738 0.549 01 0.539 27 32 4.0888) 1.24 0.4 —34495.1
66 —-0.022 28 0.589 41 0.567 14 44 4.48Q22 6.926) 0.6 —68 165.8
74 —0.036 49 0.627 95 0.591 46 54  4.7822) 23.42) 0.6 —105359.5
83 —0.061 4 0.686 3 0.624 9 66  5.21126) 90.98) 0.8 —162107.5
92 ~0.100 6 0.7655 0.664 9 74  5.37422) 205.614) 0.9 —208 166.2
83 5.5194) 500.06) 1.0 —268988.6
92  5.86@2) 1274.16) 1.0 —340793.4

This expression was first derived by Breit in 1928.

In the following, we will consider the one-photon
(second-orderradiative energy corrections that can be re-part and the remaining many-potential Wichmann-Kroll part
lated to theg factor by Eq.(1). The Feynman diagrams for [15]. This diagram is readily evaluated using the techniques
these effects can be divided into vacuum polarizafiéigs.  described iff15].

1(b) and Xc)] and self-energjFigs. 1d) and Xe)] parts. The Diagram 1c) can also be divided into a Uehling part and
expressions for the one-photon effects can be derived in a Wichmann-Kroll part. In momentum space, theperator
formal way, using theS-matrix formalism and the Gell- in the vector potential transforms into the gradient ob a
Mann-Low-Sucher formulfl2] function

—iV (k).
AE:“m%i77[3<a|5(7,3)|a>—3<aIS§72)|a)(a|S§]1)|a>]. r=1Vio(k) @

70 The Uehling contribution of diagram(d) is thus propor-

3 tional to the integral

Here, the second term represents products of disconnected 3
lower-order diagrams. The calculations of the radiative cor- f k q,T(k){V S(K)MI™K2) W (k)
rections are performed in a way similar to our recently pub- (2m)° a k ann

lished works[13—-15.
The contribution from diagram(th), the vacuum polariza- wherell™\k?) is the renormalized free-electron polarization

tion wave-function correction, is given by function. By means of partial integration and utilizing that
the polarization function behaves &$ for small momenta,
we_ o (a[Vyplt)(t|a-eAla) this contribution can be seen to vanish. The Wichmann-Kroll
AEVF= , . e .
T €, € part, however, is nonvanishing and has been evaluated in the
same way as in previous wofi3].
with €,# €, . The singular reference-state contributiqr €, More care has to be taken when considering the self-

is completely cancelled here by the product of lower-orderenergy contributions. The nondegenerate part of diagram
disconnected diagrams in E). The vacuum-polarization 1(d), the self-energy wave-function correction, can be writ-
potential V\p consists of the charge renormalized Uehlingten as
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9.9 - : : : : can be identified and cancelled. The finite remainder was
evaluated in momentum space.
9 L i A difference from earlier elaborations of a similar type
[13,14 is that the momentum space expression involves the
1.8 | (a) = gradient of aé function [see Eq.(4)]. We have chosen to
represent this highly singular function numerically by intro-
1.6 | () - ducing a Gaussian cutoff function in coordinate space that
+ yields the gradient of a Gaussiahfunction in the Fourier
L4+ 7 transform
1.2 | + B
1 \ . re (r2%_jy ﬁ—l e W= _jk 2 e (Wp)?
(b) k 773 2p3 773/2[)5 '
08 1 | | | 1
0 5 10 15 20 25 Eventually, the limitp— 0 should be taken, but in practice it
Z is enough to have a small finite value @fso that the intro-

duced inhomogeneity in the magnetic field is negligible over
FIG. 2. The one-photon self-energy contributions after subtractthe extension of the ion.
ing the Schwinger term and dividing with the Grotch term. The dots 1 discuss the results, it is convenient to expand ghe
(@ show our numerical values and the life is a fit to these  factor into zero-, one-, etc. photon contributions. Specifi-
values. As a comparison the values of Blundsllal, crossegb), cally, for an electron bound to an infinitely heavy point
are also shown. nucleus, the expansion is given ktyhe power ofa/ 7 indi-
cates the number of virtual photgns

S — om)|t)(t] a- eAla) P

€a™ €t

1 all (Za)?
. _ gjzz[—[1+2\/1—(za)2]+—(—+( ) +)
with €,# €, . HereZ denotes the unrenormalized bound self- 3 ™\ 2 12

energy operator andm the mass counter term. The diver- 2 3
gences in this expression are isolated and subtracted by +(—
means of a potential expansion of the self-energy operator
into a free self-energy operator, a one-potential term, and a
finite many-potential part. The many-potential part is treatedvhere A=—-0.328478... andA®=1.18... are the
in coordinate space in a similar way as in previous worksknown free-electron contributiongg]. Focus now on the
[13,14,16,17. The divergent zero- and one-potential termsone-photon contributions in EG7) described by the function
are grouped together with the mass counter term, and by the(®)(Za) = 1/2+ (Za)?/12+ - -, where the first term is the
use of dimensional regularization the finite parts can be exSchwinger correction andZ@)?/12 is the Grotch terni9].
tracted and calculated in momentum spgte. For low Z, 1/2 strongly dominategfor Z=1 by five orders
The degenerate part of diagrartdlLis singular and one  of magnitudé. Thus, to achieve the QED corrections beyond
has to subtract products of disconnected lower-order diathe Schwinger term, one needs a very high numerical accu-
grams to cancel the reference-state singuldsge Eq(3)].  racy in the calculations for low. To reach this accuracy for
After the subtraction, the remainder is given by Z=1 in the one-potential vertex part, one has to go well

beyond 100 partial waves. The results are given in Table |

(A<4>+...)+(% (A<6>+...)+...}' %)

AE“§",§=<a| a-eAla)x < a iz(e)) a> .5 and the self—engrgy contr_ibut?ons beyond Schwinger divided
Je —e by Grotch are displayed in Fig. 2. For the self-energy terms
2 we agree well with the results ¢11] except forZ=10, 15,
The contribution due to the vertex diagrana s and 20, where there is minor deviation.
From a (a) expansion consideration, beyond the
AEE'=(a|A-eAla), (6)  Schwinger and Grotch term, one would expect terms of order

a(Za)*[20]. ForZ=<30 we have performed different fittings
whereA is the vector vertex functionl8]. The two expres-  of our numerical values, beyond the Schwinger correction, to
sions in Egs.(5) and (6) are both infrared and ultraviolet formulas of the type
divergent, but the divergences cancel between the two terms.
To formulate an unambiguous regularization, we expand the
intermediate bound electron propagators in E§s.and (6)
into free-electron propagators interacting zero, one, or sev-
eral times with the nuclear potential. After separating out andind obtained the Grotch coefficiehtwith an accuracy better
cancelling the infrared divergenc¢$3], the one-potential than 1%. Since the displayed ratio in Fig. 2 becomes very
and many-potential terms are finite and can readily be calcusensitive forZ=1 we get a safer prediction by using differ-
lated in coordinate space using basis-set procedur@s  ent fittings of the results from highet. Our fitted result of
The zero-potential terms can be grouped together, and by thbis ratio forZ=1 is 1.0072), where the uncertainty comes
use of dimensional regularization the ultraviolet divergencedrom excluding the log term in the fitting function. This

Aa(Za)?*+ a(Za)[B+CIn(Za)+D(Za)]
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value is also consistent with our numerical value or 1 Concerning the QED effects involving two and more vir-
given in Table I. tual photons, the free-electron part is significant. The corre-

To make a comparison with experiment one has to insponding bound-state corrections, which are still uncalcu-
clude the effects of nuclear recoil, finite nuclear size, andated, should be a factora{7) smaller than the calculated
QED corrections from diagrams involving two and more vir- gne-photon bound-state corrections.
tual photons. Additionally, for very higl also effects from In the last column of Table Il we have added all different
nuclear polarization might come in at the T0level. contributions, i.e., the one-photon bound-state correction, the

The nuclear recoil correction can be obtained from theclear-size effedicolumn 3, the nuclear recoilcolumn 4,

formulas derived by Grotch and Hegstr¢a®], and is to the 0 (@,—2) from the Breit term[Eq. (2)], and the free-

demanded accuracy given by the leading termgactron G.—2) value.

recoil_ 2 i i H
gj = (Za)"m/M. For highZ this can only be considered  rq \ncertainty in the theoretical values are small com-
as a reliable order-of-magnitude estimati@i]. However, pared to the bound-state QED effects for zllWith an an-
in this region this is sufficient since the recoil effect is Sma"ticipated experimental uncertainty of 19 this implies that

compared to the bound—stgte QE.D gorrchons. ._ the bound-statg-factor measurements will constitute a good
Furthermore, a careful investigation of the nuclear SIZ& .<t of bound-state QED for al=10

effect on the dominating first-order contribution has been
performed. A two-parameter Fermi distribution was used for We wish to express our gratitude to K. Pachucki, W.
the nuclear description. For all nuclei the defafparameter  Quint, various members of the Mainz group, E. Lindroth, G.
a=0.524 was used, except for uranium where 0.6023  Soff, S. Schneider, the atomic physics group at GSI, and B.
was taken to simulate a deformed Fermi mof®2]. The  N. Taylor for stimulating discussions. Also we want to thank
uncertainty assigned to the nuclear-size effect in Table 10. Sapirstein, K. T. Cheng, and S. A. Blundell for providing

corresponds to the experimental uncertainty inRhgs val-  us their results before publication. This work has been sup-

ues[23]. ported by the Swedish NFR and the von Humboldt Stiftung.
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