Unification of Many-Body Perturbation Theory and Quantum Electrodynamics

Ingvar Lindgren

ingvar.lindgren@physics.gu.se

Department of Physics University of Gothenburg

Slides with Prosper/IAT_FX - p. 1/??

Sten Salomonson Daniel Hedendahl Johan Holmberg

Facility for Antiproton and Ion Resear GSI, Germany

Ion Trap Facility for precision measurements, g-factors

Highly charged ions to test QED at strong-fiel

Lamb shift of H-, He-, Li-like ions up to urani

Highly charged ions to test QED at strong-fiel

Lamb shift of H-, He-, Li-like ions up to urani

H-like ions less suitable for test of QED due to large nuclear effect

Slides with Prosper/IAT_EX – p. 4/??

Lamb shift of hydrogenlike uranium (in eV)

Effect	Value
Nuclear size	198.82
First-order self energy	355,05
Vacuum polarization	-88.59
Second-order effects	-1.57
Nuclear recoil	0.46
Nuclear polarization	-0.20
Total theory	463.95
Experimental	460.2 (4.6)

Lamb shift of lithiumlike uranium (in eV)

Effect	Blundell	Persson	Yerokh
	(1993)	(1995)	(2002)
Relativistic MBPT	322.41	322.32	322.10
1. order self energy	-53.94	-54.32	
1. ord vacuum pol.	(12.56)	12.56	
1. ord SE + vac. pol.	-41.38	-41.76	-41.77
2. ord SE + vac. pol.		0.03	0.17
Nuclear recoil + pol.	(0.20)	(-0.11)	-0.14
Total theory	280.83(10)	280.54(15)	280.48
Experimental	280.59(9)		

Transition 1s2s $^1S_0 - 1s2p$ 3P_1 (in cm $^{-1}$)

		Reference
Expt'l	7230.585(6)	Myers et al. 2008
RMBPT	7231	Plante et al. 1994
QED	7229	Artemyev et al. 2005

Plante: All-order rel. MBPT, first-order QED Artemyev: Second-order QED, first-order correlation

Insufficient

K α lines in Cupper (in eV)

	$\mathbf{K} \alpha_1$	$K\alpha_2$	Reference
Expt'l	8047.8237(26)	8027.8416(26)	Deslattes et a
Theory	8047.86(4)	8027.92(4)	Chantler et al

From Chantler, Grant et al. Multi-config. Dirac-Fock with 1. order QED

Insufficient

1. Non-relativistic

$$m{H} = \left[\sum_{i=1}^N m{h}_{m{S}}(i) + \sum_{i < j}^N rac{e^2}{4\pi r_{ij}}
ight]$$

1. Non-relativistic

$$oldsymbol{H} = \left[\sum_{i=1}^N h_{oldsymbol{S}}(i) + \sum_{i < j}^N rac{e^2}{4\pi r_{ij}}
ight]$$

2. Relativistic No-pair (w. 1. order QED energy)

$$H = \Lambda_+ \Big[\sum_{i=1}^N h_D(i) + \sum_{i< j}^N rac{e^2}{4\pi r_{ij}} + H_B \Big] \Lambda_+$$

1. Non-relativistic

$$H = \left[\sum_{i=1}^N h_S(i) + \sum_{i < j}^N rac{e^2}{4\pi r_{ij}}
ight]$$

2. Relativistic No-pair (w. 1. order QED energy)

$$H = \Lambda_+ \Big[\sum_{i=1}^N h_D(i) + \sum_{i < j}^N rac{e^2}{4\pi r_{ij}} + H_B \Big] \Lambda_+$$

3. **Full QED** Only to second order, not sufficient when correlation important

3a. Unified MBPT-QED Approach

Starts from relativistic no-pair

QED effects to **low** order included in highly correlated MBPT wave function

Standard non-rel. MBPT:

$$|H|\Psi^lpha
angle = E^lpha|\Psi^lpha
angle \quad (lpha=1\cdots d)$$

$$|\Psi^{lpha}
angle=\Omega|\Psi^{lpha}_0
angle~~(lpha=1\cdots d)$$

 Ω wave operator

Standard non-rel. MBPT:

$$|H|\Psi^lpha
angle = E^lpha|\Psi^lpha
angle \quad (lpha=1\cdots d)$$

$$|\Psi^lpha
angle=\Omega|\Psi^lpha_0
angle~~(lpha=1\cdots d)$$

 Ω wave operator

Degenerate model space (Bloch 1958)

$$(E_0 - H_0)\Omega P = Q(V\Omega - \Omega V_{\text{eff}})P$$

Standard non-rel. MBPT:

$$|\Psi^lpha
angle = E^lpha|\Psi^lpha
angle \quad (lpha=1\cdots d)$$

$$|\Psi^lpha
angle=\Omega|\Psi^lpha_0
angle~~(lpha=1\cdots d)$$

 Ω wave operator

Degenerate model space (Bloch 1958)

$$(E_0 - H_0)\Omega P = Q(V\Omega - \Omega V_{\text{eff}})P$$

Extended model space (Lindgren 1974)

$$[\Omega, H_0]P = Q(V\Omega - \Omega V_{\text{eff}})P$$

Dirac-Coulomb-Breit Approximation

$$H = \Lambda_+ \Big[\sum_{i=1}^N h_D(i) + \sum_{i < j}^N rac{e^2}{4\pi r_{ij}} + H_B \Big] \Lambda_+$$

Dirac-Coulomb-Breit Approximation

$$m{H} = \Lambda_+ \Big[\sum_{i=1}^N m{h}_D(i) + \sum_{i < j}^N rac{e^2}{4\pi r_{ij}} + m{H}_B \Big] \Lambda_+$$

$$H_B = -rac{e^2}{8\pi} \sum_{i < j} \left[rac{lpha_i \cdot lpha_j}{r_{ij}} + rac{(lpha_i \cdot r_{ij})(lpha_j \cdot r_{ij})}{r_{ij}^3}
ight]$$

No-Virtual-Pair Approximation (NVPA)

Accurate to order
$$\alpha^2$$

Effects beyond NVPA

Order α^3 and higher

- Retardation
- Virtual pairs Non-radiative
- Radiative effects (Lamb shift etc.)

Bethe-Salpeter eqn

First relativistically covariant theory

Salpeter and Bethe 1951; Gell-Mann and Low 1951

Based on field theory

Bethe-Salpeter eqn

First relativistically covariant theory

Salpeter and Bethe 1951; Gell-Mann and Low 1951

Based on field theory

In principle, exact but not useful for practical work

Slides with Prosper/IAT_FX - p. 15/??

Extension of well-developed MBPT

Extension of well-developed MBPT

To go beyond first-order QED

QED has to be included in atomic wave function

Extension of well-developed MBPT

First question:

Can QED effects be built into an MBPT expansion?

Never been done before

Slides with Prosper/IATEX – p. 17/??

Covariant Evolution Operator (CEO)

Covariant Evolution Operator (CEO)

Green's operator

$$\Psi(t) = U_{Cov}(t, -\infty)\Phi$$
 Φ Parent state

Evolution operator singular

due to intermediate model-space states

Green's operator

$$\Psi(t) = U_{Cov}(t, -\infty)\Phi$$
 Φ Parent state

Evolution operator singular

due to intermediate model-space states

$$\Psi(t) = \mathcal{G}(t) \cdot \underbrace{PU_{\text{Cov}}(0, -\infty)\Phi}_{\text{Cov}}$$

Model state: $P\Psi(0) = \Psi_0$

$$\Psi(t) = \mathcal{G}(t) \Psi_0$$

Green's operator

$$\Psi(t) = U_{Cov}(t, -\infty)\Phi$$
 Φ Parent state

Evolution operator singular

due to intermediate model-space states

Slides with Prosper/IAT_FX – p. 19/??

Energy-independent perturbation

$$(E_0 - H_0)\Omega = Q(V\Omega - \Omega V_{\text{eff}})$$

$$\Omega = 1 + \Gamma_Q V \Omega - \Gamma_Q \Omega V_{ ext{eff}}$$

$$\Gamma_{oldsymbol{Q}}=oldsymbol{Q}ig/ig(oldsymbol{E}_0-oldsymbol{H}_0ig)$$

Energy-independent perturbation

$$(E_0 - H_0)\Omega = Q(V\Omega - \Omega V_{\text{eff}})$$

$$\Omega = 1 + \Gamma_Q V \Omega - \Gamma_Q \Omega V_{ ext{eff}}$$

$$\Gamma_Q = Q / (E_0 - H_0)$$

General energy-dependent perturbation

$$egin{aligned} \mathcal{G} &= 1 + \Gamma_Q V \mathcal{G} + rac{\delta^* \mathcal{G}}{\delta \mathcal{E}} \mathcal{E} \Big|_{\mathcal{E} = E_0} V_{ ext{eff}} \end{aligned}$$

$$\Psi(t) = \mathcal{G}(t)\Psi_0$$
 $\Psi = \Omega\Psi_0$

Green's operator time-dependent wave operat

Connection between field-theoretical CEO

and standard MBPT

Slides with Prosper/IAT_FX - p. 21/??

Coulomb gauge

In combining QED with MBPT

Coulomb gauge has to be used

Slides with Prosper/IATEX – p. 22/??

Perturbation in Coulomb gauge

Coulomb + Transverse

Slides with Prosper/IATEX – p. 23/??

Perturbation in Coulomb gauge

$$V(t) = V_C + v_T(t)$$

Coulomb + Transverse

$$V_C = \frac{e^2}{4\pi r_{12}}$$

$$v_T(t) = -\int \mathrm{d}^3x\,\hat{\psi}(x)^\dagger e c lpha^\mu A_\mu(x)\hat{\psi}(x)$$

Gell-Mann-Low theorem

Schrödinger-like equation in photonic Fock space

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Gell-Mann-Low theorem

Schrödinger-like equation in photonic Fock space

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Field-theoretical relation

Photonic Fock space

Slides with Prosper/IAT_FX - p. 24/??

Non-radiative QED with correlation

Non-radiative QED with correlation

First-order non-rad. QED with correla

Beyond two-photon exchange

Daniel Hedendahl's PhD thesis 2010

First-order non-rad. QED with correla

First-order non-radiative QED with correlation beyond second order more important than pure second-order QED for light and medium-heavy elements **Radiative QED**

Mass renormalization

Slides with Prosper/IATEX – p. 32/??

Radiative QED

Partial-wave regularization

Free-electron mass term equals self-energy on the mass shell

$$\delta m^{ ext{free}} = \Sigma^{ ext{free}}(p)_{p\!\!/=m}; \quad p_0 = arepsilon_p$$
 $\delta m^{ ext{bound}} = \langle a | p
angle \langle p | \Sigma^{ ext{free}}(p)_{p\!\!/=m} | p
angle \langle p | a
angle$
Does not work in Coulomb gauge to struct a

33/??

Dimensional regularization

Zero- and one-potential terms evaluated by means of Adkins formulas

modified by Johan Holmberg in his Master Thesis

Many-potential term by evaluating the other terms with partial-wave expansion

Radiative QED

Self-energy of hydrogen like ions

Ζ	Coulomb gauge	Feynman gauge
18	1.216901(3)	1.21690(1)
54	50.99727(2)	50.99731(8)
66	102.47119(3)	102.4713(1)
92	355.0430(1)	355.0432(2)

First numerical application in Coulomb gauge

D. Hedendahl and J. Holmberg, Phys. Rev. A (accepted)

Non-radiative QED with correlation

