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Abstract

In the case of quasi-degeneracy, i.e., when there are states close in energy to the state
considered, standard perturbation theory may lead to convergence problem. A typical exam-
ple is the relativistic treatment of the fine structure of light heliumlike ions. In Many-Body-
Perturbation Theory (MBPT) this problem can be treated by including the quasi-degenerate
states in an extended model space. The mixing is then treated to all orders already in the
zeroth-order wave function by diagonalizing an effective hamiltonian in this subspace. Only
non-quasi-degenerate states are treated by perturbation.

Standard QED treatment of bound systems is based upon the S -matrix formalism. Here
an extended model space cannot be used, the reason being that only matrix elements di-
agonal in energy can be determined, while the effective hamiltonian needed contains also
non-diagonal elements between the states in the model space. In the present paper a modi-
fication of the bound-state QED procedure is described, based upon a covariant form of the
time-evolution operator, rather than the S -matrix. In this way also elements non-diagonal
in energy can be evaluated. The operator appearing in the final procedure is free from
singularities, and no special procedure is needed for evaluating the so-called Model-Space
Contribution, caused by model-space states appearing as the intermediate states.

The procedure has been applied to the fine structure of helium-like ions, and numerical
second-order QED results, including quasi-degenerate levels, are presented for the first time.
The formalism is closely related to MBPT and may open the possibility to combine QED
and MBPT in a more systematic fashion.

Introduction

During the last decade there has been increasing interest in bound-state quantum-electro-dynamical
(QED) calculations on highly charged ions, mainly due to the advent of new experimental tech-
niques, such as storage rings and ion traps, and the simultaneous development of the computa-
tional technique. It is now possible to study such systems with high experimental accuracy, and
the comparison with accurate numerical calculations can be seen as a test of QED at strong-fields.

The bound-state QED calculations are normally based upon the S-matrix formalism and
the adiabatic limiting process of Gell-Mann–Low[1] and Sucher [2], a procedure with certain
limitations. Most importantly, in this procedure only matrix elements diagonal in energy can
be obtained, which implies that it cannot be applied to an extended model space with several
(quasi-degenerate) eigenvalues.



A good example of quasi-degeneracy is the fine-structure of light heliumlike ions. In, for
instance, the 1s2p multiplet of these ions there are two states with total J = 1, which are
mixtures of the jj-coupled states 1s2p1/2 and 1s2p3/2. In a relativistic many-body treatment
these states are strongly mixed, due to the proximity in energy for low Z, and in a conventional
perturbation expansion one has encounted severe convergence problems [3]. By working with an
extended model space, containing the quasi-degenerate states, we have shown previously that the
convergence problems disappear [4].

In order to apply a similar technique in bound-state QED, it is necessary to find a procedure
that makes it possible to evaluate also elements non-diagonal in energy of the effective hamilto-
nian. Such a technique, based upon the covariant form of the time-evolution operator, has recently
been presented [5] and is briefly described in the present paper. It gives the same results as the
standard technique for diagonal elements but can in addition yield off-diagonal elements. Second-
order numerical results for the fine structure of some heliumlike ions, incluing quasi-degenerate
levels, are given here for the first time. More details will be given in a forthcoming paper.

In principle, quasi-degeneracy can also be handled by means of the so-called two-times Green’s-
function technique, developed in particular by Shabaev and coworkers [6, 7]. As a matter of
fact, the two methods are closely related [5]. We believe, however, that the evolution-operator
technique is easier to handle in practical work. To our knowledge no numerical results for the
energy shifts of a quasi-degenerate system due to QED beyond first order have to date been
presented 1.

Many-Body Perturbation Theory

As an introduction we give here a short summary of the MBPT for an extended model space. We
partition the full hamiltonian in the standard way into a zeroth-order part and a perturbation,
H = H0 + H ′. In standard perturbation theory the second-order energy contribution to the
unperturbed state |Φa〉 is then given by

E(2) =
∑
i 6=a

〈Φa|H ′|Φi〉〈Φi|H ′|Φa〉
Ea

0 − Ei
0

. (1)

Φi is an eigenstate of the unperturbed hamiltonian, H0, with the eigenvalue Ei
0. In the case of

quasi-degeneracy some of the energy denominators become very small, which can lead to conver-
gence problems in the traditional perturbation treatment, using a single reference function [3]. In
more refined MBPT it is possible to work with several reference functions, based on an effective
hamiltonian, Heff , and an extended model space [4, 9, 10]. This leads to the secular equation

Heff |Ψα
0 〉 = Eα|Ψα

0 〉 (2)

to be solved within the model space. The eigenvalues of the effective hamiltonian are the exact
energies, Eα, of the system, although this operates only within the model space. The eigenvectors
are the correct zeroth-order functions (ZOF), |Ψα

0 〉, corresponding to the exact states, |Ψα〉.
After diagonalizing the effective hamiltonian, the full wave functions, |Ψα〉, can be constructed

from the ZOF’s by means of the wave operator or Møller operator [10], Ω,

|Ψα〉 = Ω|Ψα
0 〉, (3)

satisfying the so-called generalized Bloch equation [9, 10, 11]

[Ω,H0]P = (H ′ Ω− ΩH ′
eff)P. (4)

1The contribution to the effective hamiltonian for quasi-degenerate systems due to the screened vacuum po-
larization together with the first-order electron-electron interaction have recently been published [8], and similar

calculations for the screened self energy are under way in Paris, as reported by P. Indelicato and É.-O. Le Bigot
at this workshop



Here, H ′
eff is the effective perturbation, related to the full effective hamiltonian by Heff = PH0P+

H ′
eff . P is the projection operator for the model space, and we shall for later use introduce also

the corresponding projection operator, Q, for the complementary space, P +Q = 1. We shall use
the intermediate normalization, where 〈Ψα

0 |Ψα〉 = 1, |Ψα
0 〉 = P |Ψα〉 and PΩP = P . The effective

hamiltonian and the effective perturbation then have the formHeff = PHΩP andH ′
eff = PH ′ ΩP .

Bound-state S-matrix formulation

The standard procedure for treating bound-state QED is based upon the scattering or S-matrix
formulation. As a background we shall briefly review this technique for the first-order electron-
electron interaction. We consider the case with a single reference state (closed-shell system),
which means that the zeroth-order wave functions (ZOF), Ψ0 = Φ, is known from the start. We
add an adiabatic damping factor to the perturbation, H ′ → H ′ e−γ|t|, which has the effect that
the perturbation is turned on and off smoothly, so that H → H0 and Ψ → Φ, as t→ ±∞.

We work in the interaction picture, where the operators and wave functions are related to
those in the conventional Schrödinger (or Dirac) picture by

OI(t) = eiH0t OS e−iH0t; ΨI(t) = eiH0t ΨS(t).

The time-dependent Schrödinger equation then takes the form

i
∂

∂t
ΨI(t) = H ′

I ΨI(t) ΨI(t) = ΨI(t0)− i
∫ t

t0

dt′ H ′
I(t

′) ΨI(t′). (5)

We introduce the time-evolution operator, U(t, t0), defined by

|ΨI(t)〉 = U(t, t0)|ΨI(t0)〉, (6)

which has the expansion

U(t, t0) = 1 +
∞∑

n=1

(−i)n

n!

∫ t

t0

dtn . . .
∫ t

t0

dt1 T
[
H ′

I(tn) . . .H ′
I(t1)

]
e−γ(|t1|+|t2|...+|tn|), (7)

where T is the Wick time-ordering operator. (In the following we shall work only in this picture
and leave out the subscript I.)

The interaction between electrons and photons is represented by the perturbation
H ′ = ψ†(x)eαµAµψ(x), where Aµ represent the electromagnetic field operators and ψ and
ψ† are the electron-field operators, ψ(x) =

∑
j cj φj(x); ψ†(x) =

∑
j c

†
j φj(x). cj and c†j

are electron annihilation/creation operators, and {φj(x)} is a set of single-electron functions
φj(x) = φj(x) e−iεjt. (x is the four-dimensional space-time coordinate.) The space parts are
solutions to the Dirac equation, hD φj(x) = εj φj(x) in the field of the nucleus and possibly other
electrons. γ is the adiabatic damping parameter, which eventually goes to zero, γ → +0. (We
employ here relativistic units, i.e., m=c= ε0 = h̄=1; e2 =4πα, where α is the fine-structure con-
stant). The scattering or S matrix is defined S = U(∞,−∞). The exchange of a single photon
between two electrons is represented by the Feynman diagram in Fig. 1 and by the S-matrix
element 〈

rs
∣∣∣S(2)

∣∣∣ab〉 =
∫∫

d4x1d4x2 φ
†
r(x1)φ†s(x2) I21 φb(x2)φa(x1), (8)

where I21 = −ie2αµ
1α

ν
2 DFνµ(x2 − x1) and DFνµ(x2 − x1) is the photon propagator. Integration

over the times leads in the limit γ → 0 to a delta function,〈
rs

∣∣∣S(2)
∣∣∣ab〉 = 2π δ(εr + εs − εa − εb)

〈
rs

∣∣∣I21(q)∣∣∣ab〉, (9)
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Figure 1: Graphical representation of the S -matrix for single-photon exchange between the electrons. The wavy
line represents the photon propagator and the straight lines the electron field.

where I21(q) is the fourier transform of I21 and q = εa − εr = εs − εb. V21(q) = i I21(q) is an
equivalent interaction for single-photon exchange, which in the Feynman gauge becomes

V F
21(q) =

∫ ∞

0

2k dk f21(k)
q2 − k2 + iη

; f21(k) = − e2

4π2 r12
(1−α1 ·α2) sin(kr12) (10)

or V F
21(q) =

e2

4π r12
(1−α1 ·α2) ei|q|r12 . (11)

The energy shift can be obtained by means of the Gell-Mann–Low–Sucher formula [1, 2], and for
the single-photon exchange this leads to ∆E =

〈
Φ

∣∣∣V21(q)
∣∣∣Φ〉

.
The delta function in (9) implies that energy is conserved during the process – the energy of

the final state (εr +εs) is equal to that of the initial state (εa +εb). As mentioned previously, this
restricts the applicability of the S-matrix formulation to cases with a single reference function
and prevents the use of an extended model space with several reference functions in order to
treat quasi-degeneracy in the MBPT way. In the following sections we shall describe a modified
procedure, which is free from this limitation.

Time-evolution-operator formalism

The reason for the energy conservation in the S -matrix formulation is the fact that the time
integration is extended over the entire time range, from −∞ to +∞. Instead of the S -matrix, we
shall investigate the more general time-evolution operator U(t, t0), defined in (6). This is the basic
tool in time-dependent perturbation theory, which has been applied in non-QED calculations for
a long time [12, 13].

The evolution operator is in standard perturbation theory used only for forward time evolu-
tion. In order to be able to apply the procedure also to bound-state QED problems, this has to
be extended to include forward as well as backward time evolution, which will make it possible
to adopt the covariant Feynman approach. In this way an effective QED hamiltonian of the type
(2) can be derived, applicable also to an extended model space.

We consider first systems with a single reference state and as before add an adiabatic damping
factor to the perturbation. Gell-Mann and Low [1] have shown that in the limit γ → 0

|Ψ̃〉 =
|Ψ〉
〈Φ|Ψ〉

= lim
γ→0

U(0,−∞)|Φ〉
〈Φ|(0,−∞)|Φ〉

(12)

is regular and an eigenfunction of the full hamiltonian [14, p. 61], [15, p. 336]. The evolution
operator can be represented by diagrams of Goldstone type, which are linked as well as unlinked.
Unlinked diagrams have one or several disconnected, closed parts with the initial as well as the
final state in the model (P ) space. These diagrams are singular as γ → 0 but are eliminated from



the evolution-operator expansion in the ratio (12), which is therefore regular. In the intermediate
normalization, we then obtain

|Ψ̃〉 =
(
1 +QU(0,−∞)Linked

)
|Φ〉, (13)

which is the linked-diagram theorem [16, 17]. The operator
(
1+QU(0,−∞)Linked

)
P corresponds

to the wave operator in MBPT (3). (P and Q are the projection operators for the model and
complementary spaces, respectively.)

The original treatment of Brueckner–Goldstone and Gell-Mann–Low, valid for a single ref-
erence state (closed-shell systems), was later generalized to the degenerate case in the 1970’s
by several groups [13, 18, 19, 20], working mainly with nuclear problems. The Gell-Mann–Low
formula (12) can then be generalized to

|Ψ̃α〉 = lim
γ→0

U(0,−∞)|φα〉
〈φα|U(0,−∞)|φα〉

, (14)

where {φα} are certain functions in the model space. In addition to the unlinked diagrams,
singularities may here appear also for linked diagrams with a model-space state appearing as an
intermediate state. We refer to such diagrams as reducible. The remaining irreducible diagrams
are regular.

In intermediate normalization the zeroth-order wave function, corresponding to (14), is

|Ψ̃α
0 〉 = P |Ψ̃α〉 = lim

γ→0

P U(0,−∞)|φα〉
〈φα|U(0,−∞)|φα〉

. (15)

For convenience we introduce a new operator

V (t,−∞) = U(t,−∞)− 1, (16)

which we rewrite according to

V (t,−∞)P =
[
V (t,−∞)Irr + δV (t,−∞)

]
P U(0,−∞)P. (17)

V (t,−∞)Irr represents the irreducible part of the evolution operator, and the modification oper-
ator δV (t,−∞) is defined by this factorization. For the modified operator in the square brackets
we introduce a special symbol

Ṽ (t,−∞)Irr = V (t,−∞)Irr + δV (t,−∞); V (t,−∞) = ṼIrr(t,−∞)P U(0,−∞)P. (18)

For time-independent interactions, as in nuclear many-body applications, δV can be expressed in
terms of folded diagrams, which take care of the difference in the time orderings [13]. For time-
dependent interactions, as in bound-state QED, there will be additional contributions, appearing
when the singularities – or the very large contributions in the case of quasi-degeneracy – are
eliminated. We refer to these contributions as Model-Space Contributions, MSC. 2

Inserting (17, 18) into the Gell-Mann–Low relation (14), we obtain, using (15),∣∣Ψ̃α
〉

=
(
1 +Q Ṽ (0,−∞)Irr

) ∣∣Ψ̃α
0

〉
. (19)

The operator
(
1 +Q Ṽ (0,−∞)Irr

)
P corresponds to the wave operator in MBPT (3), (13).

From the relation (17) and using V = U−1 we obtain (for simplicity leaving out the arguments)

δV PUP =
(
V − VIrr PU

)
P =

(
V − VIrr − VIrr PV

)
P

2These contributions have previously often been referred to as reference-state contributions, but since model-
space states which are not exactly degenerate (quasi-degenerate) with the intitial (reference) state also contribute,
we find that the term model-space contributions more adequate.



or δV =
(
V − VIrr − VIrr PV − δV PV

)
P =

(
V − VIrr − ṼIrr PV

)
P.

Using (18), this leads to the useful recursive formula

ṼIrrP =
(
VIrr + δV

)
P =

(
V − VIrrPV − δV PV

)
P =

(
V − ṼIrrPV

)
P

and the expansion of the modified evolution operator

ŨIrrP =
(
U − ṼIrrPṼIrr − ṼIrrPṼIrrPṼIrr − ...

)
P, (20)

which is our main result in this section. Here, the ’counter terms’ eliminate the single, double,...
singularities of U – and the corresponding large contributions appearing in the case of quasi-
degeneracy. Thus, the modified evolution operator, ŨIrr, which is the basic tool in this formalism,
is regular in all orders.

In lowest non-trivial order (20) leads to

Ũ
(4)
Irr P =

(
U (4) − U (2)PU (2)

)
P. (21)

The contribution to the effective hamiltonian is obtained by the relation [18, 5]

H ′
eff = P

[
i
∂

∂t
Ũ(t,−∞)Irr

]
t=0

P. (22)

Application of the evolution-operator technique to bound-
state QED problems

Single-photon exchange. Covariant form of the evolution operator.

We shall now apply the covariant evolution-operator technique to the interaction between the
electrons and start with the single-photon exchange, earlier treated with the S-matrix formalism
(Fig. 1). In order to be able to include negative-energy states, it is necessary to allow time to
run also in the backward direction, illustrated by the time-ordered (Goldstone) diagrams in Fig.
2. These can be combined into a Feynman diagram in Fig. 3 and expressed by the evolution
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Figure 2: Time-ordered (Goldstone) diagrams representing the evolution operator for single-photon exchange
between the electrons for forward (a) and backward (b) time evolution. The subscripts of the field operators
indicate particle and hole part, respectively.

operator

〈rs|U (2)
Cov(t

′,−∞)|ab〉 =
〈
rs

∣∣∣ ∫∫
dt1 dt2 iSF (x′1, x1) iSF (x′2, x2)

×I21 eit′(εr+εs) e−iεat1−iεbt2 e−γ(|t1|+|t2|)
∣∣∣ab〉. (23)
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Figure 3: Feynman-type diagram, representating the covariant form of the evolution operator for single-photon
exchange. The straight line between dots represents the electron propagator.

Performing the integrations yields〈
rs

∣∣∣U (2)
Cov(t

′,−∞)
∣∣∣ ab〉 =

〈
rs

∣∣∣∣∫ dk f21(k)
[

1
q − (k − iγ)r

+
1

q′ − (k − iγ)s

]∣∣∣∣ ab〉
×e−it′(q+q′+iγr+iγs)

q + q′ + iγr + iγs
(q = εa − εr; q′ = εb − εs; (A)x = (A) sgn(εx)). (24)

If the outgoing state 〈rs| lies in the complementary Q space (outside the model space), then
q + q′ 6= 0, and the expression is regular as γ → 0. For t′ = 0 this then yields a contribution to
the first-order wave operator (3),

Ω(1) =
∑

|rs〉∈Q

|rs〉〈rs|V21(q, q′)|ab〉
εa + εb − εr − εs

; V21(q, q′) =
∫

dk f21(k)
[

1
q − (k − iγ)r

+
1

q′ − (k − iγ)s

]
.

(25)
If the outgoing state 〈rs| lies in the P or model space, we get a contribution to the first-order
effective hamiltonian, using (22),

〈rs|H ′
eff |ab〉 = 〈rs|V21(q, q′)|ab〉. (26)

The time derivation eliminates here the last denominator in (24), which becomes singular, when
q + q′ = 0 – or very large when q + q′ ≈ 0 in the case of quasi-degeneracy. V (q, q′) is the
equivalent interaction to be compared with the S-matrix result (10). It is easy to show that the
two results are identical for diagonal elements, but the evolution-operator result is applicable also
when energy is not conserved between the initial and final states.

The results (25) and (26) show that in this form of bound-state QED the first-order wave
operator and effective hamiltonian are given by expressions quite analogous to those of standard
time-independent MBPT [10]. This holds also in higher orders and will open the possibility to
combine bound-state QED with MBPT in a systematic fashion [5].

Two-photon electron-electron interaction

We consider next the two-photon (ladder) exchange, illustrated in Fig. 4, corresponding to the
covariant evolution operator〈

rs
∣∣∣U (4)

Cov(t
′,−∞)

∣∣∣ ab〉
Ladder

=
〈
rs

∣∣∣ ∫∫
d4x3 d4x4

∫∫
dt1 dt2 iSF (x′4, x4) iSF (x′3, x3) I43

×iSF (x4, x2) iSF (x3, x1) I21 eit′(εr+εs) e−iεat1−iεbt2 e−γ(|t1|+|t2|+|t3|+|t4|)
∣∣∣ab〉. (27)

This can be evaluated in the standard way. The diagram has a reducible part, when a model-
space state appears as the intermediate state and the two photons do not overlap in time [5].
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Figure 4: Graphical representation of the covariant evolution operator for the two-photon-photon ladder interaction
between the electrons.

The modified operator ŨIrr ( 20, 21), however, is free from singularities – as well as from the very
large contributions appearing in the case of quasi-degeneracy. No special procedure is needed
to evaluate the residual contributions from the reducible diagrams, the so-called Model-Space
Contributions, MSC. They follow directly from the general expression for ŨIrr, which is regular.
It is easy to show that for elements diagonal in energy the MSC obtained in this way agree with
those obtained with the S-matrix formalism, although not necessarily for each diagram separately.

The contribution to the effective hamiltonian is evaluated by means of (22). For elements di-
agonal in energy the results agree with those obtained with the standard S-matrix formalism [21].

The crossed two-photon diagram can be treated in a similar way as the ladder diagram. Here,
there is no reducible part, and no counter terms appear.

Application to the fine structure of He-like ions

In earlier works we have reported on second-order QED calculations of the ground-state energy
of He-like ions, both the non-radiative [21] and radiative parts [22]. Similar calculations have
also been performed by other groups [23, 24]. In the present work we report on corresponding
calculations on excited states of such ions, restricting ourselves here to the two non-radiative
diagrams, the two-photon ladder and the two-photon crossed diagram, discussed above. We have
investigated the 1s2p multiplet, and for light and medium-heavy elements this requires the use of
an extended model space, for which the new procedure described here is particular appropriate.
Preliminary results with the new technique are here presented for the first time.

Numerical results for 1s2p states

We have employed the same numerical procedure as in our previous calculations [21], but the
results are still preliminary. (Our numerical accuracy is presently of the order of 10−5 H, and we
are presently in the process of improving this at least one order of magnitude.) The calculated
energy levels (in LS notations) together with the corresponding experimental values are collected
in Table 1. The first two columns give the result in first order – without and with diagonalization
of the model-space hamiltonian – the next column the second-order result (with diagonalization),
and in the fourth column we have added higher-order many-body effects, obtained in a separate
relativistic (non-QED) many-body calculation [4], as well as the mass-polarization, taken from
Drake [25]. Finally, comparison is made with the calculations of Drake and with available exper-
imental results [26]. The results are normalized to the state J = 0 and given in Hartree atomic
units (1H=27.2 eV).

Discussion

The results presented here agree well with the results of Drake [25] as well as with available
experimental data [26]. It should be noted, though, that our calculations are still incomplete.



Table 1: Preliminary results for the 1s2p energy levels of He-like Ne and Ar. The 3P0 state is
used as reference. Values given in Hartree atomic units (1H=27.2 eV).

Z State First order First order Second order Incl. Drake* Expt’l**
No diag. Diagonaliz. Diagonaliz. HO MBPT

10 1P1 0.235 0.3439 0.26103 0.26581 0.26588
3P2 0.0071 0.0071 0.00849 0.00844 0.00846 0.008457(2)
3P1 0.1091 0.0007 0.00133 0.00131 0.00136 0.001369(7)
3P0 0 0 0 0 0 0

18 1P1 0.5338 0.6890 0.60979 0.61317 0.61333
3P2 0.1202 0.1202 0.12474 0.12464 0.12481 0.12495(3)
3P1 0.1774 0.0223 0.02337 0.02347 0.02360
3P0 0 0 0 0 0 0

* From reference [25] ** From reference [26]

So far, only the non-radiative QED effects (two-photon ladder and cross) are included, while the
radiative effects (vacuum polarization and self energy) remain to be done. (The overall QED
effects is for Ne of the order of 50 and for Ar a few hundred µ Hartree.) Furthermore, our
calculations are performed in the Feynman gauge, and the results are expected to be slightly
gauge-dependent. We are presently investigating this dependence.

In the case of the 3P2 −3 P0 separation for Ar there is a significant difference between the
result of Drake and the new experimental result of Kukla et al [26]. We believe that this is due to
higher order many-body-QED effects, and it is our ambition to test this hypothesis by the more
complete caclulations that we are now performing.

Summary and conclusions

In this work we have summarized and further developed the bound-state QED formalism, based
upon the covariant form of the time-evolution operator [5]. With this formalism it is possible
to evaluate elements non-diagonal in energy and thereby to apply the extended-model-space
procedure, developed in non-QED many-body perturbation theory [10]. This is not possible with
the traditional S-matrix formalism, where only elements diagonal in energy can be evaluated. It
is demonstrated that the two formalisms lead to the same results for elements diagonal in energy.
In the formalism presented here all singularities are eliminated. This implies that the evaluation
of the Model-Space Contributions, i. e., contributions due to model-space states appearing as
intermediate states, which is quite cumbersome in the S-matrix formulation and the Gell-Mann–
Low–Sucher procedure, is here quite simple. Corresponding contributions appear also for quasi-
genenerate model-space states and are evaluated in the same straightforward way.

We have applied the new formalism to an extended model space including the quasi-degenerate
states 1s 2p1/2 and 1s 2p3/2 of some heliumlike ions, and numerical results are presented for the
first time. The agreement with available experimental data is quite good. So far, only non-
radiative QED effects are included, but calculations of the corresponding radiative effects are
under way.
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Figure 5: Comparison between the theoretical and experimental energy levels of the 1s 2p multiplet for some
He-like ions. Our first-order results are shown in pure j-j coupling as well as after diagonalization of the effective
hamiltonian, and the second-order results only after this diagonalization. Comparison is made with experimental
results, when available, (full line) and with the theoretical results of Drake [25] (dotted).


