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Many-Body Calculations of the Electron Affinity for Ca and Sr
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(Received 2 January 1996)

We have combined the quasiparticle method in many-body perturbation theory with methods used
when solving the coupled-cluster equations in order to evaluate the proper self-energy potential beyond
second order in perturbation theory. The method is used to calculate the affinities of Ca and Sr including
second-order relativistic effects. The result is 19 meV for Ca2 4p1y2 and 54 meV for Sr2 5p1y2, which
are in fair agreement with experiment. [S0031-9007(96)00040-3]

PACS numbers: 31.10.+z, 31.15.Ar
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Negative alkaline-earth ions pose a formidable challe
in atomic physics. They form a critical testing ground f
atomic theory, and it is hard to make accurate meas
ments on them, since they are very fragile quantum s
tems. Specifically for Ca2 and Sr2 it has turned out to be
very hard to acquire reliable data from both experiment a
theoretical calculations. There is no long-range Coulo
field present outside the neutral atom, and the extra e
tron is bound solely through correlation with the oth
electrons. For both Ca2 and Sr2 the single-configuration
Hartree-Fock (HF) model does not even produce a bo
single-particle orbital for the extra electron.

In 1987 the stable negative Ca ion, in the state4s24p 2P,
was both predicted [1] and observed [2]. The first the
retical prediction of the electron affinity by Froese-Fisch
was 45 meV and in the first experiment, by Pegg and
workers, the result43 6 7 meV was obtained. The dis
covery of Ca2 stimulated a large amount of theoretic
work. Several theoretical results were published betw
1987 and 1992, most of them in the range from 45
82 meV; see Refs. [1,3–9].

A few years ago, however, Walter and Peterson [
measured a substantially smaller electron affinity for C
18.4 6 2.5 meV. Nadeauet al. [11] obtained the value
17.514

22 meV in an independent measurement the sa
year. Very recently the affinity has also been measu
in Aarhus [12], and their result is24.55 6 0.10 meV for
4p1y2 and19.73 6 0.10 meV for 4p3y2, resolving the fine
structure for the first time.

The situation is similar for Sr2. In a recent mea-
surement by Berkovitset al. [13] an electron affinity of
48 6 6 meV was obtained, while there are several th
retical results reported in the range from 93 to 160 m
[3–6,8,9,14].

Since there are large discrepancies between the m
sured affinities and most theoretical results for both
and Sr, it is of great interest to improve the theoreti
methods to gain a deeper understanding of the correla
effects responsible for binding an extra electron to th
neutral atoms.

In this Letter we report on calculations on Ca2 and Sr2

using a many-body perturbation-theory (MBPT) approa
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for evaluating the proper many-body self-energy (S
potential to high orders. In previous calculations [5,6,
using this proper self-energy potential (PSEP) approa
only the lowest order [5] and restricted classes of high
order contributions [6,9] to this potential were include
yielding poor agreement with experiment. To improv
these calculations we found it necessary to include high
order contributions to the potential systematically. Th
gives a significant improvement in the agreement betwe
theory and experiment when compared to earlier MBP
results.

Ca2 and Sr2 have the same principal electron con
figuration,scoredns2np. The twons electrons and thenp
electron are loosely bound, and the systems are essent
effective three-body systems. Therefore, in our ana
sis we will refer to all three outer electrons as valen
electrons. This separation between core and valence e
trons is used to divide the correlation effects into valen
correlation, core-valence correlation, and core correlat
contributions.

Calculations including only valence correlation give
affinities between 73 and 75 meV for Ca [3,15]. By includ
ing only the valence correlation the binding force seem
greatly overestimated. If the core-valence correlation
also taken into account, the affinity is reduced substa
tially [15,16]. Thus, the attractive valence correlation
to a large extent screened by the correlation with the co

In order to introduce the PSEP method, we conside
negative ion having a single electron outside closed she
Such systems can be treated in MBPT as effective o
body systems because the interaction between the sin
electron and the rest of the system can be describ
with a nonlocal, energy-dependent potential, the PSE
This potential describes the correlation effects on t
interaction between the attached electron and the neu
atom. The quasiparticle orbitalwsrd of the outer electron
satisfies thequasiparticle equation

h0wsr2d 1
Z

S?sr2, r1, ´dwsr1dd3r1 ­ ´wsr2d , (1)

where h0 is a zeroth-order single-particle Hamilton
ian, for example, the HF Hamiltonian used in this wor
© 1996 The American Physical Society
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rons, and
cluding
FIG. 1. The second-order skeletons contributing to the PSEP using the HF potential inh0. The solid lines with an arrow are
electron lines and the dashed lines denote the Coulomb interaction. Electron lines pointing downwards denote core elect
lines pointing upwards denote virtual electrons. The horizontal double lines represent the effective Coulomb interaction in
the pair-correlation effects discussed in connection with Fig. 2. The energy dependence of the PSEP is denoted by´.
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S?sr2, r1, ´d is the PSEP, which accounts for the corr
lation effects beyond the single-particle model describ
by h0. For large distances, the total potential for the ou
electron approaches the local dipole polarization poten
proportional tor24. The application of this approach t
negative ions was first done by Chernyshevaet al. [17] on
He2 and Pd2.

In this work we have used the HF model of the close
shell neutral atom to define the zeroth-order approxim
tion, h0. This means that all electrons in the negative i
feel the direct and exchange interaction with the atom
electrons described by atomic HF orbitals. Having calc
lated the PSEP to some level of approximation, it is add
to h0, and the quasiparticle equation is solved in the sa
way as the zeroth-order equation. SinceS? is energy de-
pendent, the equation has to be solved self-consiste
with respect tó .

The PSEP can be expanded in terms of the Coulomb
teraction using ordinary perturbation theory. With the H
model, the first nonvanishing contributions are given
the four second-order Goldstone diagrams in Fig. 1 (w
the first-order approximation of the effective Coulomb i
teraction). In third order with our choice ofh0 there
are 52 independent diagrams contributing to the PS
All second-order and third-order contributions can be d
scribed as two-body correlation effects. In fourth ord
the number of Goldstone diagrams is more than a fac
of 10 larger and also true three-particle effects contribu
Therefore a complete order-by-order calculation beyo
third order is presently unfeasible.

A systematic inclusion of higher-order contributions
the PSEP can be accomplished by combining the quasi
ticle method with all-order MBPT methods used to sol
the coupled-cluster equations [18–20].

In order to go beyond the second-order approximat
of the PSEP, we solve equations for the one- and two-b
cluster operatorsS1 andS2. We follow closely the method
described in Ref. [20] but with modifications to achiev
the PSEP instead of the corresponding SE denoted byW1.
In this work only linear terms have been included in t
cluster equations. The equations solved are

fS1, H0g ­ QsV2S2d1,c ,

fS2, H0g ­ QsV2 1 V2S2d2,c , (2)

where V2 is the two-body part of the Coulomb interac
tion, Q is the projection operator onto excited states, a
-
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the subscriptc denotes that only connected diagrams a
retained. The diagrammatic representation of the clus
equations, Eq. (2), is shown in Fig. 2. These cluster eq
tions are solved self-consistently by iterative method
thereby including pair-correlation effects to all order
The truncation used for evaluating the proper SEW?

1 (cor-
responding to the PSEP) is

W?
1 ­ PfV2S2 1 sSy

2 V2S2dr 1 V2S1 1 S
y
1 V2g1,c , (3)

where the projection operatorP is equal to 1 2 Q.
This truncation forW?

1 is of Hermitian form [21]. The
subscriptr on the termsSy

2 V2S2dr denotes that restrictions
are imposed in order to avoid double counting. Using t
first- and second-order approximations of the clustersS1

andS2 a complete third-order proper SE can be evaluate
The self-consistent solutions forS1 and S2 will yield a
proper SE which is complete to third order and contai
systematically a large class of effects to all orders. T
relation between the proper SE,W?

1 , and the PSEP,S?s´d,
is W?

1 ­ kw0jS
?jw0l wherew0 is the zeroth-order orbital

for the outermost electron. The total SE, on the oth
hand, can be evaluated asW1 ­ kwjS?jwl wherew is the
quasiparticle orbital from Eq. (1).

In order to compare with previous calculations, we ha
first evaluated the PSEP to second order both nonre
tivistically and relativistically (only Coulomb interaction)
using the numerical finite basis-set method as describe
Ref. [19]. The radial coordinate is discretized withr ­
exyZ, where the grid points are equidistantly distribute

FIG. 2. Diagrammatic representation of the one-body,S1, and
two-body,S2, cluster equations solved in this work.
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TABLE I. Second-order binding energies for Ca2 4p and Sr2 5p. Active core:3s23p64s2

and 3d104s24p65s2, respectively. Dr npj are the relativistic shifts for the statesnpj .
Units meV.

Ca2 4p 4p1y2 4p3y2 Dr 4p1y2 Dr 4p3y2 DEfs

l # 4a 250.6 245.8 239.9 4.8 10.7 5.9
l # 8a 262.1 257.3 251.1 4.8 11.0 6.2
Johnsonb 256.6
Dzubac 256 249 6.9

Sr2 5p 5p1y2 5p3y2 Dr 5p1y2 Dr 5p3y2 DEfs

l # 4a 2104 287 264 17 40 23
l # 8a 2119 2101 276 18 43 25
Johnsonb 293
Dzubac 2102 280 22
aThis work.
bJohnson, Sapirstein, and Blundell [5],jkj # 9, 3d10 not active in Sr2.
cDzubaet al. [9], 3s2 not active in Ca2, active core unknown for Sr2.
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in x from xmin ­ 26.0 to xmax ­ 8.0, corresponding to
Rmax ø 150 a.u. for Ca2. In Table I we compare our re-
sults with those of Johnson, Sapirstein, and Blundell [
and Dzubaet al. [9]. In the relativistic calculation by
Johnson, Sapirstein, and Blundell only the second-ord
contributions to the PSEP were retained. By using virtu
core-excited states calculated in the presence of a core h
Dzubaet al. included a certain class of effects beyond se
ond order. In addition, a class of polarization effects b
yond second order was added. The agreement with b
Johnson, Sapirstein, and Blundell and the second-order
sults of Dzubaet al. is good. The small difference can be
explained by different truncation for the angular momen
and different size of the box.

In the final nonrelativistic calculations we have also in
cluded effects beyond second order in the PSEP as in
cated above. A pure second-order plus third-order PS
doesnot yield a bound4p state in Ca2, demonstrating
how sensitive the problem is to correlation. The size
the contributions to the PSEP can be estimated by cal
lating the SE,W1, using a quasiparticle orbital with the
experimental binding energy. By doing so we have foun
that the size of the second-order effects is,2320 meV
(giving the binding energy,260 meV) and the total
third-order SE contributes with,170 meV (leading to
a nonbound result). Out of the 52 independent third-ord
diagrams 10 arelarger in size than 70 meV, 21 of them
are in the range between 20 and 70 meV, and only 4
less than 2 meV. Clearly the PSEP has not converged
third order. To calculate the binding energy accurate
one needs to include even higher-order effects system

TABLE II. Binding energy for 4p in Ca2. Dependence
on angular momentum truncation. Active core:3s23p64s2.
Units meV.

lmax 4 6 8 10

Second order 250.6 259.7 262.2 263.2
Self-consistent 223.73 223.67 223.64 223.63
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cally in the PSEP, and this has been done by solving t
cluster equations, Eq. (2), iteratively to self-consistency

In Table II the calculated second-order and sel
consistent binding energies for Ca2 are given for different
angular momentum truncations. As seen from the tab
the l convergence shows quite a different behavior for th
two results.

The results for different choices of active core in Ca2 are
given in Table III. Also here the behavior of the second
order and self-consistent binding energies are differe
For the self-consistent values the valence correlation h
a strong binding effect but the binding energy is signifi
cantly reduced by the correlation with the3p shell. The
influence of the other shells in the core is much smalle
Our result including only valence correlation,239.0 meV,
differs from the results by Froese-Fisher,273.0 meV, and
by Sundholm and Olsen,274.9 meV. This indicates that
there are still important valence-correlation effects left o
in our calculation. The valence correlation is, howeve
screened by the correlation with the core. Our nonrel
tivistic result, including also correlation with and within
the core, is223.6 meV, which is close to the later experi-
ments. This indicates that the missing valence correlati
effects (true three-particle effects and coupled-cluster
fects) to a large extent are canceled by corresponding
fects involving the core that have been neglected.

In Table IV our final results are given for both Ca2

and Sr2. The binding energies given are the nonrela
tivistic self-consistent energies,223.6 meV for Ca2 and
272.4 meV for Sr2, plus the relativistic effects from

TABLE III. Binding energy for 4p in Ca2. Dependence
on the choice of active core denoted in the table by th
lowest active core shell. Angular momental # 4 are included.
Units meV.

Act. core 4s 3p 3s 2p 2s 1s

Second order 218.1 249.1 250.6 252.4 252.8 252.9
Self-cons 239.0 223.4 223.7 223.1 223.6 223.6
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TABLE IV. Final results for Ca2 4p and Sr2 5p. Active core: 3s23p64s2 and
3d104s24p65s2, respectively. Angular momental # 8 are included. Units meV.

Ca2 Sr2

4p1y2 4p3y2 DEfs 5p1y2 5p3y2 DEfs

This work 219 213 6.2 254 229 25
Expt. 224.55 a 219.73 a 4.8a 248 6 6d 26 6 7d

218.4 b

217.5 c

aPetruninet al. [12].
bWalter and Peterson [10].
cNadeauet al. [11].
dBerkovitset al. [13].
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second order given in Table I. The fine-structure inter
DEfs given in Tables I and IV are deduced from th
pure second-order calculations and can be improved
implementing the iterative method for evaluating the PS
also relativistically.

In summary, by combining the quasiparticle meth
with methods used when solving the coupled-cluster eq
tions in MBPT, we have evaluated the PSEP in a syst
atic way beyond second order. The potential is comp
to third order and contains large classes of effects to
orders. By doing so we have succeeded in calcula
the binding energies for the4p1y2 state in Ca2 and the
5p1y2 state in Sr2 with significantly improved accuracy
when compared to previous MBPT calculations [5,6,
We have found that a low-order approximation of the PS
is definitely not sufficient to obtain accurate binding en
gies for these systems.
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