Combined Many-Body-QED Calculations

Numerical solution of the Bethe-Salpeter equation

Ingvar Lindgren, Sten Salomonson, and Daniel Hedendahl Department of Physics, Göteborg University

Symposium in Memory of Gerhard Soff Frankfurt, April 2005

Bound/SoffSymp

Combined Many-Body-QED Calculations

Numerical solution of the Bethe-Salpeter equation

Ingvar Lindgren, Sten Salomonson, and Daniel Hedendahl Department of Physics, Göteborg University

Physics Reports 389, 161 (2004) Einstein Centennial paper: Can. J. Physics, March 2005

Symposium in Memory of Gerhard Soff Frankfurt, April 2005

Bound/SoffSymp

Normally regarded as separate techniques

MBPT and QED combined in CovEvOp

Physics Reports 389, 161 (2004)

CovEvOp can connect to the BS eqn Einstein Centennial Paper: Can. J. Physics, March 2005

CovEvOp can connect to the BS eqn Einstein Centennial Paper: Can. J. Physics, March 2005

Connects MBPT and full BS eqn

Fine structure of helium atom

Fine-structure constant

(from Drake, Can. J. Phys. 80, 1195 (2002))

Standard approaches for QED calculations

1. Analytical

 α , $Z\alpha$ expansions from Bethe-Salpeter eqn Evaluated with correlated wave function Applicable to light elements (Drake, Pachucki and others)

Standard approaches for QED calculations

1. Analytical

 α , $Z\alpha$ expansions from Bethe-Salpeter eqn Evaluated with correlated wave function Applicable to light elements (Drake, Pachucki and others)

2. Numerical S-matrix, Green's function

QED effects evaluated **numerically** with **uncorrelated** wave functions Applicable to **medium-heavy** & **heavy** elements

Standard approaches for QED calculations

1. Analytical

 α , $Z\alpha$ expansions from Bethe-Salpeter eqn Evaluated with correlated wave function Applicable to light elements (Drake, Pachucki and others)

2. Numerical S-matrix, Green's function

QED effects evaluated **numerically** with **uncorrelated** wave functions Applicable to **medium-heavy** & heavy elements Relativistic Furry picture, **only** α **expansion**

Numerical approach

1. Start from hydrogenic Dirac orbitals (Green's functions) in nuclear potential (Furry picture)

12

Numerical approach

1. Start from hydrogenic Dirac orbitals (Green's functions) in nuclear potential (Furry picture)

Bound el. Free el. Nuclear interactions

All orders in $Z\alpha$

Non-radiative

Radiative

Non-radiative

Radiative

Applied mainly to heavy elements Only one- and two-photon exchange can be evaluated Electron correlation poorly treated

Non-radiative

Radiative

Applied mainly to heavy elements Only one- and two-photon exchange can be evaluated Electron correlation poorly treated

> S-matrix: Energy conservation Not applicable to quasi-degeneracy

Non-radiative

Radiative

Applied mainly to heavy elements Only one- and two-photon exchange can be evaluated Electron correlation poorly treated

> S-matrix: Energy conservation Not applicable to quasi-degeneracy

No information about wave function

Non-radiative

Radiative

Applied mainly to heavy elements Only one- and two-photon exchange can be evaluated Electron correlation poorly treated

> S-matrix: Energy conservation Not applicable to quasi-degeneracy

No information about wave function No combination of QED and many-body effects

Non-radiative

Radiative

Applied mainly to heavy elements Only one- and two-photon exchange can be evaluated poorly treated

> S-matrix: Energy conservation Not applicable to

No information about wave function No combination of QED and many-body effects Can the advantages of the analytical and numerical approaches be combined?

1. Model space (P)

Strongly mixed states included in the model space Important for **quasi-degeneracy** (fine structure).

1. Model space (P)

Strongly mixed states included in the model space Important for **quasi-degeneracy** (fine structure).

2. Wave operator (Ω)

$$\Psi^{\alpha} = \mathbf{\Omega} \Psi^{\alpha}_{0} \qquad \Psi^{\alpha}_{0} = \mathbf{P} \Psi^{\alpha} \qquad (\alpha = 1, 2, \cdots d)$$

1. Model space (P)

Strongly mixed states included in the model space Important for **quasi-degeneracy** (fine structure).

2. Wave operator (Ω)

$$\Psi^{\alpha} = \mathbf{\Omega} \Psi^{\alpha}_{0} \qquad \Psi^{\alpha}_{0} = \mathbf{P} \Psi^{\alpha} \qquad (\alpha = 1, 2, \cdots d)$$

 $\boldsymbol{\Omega}$ evaluated by perturbation expansion from Bloch eqn

$$[\mathbf{\Omega}, H_0] P = (V \mathbf{\Omega} - \mathbf{\Omega} P V \mathbf{\Omega}) P \qquad (V = 1/r_{12})$$

1. Model space (P)

Strongly mixed states included in the model space Important for **quasi-degeneracy** (fine structure).

2. Wave operator (Ω)

$$\Psi^{\alpha} = \mathbf{\Omega} \Psi^{\alpha}_{0} \qquad \Psi^{\alpha}_{0} = \mathbf{P} \Psi^{\alpha} \qquad (\alpha = 1, 2, \cdots d)$$

 $\boldsymbol{\Omega}$ evaluated by perturbation expansion from Bloch eqn

$$\left[\mathbf{\Omega}, H_0\right] P = \left(V \,\mathbf{\Omega} - \mathbf{\Omega} \, P V \mathbf{\Omega}\right) P \qquad (V = 1/r_{12})$$

The Bloch eqn can handle quasi-degeneracy

The Bloch eqn can also be used to generate All-order MBPT procedures Coupled-Cluster Approach

 $\Omega = \{e^S\} \qquad S = S_1 + S_2 + \cdots$

The Bloch eqn can also be used to generate All-order MBPT procedures Coupled-Cluster Approach

$$\Omega = \{e^S\} \qquad S = S_1 + S_2 + \cdots$$

Pair function (S_2)

The Bloch eqn can also be used to generate All-order MBPT procedures Coupled-Cluster Approach

 $\Omega = \{e^S\} \qquad S = S_1 + S_2 + \cdots$

(Pair) correlation can be treated to all orders

The MBPT technique can handle quasi-degeneracy and correlation effects to all orders.

The MBPT technique can handle quasi-degeneracy and correlation effects to all orders.

Can these effects be incorporated into a numerical QED procedure?

Time-dependent perturbation theory

Time-evolution operator:

 $\Psi(t) = \boldsymbol{U}(t, t_0) \Psi(t_0)$

$$\boldsymbol{U(t,t_0)} = 1 + \sum_{n=1}^{\infty} \frac{(-i)^n}{n!} \int_{t_0}^t d^4 x_n \dots \int_{t_0}^t d^4 x_1 T_{\mathsf{D}} \Big[\mathcal{H}'_{\mathsf{I}}(x_n) \dots \mathcal{H}'_{\mathsf{I}}(x_1) \Big]$$

 $\mathcal{H}'_{I}(x)$ the perturbation density in Interaction Picture

Time-dependent perturbation theory

Time-evolution operator:

 $\Psi(t) = \boldsymbol{U}(t, t_0) \Psi(t_0)$

$$\boldsymbol{U(t,t_0)} = 1 + \sum_{n=1}^{\infty} \frac{(-i)^n}{n!} \int_{t_0}^t d^4 x_n \dots \int_{t_0}^t d^4 x_1 T_{\mathsf{D}} \Big[\mathcal{H}'_{\mathsf{I}}(x_n) \dots \mathcal{H}'_{\mathsf{I}}(x_1) \Big]$$

 $\mathcal{H}'_{I}(x)$ the perturbation density in Interaction Picture

Adiabatic damping:

$$\mathcal{H}'_{\mathrm{I}}(x) \Rightarrow \mathcal{H}'_{\mathrm{I}}(x) \ e^{-\gamma|t|} \qquad \mathbf{U}(t, t_{0}) \Rightarrow \mathbf{U}_{\gamma}(t, t_{0}) \qquad \Psi(t) \to \Psi_{\gamma}(t)$$

$$\Psi_{0} = \lim_{t \to -\infty} \Psi_{\gamma}(t)$$

 $U(\infty, -\infty) = S$ is the S - matrix

 $U(\infty, -\infty) = S$ is the S - matrix

but we shall consider **finite** final times:

 $U(t,-\infty)$

Gell-Mann–Low theorem

Time-independent wave function given by

$$\Psi = \lim_{\gamma o 0} rac{oldsymbol{U}_{oldsymbol{\gamma}}(oldsymbol{0},-\infty)ig|\Psi_0ig
angle}{ig \Psi_0ig|oldsymbol{U}_{oldsymbol{\gamma}}(oldsymbol{0},-\infty)ig|\Psi_0ig
angle}$$

 $|\Psi_0
angle = P\Psi$ unperturbed wave function

Gell-Mann–Low theorem

Time-independent wave function given by

$$\Psi = \lim_{\gamma o 0} rac{oldsymbol{U}_{oldsymbol{\gamma}}(oldsymbol{0},-\infty)ig|\Psi_0ig
angle}{ig\langle\Psi_0ig|oldsymbol{U}_{oldsymbol{\gamma}}(oldsymbol{0},-\infty)ig|\Psi_0ig
angle}$$

 $|\Psi_0
angle=P\Psi$ unperturbed wave function

The evolution operator singular as $\gamma \rightarrow 0$ The denominator cancels the singularities

Gell-Mann–Low theorem

Time-independent wave function given by

$$\Psi = \lim_{\gamma o 0} rac{oldsymbol{U}_{oldsymbol{\gamma}}(oldsymbol{0},-\infty)ig|\Psi_0ig
angle}{ig \Psi_0ig|oldsymbol{U}_{oldsymbol{\gamma}}(oldsymbol{0},-\infty)ig|\Psi_0ig
angle}$$

 $|\Psi_0
angle=P\Psi$ unperturbed wave function

The evolution operator **singular** as $\gamma \rightarrow 0$

The denominator cancels the singularities

Brueckner-Goldstone Linked-Diagram Theorem
Evolution operator for single-photon exchange

$$t = t' \qquad \psi^{\dagger}_{+} \qquad \psi^{\dagger}_{$$

$$U^{(2)}(t', -\infty) = -\frac{1}{2} \iint_{-\infty}^{t'} d^4 x_1 d^4 x_2 \psi^{\dagger}_{+}(x'_1) \psi^{\dagger}_{+}(x'_2) \alpha_1^{\mu} i \underbrace{D_{F\mu\nu}(x_1 - x_2)}_{Photon propagator} \alpha_2^{\nu} \psi_{+}(x_2) \psi_{+}(x_1) e^{-\gamma(|t_1| + |t_2|)}$$

Evolution operator for single-photon exchange

$$U^{(2)}(t', -\infty) = -\frac{1}{2} \iint_{-\infty}^{t'} d^4 x_1 d^4 x_2 \psi^{\dagger}_{+}(x'_1) \psi^{\dagger}_{+}(x'_2) \alpha_1^{\mu} i \underbrace{D_{F\mu\nu}(x_1 - x_2)}_{Photon propagator} \alpha_2^{\nu} \psi_{+}(x_2) \psi_{+}(x_1) e^{-\gamma(|t_1| + |t_2|)}$$

 t_1 and t_2 integrated only from $-\infty$ to t'.

Evolution operator for single-photon exchange

$$U^{(2)}(t', -\infty) = -\frac{1}{2} \iint_{-\infty}^{t'} d^4 x_1 d^4 x_2 \psi^{\dagger}_{+}(x'_1) \psi^{\dagger}_{+}(x'_2) \alpha^{\mu}_1 i \underbrace{D_{F\mu\nu}(x_1 - x_2)}_{Photon propagator} \alpha^{\nu}_2 \psi_{+}(x_2) \psi_{+}(x_1) e^{-\gamma(|t_1| + |t_2|)}$$

 t_1 and t_2 integrated only from $-\infty$ to t'.

Non-covariant

Physics Reports 389, 161 (2004); Phys. Rev. A 64, 062505 (2001)

Particle states out Non-covariant

Physics Reports 389, 161 (2004); Phys. Rev. A 64, 062505 (2001)

Particle states out Non-covariant Hole states out

Physics Reports 389, 161 (2004); Phys. Rev. A 64, 062505 (2001)

Physics Reports 389, 161 (2004); Phys. Rev. A 64, 062505 (2001)

$$U_{\text{Cov}}^{(2)}(t', -\infty) = -\frac{1}{2} \iint d^3 x'_1 d^3 x'_2 \psi^{\dagger}(x'_1) \psi^{\dagger}(x'_2) \iint_{-\infty}^{\infty} d^4 x_1 d^4 x_2$$

× $i S_{\text{F}}(x'_1, x_1) i S_{\text{F}}(x'_2, x_2) \alpha_1^{\mu} i D_{\text{F}\mu\nu}(x_2 - x_1) \alpha_2^{\nu} \psi(x_2) \psi(x_1) e^{-\gamma(|t_1| + |t_2|)}$

Physics Reports 389, 161 (2004); Phys. Rev. A 64, 062505 (2001)

$$U_{\text{Cov}}^{(2)}(t', -\infty) = -\frac{1}{2} \iint d^3 x'_1 d^3 x'_2 \psi^{\dagger}(x'_1) \psi^{\dagger}(x'_2) \iint_{-\infty}^{\infty} d^4 x_1 d^4 x_2$$

× $i S_{\text{F}}(x'_1, x_1) i S_{\text{F}}(x'_2, x_2) \alpha_1^{\mu} i D_{\text{F}\mu\nu}(x_2 - x_1) \alpha_2^{\nu} \psi(x_2) \psi(x_1) e^{-\gamma(|t_1| + |t_2|)}$

 t_1 and t_2 integrated over all times

The evolution operator is singular

The evolution operator is singular Reduced evolution operator is regular

$$U_{\gamma}(t,-\infty)P = P + \widetilde{U}_{\gamma}(t,-\infty) P U_{\gamma}(0,-\infty)P$$

The evolution operator is singular Reduced evolution operator is regular

$$U_{\gamma}(t,-\infty)P = P + \widetilde{U}_{\gamma}(t,-\infty) P U_{\gamma}(0,-\infty)P$$

Factorization theorem for t = 0:

$$\frac{U_{\gamma}(0, -\infty)P}{\mathsf{Regular}} = \underbrace{\left[1 + Q \,\widetilde{U}_{\gamma}(0, -\infty)\right]}_{\mathsf{Regular}} \underbrace{P \, U_{\gamma}(0, -\infty)}_{\mathsf{Singular}} P$$

$$U_{\gamma}(0,-\infty)P = \left[1+Q\widetilde{U}_{\gamma}(0,-\infty)\right]PU_{\gamma}(0,-\infty)P$$

$$U_{\gamma}(0,-\infty)P = \left[1+Q\widetilde{U}_{\gamma}(0,-\infty)\right]PU_{\gamma}(0,-\infty)P$$

$$\Psi=rac{oldsymbol{U}_{oldsymbol{\gamma}}(0,-\infty)ig|\Psi_0ig
angle}{ig\langle\Psi_0ig|oldsymbol{U}_{oldsymbol{\gamma}}(0,-\infty)ig|\Psi_0
angle}$$

$$U_{\gamma}(0,-\infty)P = \left[1+Q\widetilde{U}_{\gamma}(0,-\infty)\right]PU_{\gamma}(0,-\infty)P$$

Gell-Mann–Low theorem:

$$\Psi = rac{oldsymbol{U}_{oldsymbol{\gamma}}(0,-\infty)ig|\Psi_0ig
angle}{ig\langle\Psi_0ig|oldsymbol{U}_{oldsymbol{\gamma}}(0,-\infty)ig|\Psi_0
angle}$$

 $\Psi = ig[1+Q\,\widetilde{m{U}}_{m{\gamma}}(0,-\infty)ig]\,P\,rac{m{U}_{m{\gamma}}(0,-\infty)|\Psi_0
angle}{\langle\Psi_0|m{U}_{m{\gamma}}(0,-\infty)\,|\Psi_0
angle}$

$$U_{\gamma}(0,-\infty)P = \left[1+Q\widetilde{U}_{\gamma}(0,-\infty)\right]PU_{\gamma}(0,-\infty)P$$

$$egin{aligned} \Psi &= rac{oldsymbol{U}_{\gamma}(0,-\infty) ig| \Psi_{0}
angle}{ig\langle \Psi_{0} ig| oldsymbol{U}_{\gamma}(0,-\infty) ig| \Psi_{0}
angle} \ \Psi &= ig[1 + Q \, \widetilde{oldsymbol{U}}_{\gamma}(0,-\infty) ig] \, egin{aligned} P \, rac{oldsymbol{U}_{\gamma}(0,-\infty) ig| \Psi_{0}
angle}{ig\langle \Psi_{0} ig| oldsymbol{U}_{\gamma}(0,-\infty) ig| \Psi_{0}
angle} \ P \, \Psi &= \Psi_{0} \end{aligned}$$

$$U_{\gamma}(0,-\infty)P = \left[1+Q\widetilde{U}_{\gamma}(0,-\infty)\right]PU_{\gamma}(0,-\infty)P$$

$$\Psi=rac{U_{\gamma}(0,-\infty)ig|\Psi_0ig
angle}{ig\langle\Psi_0ig|U_{\gamma}(0,-\infty)ig|\Psi_0ig
angle}$$

$$\Psi = egin{bmatrix} 1+Q\,\widetilde{U}_{m{\gamma}}(0,-\infty) \end{bmatrix} P rac{U_{m{\gamma}}(0,-\infty)|\Psi_0
angle}{\langle\Psi_0|U_{m{\gamma}}(0,-\infty)|\Psi_0
angle} \ Wave operator \ \Omega & P\Psi = \Psi_0 \end{cases}$$

$$U_{\gamma}(0,-\infty)P = \left[1+Q\,\widetilde{U}_{\gamma}(0,-\infty)
ight]P\,U_{\gamma}(0,-\infty)P$$

$$\Psi = rac{oldsymbol{U}_{\gamma}(0,-\infty)ig|\Psi_{0}ig
angle}{ig\langle \Psi_{0}ig|oldsymbol{U}_{\gamma}(0,-\infty)ig|\Psi_{0}ig
angle}$$

$$\Psi = egin{bmatrix} 1 + Q \, \widetilde{U}_{\gamma}(0, -\infty) \end{bmatrix} P rac{U_{\gamma}(0, -\infty) |\Psi_0
angle}{\langle \Psi_0 | U_{\gamma}(0, -\infty) |\Psi_0
angle}$$

Wave operator Ω
 $P \Psi = \Psi_0$
 $\Psi = \Omega \Psi_0$

$$\boldsymbol{U}_{\boldsymbol{\gamma}}(\boldsymbol{0},-\boldsymbol{\infty})\boldsymbol{P} = \left[1+Q\,\widetilde{\boldsymbol{U}}_{\boldsymbol{\gamma}}(\boldsymbol{0},-\boldsymbol{\infty})\right]\boldsymbol{P}\,\boldsymbol{U}_{\boldsymbol{\gamma}}(\boldsymbol{0},-\boldsymbol{\infty})\boldsymbol{P}$$

$$\Psi = rac{oldsymbol{U}_{oldsymbol{\gamma}}(0,-\infty)ig|\Psi_0ig
angle}{ig\langle\Psi_0ig|oldsymbol{U}_{oldsymbol{\gamma}}(0,-\infty)ig|\Psi_0ig
angle}$$

$$\begin{split} \Psi &= \begin{bmatrix} 1 + Q \, \widetilde{U}_{\gamma}(0, -\infty) \end{bmatrix} P \frac{U_{\gamma}(0, -\infty) |\Psi_0\rangle}{\langle \Psi_0 | U_{\gamma}(0, -\infty) |\Psi_0\rangle} \\ & \text{Wave operator } \Omega \end{bmatrix} P \frac{\Psi = \Psi_0}{\Psi = \Psi_0} \\ \hline \Psi &= \Omega \Psi_0 \end{bmatrix} \text{Links with MBPT} \end{split}$$

MBPT and QED combined in Cov.Ev.Op. method

Physics Reports 389, 161 (2004)

MBPT and QED combined in Cov.Ev.Op. method

Physics Reports 389, 161 (2004)

Can handle quasi-degeneracy

Fine structure of He-like ions

Ζ	${}^{3}P_{1} - {}^{3}P_{0}$	${}^{3}P_{2} - {}^{3}P_{0}$	${}^{3}P_{2} - {}^{3}P_{1}$	
2	29616.9509(9)		2291.1759(10) MHz	Expt'l
	29616.9496(10)		2291.1736(11)	Theory
3	155704.27(66)		-62678.41(66) MHz	Expt'l
	155703.4(1,5)		-62679.4(5)	Drake
9	701(10)		4364,517(6) μH	Expt'l
	680	5050	4362(5)	Drake
	690	5050	4364	Plante
	690	5050		Present
10	1371(7)	8458(2) μH		Expt'l
	1361(6)	8455(6)	265880	Drake
	1370	8469	265860	Plante
	1370	8460		Present
18		124960(30) $\mu {\sf H}$		Expt'l
		124810(60)		Drake
		124942		Plante
		124940		Present

I. Lindgren, S. Salomonson, and B. Åsén, Physics Reports **389**, 161 (2004) I. Lindgren, B. Åsén, S. Salomonson, and A.-M. Pendrill, PRA **64**, 062505 (2001)

Fine structure of He-like ions

		${}^{3}P_{1} = \frac{1}{\sqrt{2}} [\langle 1s, 2p_{1/2} +$	$\langle 1s, 2p_{3/2} $] quasi-deg	generate
	2 2	<u> </u>		
Z	${}^{3}P_{1} - {}^{3}P_{0}$	${}^{3}P_{2} - {}^{3}P_{0}$	${}^{3}P_{2} - {}^{3}P_{1}$	
2	29616.9509(9)		2291.175 9(10) MHz	Expt'l
	29616.9496(10)		2291.1736(11)	Theory
3	155704.27(66)		-62678.41(66) MHz	Expt'l
	155703.4(1,5)		-62679.4(5)	Drake
9	701(10)		4364,517(6) μH	Expt'l
	680	5050	4362(5)	Drake
	690	5050	4364	Plante
	690	5050	4364	Present
10	1371(7)	8458(2) μH		Expt'l
	1361(6)	8455(6)	265880	Drake
	1370	8469	265860	Plante
	1370	8460	265880	Present
18		124960(30) μH		Expt'l
		124810(60)		Drake
		124942		Plante
		124940		Present

I. Lindgren, S. Salomonson, and B. Åsén, Physics Reports **389**, 161 (2004) I. Lindgren, B. Åsén, S. Salomonson, and A.-M. Pendrill, PRA **64**, 062505 (2001)

Quasi-degeneracy with Cov.Ev.Op. method

Quasi-degeneracy with Cov.Ev.Op. method

QED with correlated wave functions

Quasi-degeneracy with Cov.Ev.Op. method

QED with correlated wave functions

Connection with **Bethe-Salpeter Eq.**

Can. J. Physics (2005)

Effective-potential method

Effective-potential method

Absorb the photon and integrate over momentum

Absorb the photon and integrate over momentum

Pair functions iterated further

Absorb the photon and integrate over momentum

Pair functions iterated further

QED effects evaluated with correlated wave functions

non-separable (irreducible)

non-separable (irreducible)

separable (reducible)

Effective potential

non-separable (irreducible)

separable (reducible)

Effective potential (with single covariant photon)

Comparison with *S*-matrix: (with two covariant photons)

Two retarded photons (Breit-Breit) included in S-matrix approach

Test of new technique (in μ H)

	Gr. state	1s ²
	S matrix	New technique
Coulomb-Gaunt NVP	-132.68	-132.61
Coulomb-Retardation NVP	20.17	20.14
Breit-Breit NVP		
Total NVP	-112.58	-112.47
	Exc. state	1s2s ¹ S
	S matrix	New technique s
Coulomb-Gaunt NVP	-33.3	-33.2
Coulomb-Retardation NVP	1.2	1.2
Breit-Breit NVP		
Total NVP -112.47	-32.1	-32.0

Test of new technique (in μ H)

	Gr. state	1s ²
	S matrix	New technique
Coulomb-Gaunt NVP	-132.68	-132.61
Coulomb-Retardation NVP	20.17	20.14
Breit-Breit NVP	-0.07	
Total NVP	-112.58	-112.47
	Exc. state	1s2s ¹ S
	S matrix	New technique s
Coulomb-Gaunt NVP	-33.3	-33.2
Coulomb-Retardation NVP	1.2	1.2
Breit-Breit NVP		
Total NVP -112.47	-32.1	-32.0

Comparison with *S*-matrix: (with two covariant photons)

Dominating part of 3-, 4-, ... photon exchange included in effective-potential approach

Effect of correlation on QED effect for helium atom

	Gr. state	$1s^{2}$	
Interaction	Sing. phot.	two-phot.	multi-phot.
Gaunt	107	-65	
Scalar ret.	0	10	
	Exc. state	1s2s ¹ S	
Interaction	Sing. phot.	two-phot.	multi-phot.
Gaunt	19.7	-16.6	
Scalar ret.	1.4	0.6	

Effect of correlation on QED effect for helium atom

	Gr. state	$1s^{2}$	
Interaction	Sing. phot.	two-phot.	multi-phot.
Gaunt	107	-65	11
Scalar ret.	0	10	-2
	Exc. state	1s2s ¹ S	
Interaction	Sing. phot.	two-phot.	multi-phot.
Gaunt	19.7	-16.6	4.7
Scalar ret.	1.4	0.6	-0.5

Effects beyond two-photon exchange orders of magnitude more important than Breit-Breit for light elements

The effective-potential approach leads faster to the **Bethe-Salpeter** equation:

$$(E-H_0)\Psi={oldsymbol{\mathcal{V}}}(E)\Psi$$

The effective-potential approach leads faster to the **Bethe-Salpeter** equation:

$$(E-H_0)\Psi={oldsymbol{\mathcal{V}}}(E)\,\Psi$$

and to the **Bethe-Salpeter-Bloch** equation:

 $\left[\Omega, H_0\right] = \mathcal{V}(E) \,\Omega - \Omega P \,\mathcal{V}(E) \,\Omega P$

for treating quasi-degeneracy

The effective-potential approach leads faster to the **Bethe-Salpeter** equation:

$$(E-H_0)\Psi=oldsymbol{\mathcal{V}}(E)|\Psi|$$

and to the **Bethe-Salpeter-Bloch** equation:

 $\left[\Omega, H_0\right] = \mathcal{V}(E) \,\Omega - \Omega P \,\mathcal{V}(E) \,\Omega P$

for treating quasi-degeneracy

Analogous to MBPT-Bloch equation:

 $[\Omega, H_0] P = V \Omega P - \Omega P V \Omega P$

Connection with Bethe-Salpeter Eq.

MBPT-QED

Connection with Bethe-Salpeter Eq.

Can. J. Physics (2005)

MBPT-QED

Connection with Bethe-Salpeter Eq.

Can. J. Physics (2005)

1. By combining **Evolution operator** and **MBPT** numerical QED technique is being developed

1. By combining Evolution operator and MBPT numerical QED technique is being developed

capable of handling quasi-degeneracy (Cov. Ev. Op. Method) (Demonstrated with energy of ${}^{3}P_{1}$ state of He-like ions)

1. By combining Evolution operator and MBPT numerical QED technique is being developed

capable of handling quasi-degeneracy (Cov. Ev. Op. Method) (Demonstrated with energy of ${}^{3}P_{1}$ state of He-like ions)

as well as electron correlation to all orders (Solving Bethe-Salpeter eqn by eff. pot. method)

1. By combining Evolution operator and MBPT numerical QED technique is being developed

capable of handling quasi-degeneracy (Cov. Ev. Op. Method) (Demonstrated with energy of ${}^{3}P_{1}$ state of He-like ions)

as well as electron correlation to all orders (Solving Bethe-Salpeter eqn by eff. pot. method)

2. Will lead to higher accuracy when combined QED and correlation significant Vital for light elements Important for medium-heavy elements

1. By combining Evolution operator and MBPT numerical QED technique is being developed

capable of handling quasi-degeneracy (Cov. Ev. Op. Method) (Demonstrated with energy of ${}^{3}P_{1}$ state of He-like ions)

as well as electron correlation to all orders (Solving Bethe-Salpeter eqn by eff. pot. method)

2. Will lead to higher accuracy when combined QED and correlation significant Vital for light elements Important for medium-heavy elements

3. Can contribute to extracting more accurate fine-structure constant from the helium fine structure by combining analytical and numerical techniques.

Fine-structure constant

(from Drake, Can. J. Phys. 80, 1195 (2002))

