Combined Many-Body-QED Calculations

Numerical solution of the Bethe-Salpeter equation

Ingvar Lindgren, Sten Salomonson, and Daniel Hedendahl Department of Physics, Göteborg University

Symposium in Memory of Gerhard Soff
 Frankfurt, April 2005

Combined Many-Body-QED Calculations

Numerical solution of the Bethe-Salpeter equation

Ingvar Lindgren, Sten Salomonson, and Daniel Hedendahl Department of Physics, Göteborg University

$$
\text { Physics Reports 389, } 161 \text { (2004) }
$$

Einstein Centennial paper: Can. J. Physics, March 2005

Symposium in Memory of Gerhard Soff
 Frankfurt, April 2005

MBPT-QED-Bethe-Salpeter

Normally regarded as separate techniques

MBPT-QED-Bethe-Salpeter

MBPT and QED combined in CovEvOp

Physics Reports 389, 161 (2004)

MBPT-QED-Bethe-Salpeter

CovEvOp can connect to the BS eqn
Einstein Centennial Paper: Can. J. Physics, March 2005

MBPT-QED-Bethe-Salpeter

CovEvOp can connect to the BS eqn
Einstein Centennial Paper: Can. J. Physics, March 2005

Connects MBPT and full BS eqn

Fine structure of helium atom

Fine-structure constant
(from Drake, Can. J. Phys. 80, 1195 (2002))

Standard approaches for QED calculations

1. Analytical

$\boldsymbol{\alpha}, Z \boldsymbol{\alpha}$ expansions from Bethe-Salpeter eqn
Evaluated with correlated wave function
Applicable to light elements
(Drake, Pachucki and others)

Standard approaches for QED calculations

1. Analytical

$\alpha, Z \boldsymbol{\alpha}$ expansions from Bethe-Salpeter eqn
Evaluated with correlated wave function
Applicable to light elements
(Drake, Pachucki and others)

2. Numerical

S-matrix, Green's function

QED effects evaluated numerically with uncorrelated wave functions Applicable to medium-heavy \& heavy elements

Standard approaches for QED calculations

1. Analytical

$\alpha, Z \boldsymbol{\alpha}$ expansions from Bethe-Salpeter eqn
Evaluated with correlated wave function
Applicable to light elements
(Drake, Pachucki and others)

2. Numerical

S-matrix, Green's function

QED effects evaluated numerically with uncorrelated wave functions
Applicable to medium-heavy \& heavy elements
Relativistic Furry picture, only α expansion

Numerical approach

1. Start from hydrogenic Dirac orbitals (Green's functions) in nuclear potential (Furry picture)

Numerical approach

1. Start from hydrogenic Dirac orbitals (Green's functions) in nuclear potential (Furry picture)

All orders in $Z \alpha$

2. Evaluate one-, two-, ... photon exchange

Non-radiative
2. Evaluate one-, two-, ... photon exchange

Non-radiative

Radiative

Applied mainly to heavy elements Only one- and two-photon exchange can be evaluated Electron correlation poorly treated
2. Evaluate one-, two-, ... photon exchange

Non-radiative

Radiative

Applied mainly to heavy elements
Only one- and two-photon exchange can be evaluated Electron correlation poorly treated

> S-matrix: Energy conservation

Not applicable to quasi-degeneracy
2. Evaluate one-, two-, ... photon exchange

Non-radiative

Radiative

Applied mainly to heavy elements
Only one- and two-photon exchange can be evaluated Electron correlation poorly treated

S-matrix: Energy conservation
Not applicable to quasi-degeneracy
No information about wave function
2. Evaluate one-, two-, ... photon exchange

Non-radiative

Radiative

Applied mainly to heavy elements
Only one- and two-photon exchange can be evaluated Electron correlation poorly treated

S-matrix: Energy conservation
Not applicable to quasi-degeneracy
No information about wave function
No combination of QED and many-body effects
2. Evaluate one-, two-, ... photon exchange

Non-radiative

Radiative

Applied mainly to heavy elements Only one- and two-photon exchange can be evaluated poorly treated

S-matrix: Energy conservation
Not applicable to
No information about wave function
No combination of QED and many-body effects

Can the advantages of the

 analytical and numerical approaches be combined?
Standard MBPT

1. Model space (P)

Strongly mixed states included in the model space Important for quasi-degeneracy (fine structure).

Standard MBPT

1. Model space (P)

Strongly mixed states included in the model space Important for quasi-degeneracy (fine structure).
2. Wave operator (Ω)

$$
\Psi^{\alpha}=\Omega \Psi_{0}^{\alpha} \quad \Psi_{0}^{\alpha}=P \Psi^{\alpha} \quad(\alpha=1,2, \cdots d)
$$

Standard MBPT

1. Model space (P)

Strongly mixed states included in the model space Important for quasi-degeneracy (fine structure).
2. Wave operator (Ω)

$$
\Psi^{\alpha}=\Omega \Psi_{0}^{\alpha} \quad \Psi_{0}^{\alpha}=P \Psi^{\alpha} \quad(\alpha=1,2, \cdots d)
$$

Ω evaluated by perturbation expansion from Bloch eqn

$$
\left[\Omega, H_{0}\right] P=(V \Omega-\Omega P V \Omega) P \quad\left(V=1 / r_{12}\right)
$$

Standard MBPT

1. Model space (P)

Strongly mixed states included in the model space Important for quasi-degeneracy (fine structure).
2. Wave operator (Ω)

$$
\Psi^{\alpha}=\Omega \Psi_{0}^{\alpha} \quad \Psi_{0}^{\alpha}=P \Psi^{\alpha} \quad(\alpha=1,2, \cdots d)
$$

Ω evaluated by perturbation expansion from Bloch eqn

$$
\left[\Omega, H_{0}\right] P=(V \Omega-\Omega P V \Omega) P \quad\left(V=1 / r_{12}\right)
$$

The Bloch eqn can handle quasi-degeneracy

The Bloch eqn can also be used to generate All-order MBPT procedures

Coupled-Cluster Approach

$$
\Omega=\left\{e^{S}\right\} \quad S=S_{1}+S_{2}+\cdots
$$

The Bloch eqn can also be used to generate All-order MBPT procedures
Coupled-Cluster Approach

$$
\Omega=\left\{e^{S}\right\} \quad S=S_{1}+S_{2}+\cdots
$$

Pair function (S_{2})

The Bloch eqn can also be used to generate All-order MBPT procedures

Coupled-Cluster Approach

$$
\Omega=\left\{e^{S}\right\} \quad S=S_{1}+S_{2}+\cdots
$$

Pair function (S_{2})

(Pair) correlation can be treated to all orders

The MBPT technique can handle quasi-degeneracy

 and correlation effects to all orders.
The MBPT technique can handle quasi-degeneracy

 and correlation effects to all orders.Can these effects be incorporated into a numerical QED procedure?

Time-dependent perturbation theory

Time-evolution operator:

$$
\begin{gathered}
\Psi(t)=\boldsymbol{U}\left(t, t_{0}\right) \Psi\left(t_{0}\right) \\
\boldsymbol{U}\left(t, t_{0}\right)=1+\sum_{n=1}^{\infty} \frac{(-\mathrm{i})^{n}}{n!} \int_{t_{0}}^{t} \mathrm{~d}^{4} x_{n} \ldots \int_{t_{0}}^{t} \mathrm{~d}^{4} x_{1} T_{\mathrm{D}}\left[\mathcal{H}_{\mathrm{I}}^{\prime}\left(x_{n}\right) \ldots \mathcal{H}_{\mathrm{I}}^{\prime}\left(x_{1}\right)\right]
\end{gathered}
$$

$\mathcal{H}_{\mathrm{I}}^{\prime}(x)$ the perturbation density in Interaction Picture

Time-dependent perturbation theory

Time-evolution operator:

$$
\begin{gathered}
\Psi(t)=\boldsymbol{U}\left(t, t_{0}\right) \Psi\left(t_{0}\right) \\
U\left(t, t_{0}\right)=1+\sum_{n=1}^{\infty} \frac{(-\mathrm{i})^{n}}{n!} \int_{t_{0}}^{t} \mathrm{~d}^{4} x_{n} \ldots \int_{t_{0}}^{t} \mathrm{~d}^{4} x_{1} T_{\mathrm{D}}\left[\mathcal{H}_{\mathrm{I}}^{\prime}\left(x_{n}\right) \ldots \mathcal{H}_{\mathrm{I}}^{\prime}\left(x_{1}\right)\right]
\end{gathered}
$$

$\mathcal{H}_{\mathrm{I}}^{\prime}(x)$ the perturbation density in Interaction Picture

Adiabatic damping:

$$
\begin{gathered}
\mathcal{H}_{\mathrm{I}}^{\prime}(x) \Rightarrow \mathcal{H}_{\mathrm{I}}^{\prime}(x) e^{-\gamma|t|} \quad U\left(t, t_{0}\right) \Rightarrow U_{\gamma}\left(t, t_{0}\right) \quad \Psi(t) \rightarrow \Psi_{\gamma}(t) \\
\Psi_{0}=\lim _{t \rightarrow-\infty} \Psi_{\gamma}(t)
\end{gathered}
$$

$$
U(\infty,-\infty)=S \text { is the } S-\text { matrix }
$$

$$
U(\infty,-\infty)=S \text { is the } S-\text { matrix }
$$

but we shall consider finite final times:

$$
U(t,-\infty)
$$

Gell-Mann-Low theorem

Time-independent wave function given by

$$
\Psi=\lim _{\gamma \rightarrow 0} \frac{U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}
$$

$\left|\Psi_{0}\right\rangle=P \Psi$ unperturbed wave function

Gell-Mann-Low theorem

Time-independent wave function given by

$$
\begin{gathered}
\Psi=\lim _{\gamma \rightarrow 0} \frac{U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle} \\
\left|\Psi_{0}\right\rangle=P \Psi \text { unperturbed wave function }
\end{gathered}
$$

The evolution operator singular as $\gamma \rightarrow 0$
The denominator cancels the singularities

Gell-Mann-Low theorem

Time-independent wave function given by

$$
\begin{gathered}
\Psi=\lim _{\gamma \rightarrow 0} \frac{U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle} \\
\left|\Psi_{0}\right\rangle=P \Psi \text { unperturbed wave function }
\end{gathered}
$$

The evolution operator singular as $\gamma \rightarrow 0$
The denominator cancels the singularities

Brueckner-Goldstone Linked-Diagram Theorem

Evolution operator for single-photon exchange

$$
U^{(2)}\left(t^{\prime},-\infty\right)=-\frac{1}{2} \iint_{-\infty}^{t^{\prime}} \mathrm{d}^{4} \mathrm{~d}_{+}^{\dagger} x_{1} \mathrm{~d}^{4} x_{2} \psi_{+}^{\dagger}\left(x_{1}^{\prime}\right) \psi_{+}^{\dagger}\left(x_{2}^{\prime}\right) \alpha_{1}^{\mu} \underbrace{D_{\mathrm{F} \mu \nu}\left(x_{1}-x_{2}\right)}_{\text {Photon propagator }} \alpha_{2}^{\nu} \psi_{+}\left(x_{2}\right) \psi_{+}\left(x_{1}\right) \mathrm{e}^{-\gamma\left(\left|t_{1}\right|+\left|t_{2}\right|\right)} \psi_{+}^{\dagger}
$$

Evolution operator for single-photon exchange

$$
U^{(2)}\left(t^{\prime},-\infty\right)=-\frac{1}{2} \iint_{-\infty}^{t^{\prime}} \mathrm{d}^{4} x_{1} \mathrm{~d}^{4} x_{2} \psi_{+}^{\dagger}\left(x_{1}^{\prime}\right) \psi_{+}^{\dagger}\left(x_{2}^{\prime}\right) \alpha_{1}^{\mu} \mathrm{i} \underbrace{D_{\mathrm{F} \mu \nu}\left(x_{1}-x_{2}\right)}_{\text {Photon propagator }} \alpha_{2}^{\nu} \psi_{+}\left(x_{2}\right) \psi_{+}\left(x_{1}\right) \mathrm{e}^{-\gamma\left(\left|t_{1}\right|+\left|t_{2}\right|\right)}
$$

t_{1} and t_{2} integrated only from $-\infty$ to t^{\prime}.

Evolution operator for single-photon exchange

$$
\begin{gathered}
U^{(2)}\left(t^{\prime},-\infty\right)=-\frac{1}{2} \iint_{-\infty}^{t^{t}} \mathrm{~d}^{4} x_{1} \mathrm{~d}^{4} x_{2} \psi_{+}^{\dagger}\left(x_{1}^{\prime}\right) \psi_{+}^{\dagger}\left(x_{2}^{\prime}\right) \alpha_{1}^{\mu} i \underbrace{D_{\mathrm{F} \mu \nu}\left(x_{1}-x_{2}\right)}_{\text {Photon propagator }} \alpha_{2}^{\nu} \psi_{+}\left(x_{2}\right) \psi_{+}\left(x_{1}\right) \mathrm{e}^{-\gamma\left(t_{1}|+| t_{2}\right)} \\
t_{1} \text { and } t_{2} \text { integrated only from }-\infty \text { to } t^{\prime} .
\end{gathered}
$$

Non-covariant

Covariant evolution operator

Physics Reports 389, 161 (2004); Phys. Rev. A 64, 062505 (2001)

Particle states out
Non-covariant

Covariant evolution operator

Physics Reports 389, 161 (2004); Phys. Rev. A 64, 062505 (2001)

Particle states out
Non-covariant

Hole states out

Covariant evolution operator

Physics Reports 389, 161 (2004); Phys. Rev. A 64, 062505 (2001)

Particle states out Non-covariant

Hole states out

El. propagators out Covariant

Covariant evolution operator

Physics Reports 389, 161 (2004); Phys. Rev. A 64, 062505 (2001)

$$
\begin{gathered}
U_{\mathrm{Cov}}^{(2)}\left(t^{\prime},-\infty\right)=-\frac{1}{2} \iint \mathrm{~d}^{3} x_{1}^{\prime} \mathrm{d}^{3} x_{2}^{\prime} \psi^{\dagger}\left(x_{1}^{\prime}\right) \psi^{\dagger}\left(x_{2}^{\prime}\right) \iint_{-\infty}^{\infty} \mathrm{d}^{4} x_{1} \mathrm{~d}^{4} x_{2} \\
\times \quad \mathrm{i} S_{\mathrm{F}}\left(x_{1}^{\prime}, x_{1}\right) \mathrm{i} S_{\mathrm{F}}\left(x_{2}^{\prime}, x_{2}\right) \alpha_{1}^{\mu} \mathrm{i} D_{\mathrm{F} \mu \nu}\left(x_{2}-x_{1}\right) \alpha_{2}^{\nu} \psi\left(x_{2}\right) \psi\left(x_{1}\right) \mathrm{e}^{-\gamma\left(\left|t_{1}\right|+\left|t_{2}\right|\right)}
\end{gathered}
$$

Covariant evolution operator

Physics Reports 389, 161 (2004); Phys. Rev. A 64, 062505 (2001)

$$
\begin{gathered}
U_{\text {Cov }}^{(2)}\left(t^{\prime},-\infty\right)=-\frac{1}{2} \iint \mathrm{~d}^{3} x_{1}^{\prime} \mathrm{d}^{3} x_{2}^{\prime} \psi^{\dagger}\left(x_{1}^{\prime}\right) \psi^{\dagger}\left(x_{2}^{\prime}\right) \iint_{-\infty}^{\infty} \mathrm{d}^{4} x_{1} \mathrm{~d}^{4} x_{2} \\
\times \quad \mathrm{i} S_{\mathrm{F}}\left(x_{1}^{\prime}, x_{1}\right) \mathrm{i} S_{\mathrm{F}}\left(x_{2}^{\prime}, x_{2}\right) \alpha_{1}^{\mu} \mathrm{i} D_{\mathrm{F} \mu \nu}\left(x_{2}-x_{1}\right) \alpha_{2}^{\nu} \psi\left(x_{2}\right) \psi\left(x_{1}\right) \mathrm{e}^{-\gamma\left(\left|t_{1}\right|+\left|t_{2}\right|\right)}
\end{gathered}
$$

t_{1} and t_{2} integrated over all times

The evolution operator is singular

The evolution operator is singular Reduced evolution operator is regular

$$
U_{\gamma}(t,-\infty) P=P+\tilde{U}_{\gamma}(t,-\infty) P U_{\gamma}(0,-\infty) P
$$

The evolution operator is singular

Reduced evolution operator is regular

$$
U_{\gamma}(t,-\infty) P=P+\widetilde{U}_{\gamma}(t,-\infty) P U_{\gamma}(0,-\infty) P
$$

Factorization theorem for $t=0$:

$$
U_{\gamma}(0,-\infty) \boldsymbol{P}=\underbrace{\left[1+Q \tilde{U}_{\gamma}(0,-\infty)\right]}_{\text {Regular }} \underbrace{\boldsymbol{P} U_{\gamma}(0,-\infty)}_{\text {Singular }} \boldsymbol{P}
$$

Factorization theorem:

$$
\boldsymbol{U}_{\gamma}(0,-\infty) \boldsymbol{P}=\left[1+\boldsymbol{Q} \widetilde{U}_{\gamma}(0,-\infty)\right] \boldsymbol{P} \boldsymbol{U}_{\gamma}(0,-\infty) \boldsymbol{P}
$$

Factorization theorem:

$$
\boldsymbol{U}_{\gamma}(0,-\infty) \boldsymbol{P}=\left[1+\boldsymbol{Q} \widetilde{U}_{\gamma}(0,-\infty)\right] \boldsymbol{P} \boldsymbol{U}_{\gamma}(0,-\infty) \boldsymbol{P}
$$

Gell-Mann-Low theorem:

$$
\Psi=\frac{U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}
$$

Factorization theorem:

$$
\boldsymbol{U}_{\gamma}(0,-\infty) \boldsymbol{P}=\left[1+\boldsymbol{Q} \widetilde{U}_{\gamma}(0,-\infty)\right] \boldsymbol{P} \boldsymbol{U}_{\gamma}(0,-\infty) \boldsymbol{P}
$$

Gell-Mann-Low theorem:

$$
\begin{gathered}
\Psi=\frac{U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle} \\
\Psi=\left[1+Q \widetilde{U}_{\gamma}(0,-\infty)\right] P \frac{U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}
\end{gathered}
$$

Factorization theorem:

$$
\boldsymbol{U}_{\gamma}(0,-\infty) \boldsymbol{P}=\left[1+\boldsymbol{Q} \widetilde{U}_{\gamma}(0,-\infty)\right] \boldsymbol{P} \boldsymbol{U}_{\gamma}(0,-\infty) \boldsymbol{P}
$$

Gell-Mann-Low theorem:

$$
\begin{gathered}
\Psi=\frac{U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle} \\
\Psi=\left[1+Q \widetilde{U}_{\gamma}(0,-\infty)\right] \begin{array}{c}
P \frac{U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle} \\
P \Psi=\Psi_{0}
\end{array}
\end{gathered}
$$

Factorization theorem:

$$
\boldsymbol{U}_{\gamma}(0,-\infty) \boldsymbol{P}=\left[1+\boldsymbol{Q} \widetilde{U}_{\gamma}(0,-\infty)\right] \boldsymbol{P} \boldsymbol{U}_{\gamma}(0,-\infty) \boldsymbol{P}
$$

Gell-Mann-Low theorem:

$$
\begin{gathered}
\Psi=\frac{U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle} \\
\Psi=\begin{array}{|c|c|}
\hline\left[1+Q \tilde{U}_{\gamma}(0,-\infty)\right] & P \frac{U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle} \\
\text { Wave operator } \Omega & P \Psi=\Psi_{0}
\end{array}
\end{gathered}
$$

Factorization theorem:

$$
\boldsymbol{U}_{\gamma}(0,-\infty) \boldsymbol{P}=\left[1+\boldsymbol{Q} \widetilde{U}_{\gamma}(0,-\infty)\right] \boldsymbol{P} \boldsymbol{U}_{\gamma}(0,-\infty) \boldsymbol{P}
$$

Gell-Mann-Low theorem:

$$
\begin{gathered}
\Psi=\frac{U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle} \\
\Psi=\begin{array}{|c|c|}
\hline\left[1+Q \widetilde{U}_{\gamma}(0,-\infty)\right] \\
\text { Wave operator } \Omega & \begin{array}{c}
\boldsymbol{U}_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle \\
\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle \\
P \Psi=\Psi_{0}
\end{array} \\
\hline \Psi=\Omega \Psi_{0}
\end{array}
\end{gathered}
$$

Factorization theorem:

$$
\boldsymbol{U}_{\gamma}(0,-\infty) \boldsymbol{P}=\left[1+\boldsymbol{Q} \widetilde{U}_{\gamma}(0,-\infty)\right] \boldsymbol{P} \boldsymbol{U}_{\gamma}(0,-\infty) \boldsymbol{P}
$$

Gell-Mann-Low theorem:

$$
\begin{gathered}
\Psi=\frac{U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle} \\
\Psi=\begin{array}{|c|c|}
\hline\left[1+Q \widetilde{U}_{\gamma}(0,-\infty)\right] & P \frac{U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle} \\
\text { Wave operator } \Omega & P \Psi=\Psi_{0}
\end{array} \\
\hline
\end{gathered}
$$

$$
\Psi=\Omega \Psi_{0} \quad \text { Links with MBPT }
$$

MBPT and QED

QED

RSPT MBPT

MBPT and QED
 combined in Cov.Ev.Op. method

Physics Reports 389, 161 (2004)

MBPT and QED
 combined in Cov.Ev.Op. method

Physics Reports 389, 161 (2004)

Can handle quasi-degeneracy

Fine structure of He-like ions

Z	${ }^{3} P_{1}-{ }^{3} P_{0}$	${ }^{3} P_{2}-{ }^{3} P_{0}$	${ }^{3} P_{2}-{ }^{3} P_{1}$	
2	$29616.9509(9)$		$2291.1759(10) \mathrm{MHz}$	Expt'l
	$29616.9496(10)$		$2291.1736(11)$	Theory
3	$155704.27(66)$		$-62678.41(66) \mathrm{MHz}$	Expt'।
	$155703.4(1,5)$		$-62679.4(5)$	Drake
9	$701(10)$	$5364,517(6) \mu \mathrm{H}$	Expt'l	
	680	5050	$4362(5)$	Drake
	690	5050	4364	Plante
	690	5050		Present
10	$1371(7)$	$8458(2) \mu \mathrm{H}$		Expt'l
	$1361(6)$	$8455(6)$	265880	Drake
	1370	8469	265860	Plante
	1370	8460		Present
18		$124960(30) \mu \mathrm{H}$		Expt'l
		$124810(60)$		Drake
		124942	Plante	
				Present

I. Lindgren, S. Salomonson, and B. Ảsén, Physics Reports 389, 161 (2004)
I. Lindgren, B. Ảsén, S. Salomonson, and A.-M. Pendrill, PRA 64, 062505 (2001)

Fine structure of He-like ions

	${ }^{3} P_{1}=\frac{1}{\sqrt{2}}\left[\left\langle 1 s, 2 p_{1 / 2}\right\|+\left\langle 1 s, 2 p_{3 / 2}\right\|\right]$			quasi-degenerate
\mathbf{Z}	${ }^{3} P_{1}-{ }^{3} P_{0}$	${ }^{3} P_{2}-{ }^{3} P_{0}$	${ }^{3} P_{2}-{ }^{3} P_{1}$	
2	$29616.9509(9)$		$2291.1759(10) \mathrm{MHz}$	Expt'l
	$29616.9496(10)$		$2291.1736(11)$	Theory
3	$155704.27(66)$		$-62678.41(66) \mathrm{MHz}$	Expt'l
	$155703.4(1,5)$		$-62679.4(5)$	Drake
9	$701(10)$		$4364,517(6) \mu \mathrm{H}$	Expt'l
	680	5050	$4362(5)$	Drake
	690	5050	4364	Plante
	690	5050	4364	Present
10	$1371(7)$	$8458(2) \mu \mathrm{H}$		Expt'l
	$1361(6)$	$8455(6)$	265880	Drake
	1370	8469	265860	Plante
	1370	8460	265880	Present
18		$124960(30) \mu \mathrm{H}$		Expt'l
		$124810(60)$		Drake
		124942	Plante	
				Present

I. Lindgren, S. Salomonson, and B. Åsén, Physics Reports 389, 161 (2004)
I. Lindgren, B. Ảsén, S. Salomonson, and A.-M. Pendrill, PRA 64, 062505 (2001)

MBPT and QED

Quasi-degeneracy with Cov.Ev.Op. method

MBPT and QED

Quasi-degeneracy with Cov.Ev.Op. method
QED with correlated wave functions

MBPT and QED

Quasi-degeneracy with Cov.Ev.Op. method
QED with correlated wave functions
Connection with Bethe-Salpeter Eq.
Can. J. Physics (2005)

Effective-potential method

Relativistic pair function

Effective-potential method

Relativistic pair function

with an uncontracted photon

Absorb the photon and integrate over momentum

Absorb the photon and integrate over momentum

Pair functions iterated further

Absorb the photon and integrate over momentum

Pair functions iterated further

QED effects evaluated with correlated wave functions

non-separable (irreducible)

non-separable (irreducible)

separable (reducible)

Effective potential

non-separable (irreducible)

separable (reducible)

Effective potential

(with single covariant photon)

Effective potential

(with single covariant photon)

Comparison with S-matrix:
(with two covariant photons)

Effective potential

(with single covariant photon)

Comparison with S-matrix:
(with two covariant photons)

Two retarded photons (Breit-Breit) included in S-matrix approach

Test of new technique (in $\mu \mathrm{H}$)

	Gr. state	$1 \mathrm{~s}^{2}$
	S matrix	New technique
Coulomb-Gaunt NVP	-132.68	-132.61
Coulomb-Retardation NVP	20.17	20.14
Breit-Breit NVP		
Total NVP	-112.58	-112.47
	Exc. state	1s2s ${ }^{1} \mathrm{~S}$
	S matrix	New technique s
Coulomb-Gaunt NVP	-33.3	-33.2
Coulomb-Retardation NVP	1.2	1.2
Breit-Breit NVP		
Total NVP -112.47	-32.1	-32.0

Test of new technique (in $\mu \mathrm{H}$)

	Gr. state	$1 \mathrm{~s}^{2}$
	S matrix	New technique
Coulomb-Gaunt NVP	-132.68	-132.61
Coulomb-Retardation NVP	20.17	20.14
Breit-Breit NVP	-0.07	
Total NVP	-112.58	-112.47
	Exc. state	1s2s ${ }^{1} \mathrm{~S}$
	S matrix	New technique s
Coulomb-Gaunt NVP	-33.3	-33.2
Coulomb-Retardation NVP	1.2	1.2
Breit-Breit NVP		
Total NVP -112.47	-32.1	-32.0

Effective potential

(with single covariant photon)

Comparison with S-matrix:
(with two covariant photons)

Dominating part of 3-, 4-, ... photon exchange included in effective-potential approach

Effect of correlation on QED effect for helium atom

	Gr. state	$1 s^{2}$	
Interaction	Sing. phot.	two-phot.	multi-phot.
Gaunt	107	-65	
Scalar ret.	0	10	
	Exc. state	1 s2s ${ }^{1} S$	
Interaction	Sing. phot.	two-phot.	multi-phot.
Gaunt	19.7	-16.6	
Scalar ret.	1.4	0.6	

Effect of correlation on QED effect for helium atom

	Gr. state	$1 s^{2}$	
Interaction	Sing. phot.	two-phot.	multi-phot.
Gaunt	107	-65	$\mathbf{1 1}$
Scalar ret.	0	10	-2
	Exc. state	$1 \mathrm{~s} 2 \mathrm{~s}^{1} S$	
Interaction	Sing. phot.	two-phot.	multi-phot.
Gaunt	19.7	-16.6	4.7
Scalar ret.	1.4	0.6	$-\mathbf{0 . 5}$

Effective potential

(with single covariant photon)

Comparison with S-matrix:
(with two covariant photons)

Effects beyond two-photon exchange orders of magnitude more important than Breit-Breit for light elements

The effective-potential approach leads faster to the Bethe-Salpeter equation:

$$
\left(\boldsymbol{E}-\boldsymbol{H}_{0}\right) \Psi=\mathcal{V}(\boldsymbol{E}) \Psi
$$

The effective-potential approach leads faster to the Bethe-Salpeter equation:

$$
\left(E-H_{0}\right) \Psi=\mathcal{V}(E) \Psi
$$

and to the Bethe-Salpeter-Bloch equation:

$$
\left[\Omega, H_{0}\right]=\mathcal{V}(E) \Omega-\Omega P \mathcal{V}(E) \Omega P
$$

for treating quasi-degeneracy

The effective-potential approach leads faster to the Bethe-Salpeter equation:

$$
\left(E-H_{0}\right) \Psi=\mathcal{V}(E) \Psi
$$

and to the Bethe-Salpeter-Bloch equation:

$$
\left[\Omega, H_{0}\right]=\mathcal{V}(E) \Omega-\Omega P \mathcal{V}(E) \Omega P
$$

for treating quasi-degeneracy

Analogous to MBPT-Bloch equation:

$$
\left[\Omega, H_{0}\right] P=V \Omega P-\Omega P V \Omega P
$$

MBPT-QED

MBPT-QED

Connection with Bethe-Salpeter Eq.

MBPT-QED

Connection with Bethe-Salpeter Eq.

Can. J. Physics (2005)

MBPT-QED

Connection with Bethe-Salpeter Eq.

Can. J. Physics (2005)

Summary and Conclusions

Summary and Conclusions

1. By combining Evolution operator and MBPT numerical QED technique is being developed

Summary and Conclusions

1. By combining Evolution operator and MBPT numerical QED technique is being developed
capable of handling quasi-degeneracy (Cov. Ev. Op. Method)
(Demonstrated with energy of ${ }^{3} P_{1}$ state of He-like ions)

Summary and Conclusions

1. By combining Evolution operator and MBPT numerical QED technique is being developed
capable of handling quasï-degeneracy (Cov. Ev. Op. Method)
(Demonstrated with energy of ${ }^{3} P_{1}$ state of He-like ions)
as well as electron correlation to all orders
(Solving Bethe-Salpeter eqn by eff. pot. method)

Summary and Conclusions

1. By combining Evolution operator and MBPT numerical QED technique is being developed
capable of handling quasï-degeneracy (Cov. Ev. Op. Method)
(Demonstrated with energy of ${ }^{3} P_{1}$ state of He-like ions)
as well as electron correlation to all orders (Solving Bethe-Salpeter eqn by eff. pot. method)
2. Will lead to higher accuracy when combined QED and correlation significant Vital for light elements
Important for medium-heavy elements

Summary and Conclusions

1. By combining Evolution operator and MBPT numerical QED technique is being developed
capable of handling quasi-degeneracy (Cov. Ev. Op. Method)
(Demonstrated with energy of ${ }^{3} P_{1}$ state of He-like ions)
as well as electron correlation to all orders (Solving Bethe-Salpeter eqn by eff. pot. method)
2. Will lead to higher accuracy when combined QED and correlation significant Vital for light elements Important for medium-heavy elements
3. Can contribute to extracting more accurate fine-structure constant from the helium fine structure by combining analytical and numerical techniques.

Fine-structure constant
(from Drake, Can. J. Phys. 80, 1195 (2002))

