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MBPT–QED–Bethe-Salpeter

Normally regarded as separate techniques

RSPT MBPT

Bloch

QED

GF �������������� BS BWPT

3



MBPT–QED–Bethe-Salpeter

MBPT and QED combined in CovEvOp
Physics Reports 389, 161 (2004)
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MBPT–QED–Bethe-Salpeter

CovEvOp can connect to the BS eqn
Einstein Centennial Paper: Can. J. Physics, March 2005
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MBPT–QED–Bethe-Salpeter

CovEvOp can connect to the BS eqn
Einstein Centennial Paper: Can. J. Physics, March 2005
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Connects MBPT and full BS eqn
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Fine structure of helium atom

1s2p 3P 29 619.9509(9) MHz

29 619.9464(2) Theory
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Fine-structure constant

(from Drake, Can. J. Phys. 80, 1195 (2002))
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Standard approaches for QED calculations

1. Analytical
α, Zα expansions from Bethe-Salpeter eqn

Evaluated with correlated wave function

Applicable to light elements

(Drake, Pachucki and others)
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Standard approaches for QED calculations

1. Analytical
α, Zα expansions from Bethe-Salpeter eqn

Evaluated with correlated wave function

Applicable to light elements

(Drake, Pachucki and others)

2. Numerical
S-matrix, Green’s function

QED effects evaluated numerically with uncorrelated wave functions

Applicable to medium-heavy & heavy elements
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Standard approaches for QED calculations

1. Analytical
α, Zα expansions from Bethe-Salpeter eqn

Evaluated with correlated wave function

Applicable to light elements

(Drake, Pachucki and others)

2. Numerical
S-matrix, Green’s function

QED effects evaluated numerically with uncorrelated wave functions

Applicable to medium-heavy & heavy elements

Relativistic Furry picture, only α expansion
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Numerical approach

1. Start from hydrogenic Dirac orbitals (Green’s functions) in

nuclear potential (Furry picture)

= + ×� +
×�
×�

+ . . .

Bound el. Free el. Nuclear interactions
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Numerical approach

1. Start from hydrogenic Dirac orbitals (Green’s functions) in

nuclear potential (Furry picture)

= + ×� +
×�
×�

+ . . .

Bound el. Free el. Nuclear interactions

All orders in Zα
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2. Evaluate one-, two-, ... photon exchange

�� � 	
�� �
�� �

	

�

�
	

�

�
�� �
��
��
��
��
��
��
��
��
��
��
��
��



 �� �	

Non-radiative Radiative
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Non-radiative Radiative

Applied mainly to heavy elements

Only one- and two-photon exchange can be evaluated

Electron correlation poorly treated
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Non-radiative Radiative

Applied mainly to heavy elements

Only one- and two-photon exchange can be evaluated

Electron correlation poorly treated

S-matrix: Energy conservation

Not applicable to quasi-degeneracy
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2. Evaluate one-, two-, ... photon exchange
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Non-radiative Radiative

Applied mainly to heavy elements

Only one- and two-photon exchange can be evaluated

poorly treated

S-matrix: Energy conservation

Not applicable to

No information about wave function

No combination of QED and many-body effects
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Can the advantages of the

analytical and numerical approaches
be combined?

20



Standard MBPT

1. Model space (P )

Strongly mixed states included in the model space
Important for quasi-degeneracy (fine structure).
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Standard MBPT

1. Model space (P )

Strongly mixed states included in the model space
Important for quasi-degeneracy (fine structure).

2. Wave operator (Ω)

Ψα = ΩΨα
0 Ψα

0 = PΨα (α = 1,2, · · · d)
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Standard MBPT

1. Model space (P )

Strongly mixed states included in the model space
Important for quasi-degeneracy (fine structure).

2. Wave operator (Ω)

Ψα = ΩΨα
0 Ψα

0 = PΨα (α = 1,2, · · · d)

Ω evaluated by perturbation expansion from Bloch eqn

[
Ω, H0

]
P =

(
V Ω − ΩPVΩ

)
P (V = 1/r12)
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Standard MBPT

1. Model space (P )

Strongly mixed states included in the model space
Important for quasi-degeneracy (fine structure).

2. Wave operator (Ω)

Ψα = ΩΨα
0 Ψα

0 = PΨα (α = 1,2, · · · d)

Ω evaluated by perturbation expansion from Bloch eqn

[
Ω, H0

]
P =

(
V Ω − ΩPVΩ

)
P (V = 1/r12)

The Bloch eqn can handle quasi-degeneracy
24



The Bloch eqn can also be used to generate

All-order MBPT procedures

Coupled-Cluster Approach

Ω = {eS} S = S1 + S2 + · · ·
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Coupled-Cluster Approach
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The Bloch eqn can also be used to generate

All-order MBPT procedures

Coupled-Cluster Approach

Ω = {eS} S = S1 + S2 + · · ·

Pair function (S2)
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+ · · ·

(Pair) correlation can be treated to all orders
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The MBPT technique can handle

quasi-degeneracy

and correlation effects to all orders.
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The MBPT technique can handle

quasi-degeneracy

and correlation effects to all orders.

Can these effects be incorporated into a

numerical QED procedure?
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Time-dependent perturbation theory

Time-evolution operator:

Ψ(t) = U(t, t0)Ψ(t0)

U(t, t0) = 1 +
∞∑
n=1

(−i)n

n!

∫ t

t0
d4xn . . .

∫ t

t0
d4x1 TD

[
H′

I(xn) . . .H′
I(x1)

]

H′
I(x) the perturbation density in Interaction Picture
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Time-dependent perturbation theory

Time-evolution operator:

Ψ(t) = U(t, t0)Ψ(t0)

U(t, t0) = 1 +
∞∑
n=1

(−i)n

n!

∫ t

t0
d4xn . . .

∫ t

t0
d4x1 TD

[
H′

I(xn) . . .H′
I(x1)

]

H′
I(x) the perturbation density in Interaction Picture

Adiabatic damping:

H′
I(x) ⇒ H′

I(x) e
−γ|t| U(t, t0) ⇒ Uγ(t, t0) Ψ(t) → Ψγ(t)

Ψ0 = lim
t→−∞Ψγ(t)
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U(∞, −∞) = S is the S − matrix
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U(∞, −∞) = S is the S − matrix

but we shall consider finite final times:

U(t, −∞)
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Gell-Mann–Low theorem

Time-independent wave function given by

Ψ = lim
γ→0

Uγ(0, −∞)
∣∣Ψ0

〉
〈Ψ0|Uγ(0, −∞) |Ψ0〉

|Ψ0〉 = PΨ unperturbed wave function
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Uγ(0, −∞)
∣∣Ψ0

〉
〈Ψ0|Uγ(0, −∞) |Ψ0〉

|Ψ0〉 = PΨ unperturbed wave function

The evolution operator singular as γ → 0

The denominator cancels the singularities
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Gell-Mann–Low theorem

Time-independent wave function given by

Ψ = lim
γ→0

Uγ(0, −∞)
∣∣Ψ0

〉
〈Ψ0|Uγ(0, −∞) |Ψ0〉

|Ψ0〉 = PΨ unperturbed wave function

The evolution operator singular as γ → 0

The denominator cancels the singularities

Brueckner-Goldstone Linked-Diagram Theorem
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Evolution operator for single-photon exchange

t = t′

�� �1 2

ψ†
+ ψ†

+

ψ+ ψ+

U (2)(t′, −∞) = −1

2

∫∫ t′

−∞
d4x1 d4x2ψ

†
+(x′1)ψ

†
+(x′2)α

µ
1 iDFµν(x1 − x2)︸ ︷︷ ︸ αν2ψ+(x2)ψ+(x1) e−γ(|t1|+|t2|)

Photon propagator
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Evolution operator for single-photon exchange

t = t′

�� �1 2

ψ†
+ ψ†

+

ψ+ ψ+

	

��

U (2)(t′, −∞) = −1

2

∫∫ t′

−∞
d4x1 d4x2ψ

†
+(x′1)ψ

†
+(x′2)α

µ
1 iDFµν(x1 − x2)︸ ︷︷ ︸ αν2ψ+(x2)ψ+(x1) e−γ(|t1|+|t2|)

Photon propagator

t1 and t2 integrated only from −∞ to t′.
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Evolution operator for single-photon exchange

t = t′

�� �1 2

ψ†
+ ψ†

+

ψ+ ψ+
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U (2)(t′, −∞) = −1

2

∫∫ t′

−∞
d4x1 d4x2ψ

†
+(x′1)ψ

†
+(x′2)α

µ
1 iDFµν(x1 − x2)︸ ︷︷ ︸ αν2ψ+(x2)ψ+(x1) e−γ(|t1|+|t2|)

Photon propagator

t1 and t2 integrated only from −∞ to t′.

Non-covariant
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Covariant evolution operator

Physics Reports 389, 161 (2004); Phys. Rev. A 64, 062505 (2001)

t = t′

�� �1 2

ψ†
+ ψ†

+

Particle states out

Non-covariant
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Covariant evolution operator

Physics Reports 389, 161 (2004); Phys. Rev. A 64, 062505 (2001)

t = t′

�� �1 2

ψ†
+ ψ†

+

Particle states out

Non-covariant

+

�� �1 2�
�

�
��

�
�

�
��

�
�

�
��

��ψ
†
−

�
�

�
��

�
�

�
��

�
�

�
��

��ψ
†
−

Hole states out

+
ψ†

+

	

	

�

�

1

2�
�

�

�
�

�

�
�

�
��ψ

†
−

41



Covariant evolution operator

Physics Reports 389, 161 (2004); Phys. Rev. A 64, 062505 (2001)

t = t′

�� �1 2

ψ†
+ ψ†

+

Particle states out

Non-covariant

+

�� �1 2�
�

�
��

�
�

�
��

�
�

�
��

��ψ
†
−

�
�

�
��

�
�

�
��

�
�

�
��

��ψ
†
−

Hole states out

+
ψ†

+

	

	

�

�

1

2�
�

�

�
�

�

�
�

�
��ψ

†
−

=

ψ†± ψ†
±

SF SF

	

�� �1 2

� �

El. propagators out

Covariant

42



Covariant evolution operator
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Covariant

U
(2)
Cov(t

′, −∞) = −1

2

∫∫
d3x′

1d
3x′

2ψ
†(x′1)ψ

†(x′2)
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−∞
d4x1 d4x2

× iSF(x
′
1, x1) iSF(x

′
2, x2)α

µ
1 iDFµν(x2 − x1)α

ν
2ψ(x2)ψ(x1) e−γ(|t1|+|t2|)

43



Covariant evolution operator
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2

∫∫
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1d
3x′

2ψ
†(x′1)ψ

†(x′2)
∫∫ ∞

−∞
d4x1 d4x2

× iSF(x
′
1, x1) iSF(x

′
2, x2)α

µ
1 iDFµν(x2 − x1)α

ν
2ψ(x2)ψ(x1) e−γ(|t1|+|t2|)

t1 and t2 integrated over all times
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The evolution operator is singular

45



The evolution operator is singular

Reduced evolution operator is regular

Uγ(t, −∞)P = P + Ũγ(t, −∞) P Uγ(0, −∞)P
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The evolution operator is singular

Reduced evolution operator is regular

Uγ(t, −∞)P = P + Ũγ(t, −∞) P Uγ(0, −∞)P

Factorization theorem for t = 0:

Uγ(0, −∞)P =
[
1 + Q Ũγ(0, −∞)

]
︸ ︷︷ ︸ P Uγ(0, −∞)︸ ︷︷ ︸ P

Regular Singular
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Factorization theorem:

Uγ(0, −∞)P =
[
1 + Q Ũγ(0, −∞)

]
P Uγ(0, −∞)P
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Factorization theorem:

Uγ(0, −∞)P =
[
1 + Q Ũγ(0, −∞)

]
P Uγ(0, −∞)P

Gell-Mann–Low theorem:

Ψ =
Uγ(0,−∞)

∣∣Ψ0
〉

〈Ψ0|Uγ(0,−∞) |Ψ0〉
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Factorization theorem:
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]
P

Uγ(0,−∞)|Ψ0〉
〈Ψ0|Uγ(0,−∞) |Ψ0〉
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Factorization theorem:

Uγ(0, −∞)P =
[
1 + Q Ũγ(0, −∞)

]
P Uγ(0, −∞)P

Gell-Mann–Low theorem:

Ψ =
Uγ(0,−∞)

∣∣Ψ0
〉

〈Ψ0|Uγ(0,−∞) |Ψ0〉

Ψ =
[
1 + Q Ũγ(0, −∞)

]
P

Uγ(0,−∞)|Ψ0〉
〈Ψ0|Uγ(0,−∞) |Ψ0〉

PΨ = Ψ0
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Factorization theorem:

Uγ(0, −∞)P =
[
1 + Q Ũγ(0, −∞)

]
P Uγ(0, −∞)P

Gell-Mann–Low theorem:

Ψ =
Uγ(0,−∞)

∣∣Ψ0
〉

〈Ψ0|Uγ(0,−∞) |Ψ0〉

Ψ =
[
1 + Q Ũγ(0, −∞)

]
P

Uγ(0,−∞)|Ψ0〉
〈Ψ0|Uγ(0,−∞) |Ψ0〉

Wave operator Ω PΨ = Ψ0
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Factorization theorem:

Uγ(0, −∞)P =
[
1 + Q Ũγ(0, −∞)

]
P Uγ(0, −∞)P

Gell-Mann–Low theorem:

Ψ =
Uγ(0,−∞)

∣∣Ψ0
〉

〈Ψ0|Uγ(0,−∞) |Ψ0〉

Ψ =
[
1 + Q Ũγ(0, −∞)

]
P

Uγ(0,−∞)|Ψ0〉
〈Ψ0|Uγ(0,−∞) |Ψ0〉

Wave operator Ω PΨ = Ψ0

Ψ = ΩΨ0
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Factorization theorem:

Uγ(0, −∞)P =
[
1 + Q Ũγ(0, −∞)

]
P Uγ(0, −∞)P

Gell-Mann–Low theorem:

Ψ =
Uγ(0,−∞)

∣∣Ψ0
〉

〈Ψ0|Uγ(0,−∞) |Ψ0〉

Ψ =
[
1 + Q Ũγ(0, −∞)

]
P

Uγ(0,−∞)|Ψ0〉
〈Ψ0|Uγ(0,−∞) |Ψ0〉

Wave operator Ω PΨ = Ψ0

Ψ = ΩΨ0 Links with MBPT
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MBPT and QED

RSPT MBPT

QED
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MBPT and QED

combined in Cov.Ev.Op. method
Physics Reports 389, 161 (2004)
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MBPT and QED

combined in Cov.Ev.Op. method
Physics Reports 389, 161 (2004)

Can handle quasi-degeneracy

RSPT MBPT

QED

CovEvOp
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Fine structure of He-like ions

Z 3P1 −3P0
3P2 −3P0

3P2 −3P1

2 29616.9509(9) 2291.1759(10) MHz Expt’l
29616.9496(10) 2291.1736(11) Theory

3 155704.27(66) -62678.41(66) MHz Expt’l
155703.4(1,5) -62679.4(5) Drake

9 701(10) 4364,517(6) µH Expt’l
680 5050 4362(5) Drake
690 5050 4364 Plante
690 5050 Present

10 1371(7) 8458(2) µH Expt’l
1361(6) 8455(6) 265880 Drake
1370 8469 265860 Plante
1370 8460 Present

18 124960(30) µH Expt’l
124810(60) Drake
124942 Plante
124940 Present

I. Lindgren, S. Salomonson, and B. Åsén, Physics Reports 389, 161 (2004)
I. Lindgren, B. Åsén, S. Salomonson, and A.-M. Pendrill, PRA 64, 062505 (2001)

58



Fine structure of He-like ions
3P1 = 1√

2
[〈1s,2p1/2| + 〈1s,2p3/2|] quasi-degenerate

Z 3P1 −3P0
3P2 −3P0

3P2 −3P1

2 29616.9509(9) 2291.1759(10) MHz Expt’l
29616.9496(10) 2291.1736(11) Theory

3 155704.27(66) -62678.41(66) MHz Expt’l
155703.4(1,5) -62679.4(5) Drake

9 701(10) 4364,517(6) µH Expt’l
680 5050 4362(5) Drake
690 5050 4364 Plante
690 5050 4364 Present

10 1371(7) 8458(2) µH Expt’l
1361(6) 8455(6) 265880 Drake
1370 8469 265860 Plante
1370 8460 265880 Present

18 124960(30) µH Expt’l
124810(60) Drake
124942 Plante
124940 Present

I. Lindgren, S. Salomonson, and B. Åsén, Physics Reports 389, 161 (2004)
I. Lindgren, B. Åsén, S. Salomonson, and A.-M. Pendrill, PRA 64, 062505 (2001)
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MBPT and QED

Quasi-degeneracy with Cov.Ev.Op. method

RSPT MBPT

QED

CovEvOp
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MBPT and QED

Quasi-degeneracy with Cov.Ev.Op. method

QED with correlated wave functions

RSPT MBPT

QED

CovEvOp
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MBPT and QED

Quasi-degeneracy with Cov.Ev.Op. method

QED with correlated wave functions

Connection with Bethe-Salpeter Eq.
Can. J. Physics (2005)

RSPT MBPT
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Effective-potential method

Relativistic pair function
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Effective-potential method

Relativistic pair function
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Absorb the photon and integrate over momentum
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Pair functions iterated further
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QED effects evaluated with correlated wave functions
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Effective potential
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Effective potential

(with single covariant photon)

�� �
�� �
�� �

� �

�

�
� · · ·

71



Effective potential

(with single covariant photon)

�� �
�� �
�� �

� �

�

�
� · · ·

Comparison with S-matrix:

(with two covariant photons)

�� �
�� �
�� �

�� �
�

72



Effective potential

(with single covariant photon)
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Comparison with S-matrix:

(with two covariant photons)

�� �
�� �
�� �

�� �
�

Two retarded photons (Breit-Breit) included in S-matrix approach

73



Test of new technique (in µH)

Gr. state 1s2

S matrix New technique
Coulomb-Gaunt NVP -132.68 -132.61
Coulomb-Retardation NVP 20.17 20.14
Breit-Breit NVP
Total NVP -112.58 -112.47

Exc. state 1s2s 1S
S matrix New technique s

Coulomb-Gaunt NVP -33.3 -33.2
Coulomb-Retardation NVP 1.2 1.2
Breit-Breit NVP
Total NVP -112.47 -32.1 -32.0
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Test of new technique (in µH)

Gr. state 1s2

S matrix New technique
Coulomb-Gaunt NVP -132.68 -132.61
Coulomb-Retardation NVP 20.17 20.14
Breit-Breit NVP -0.07
Total NVP -112.58 -112.47

Exc. state 1s2s 1S
S matrix New technique s

Coulomb-Gaunt NVP -33.3 -33.2
Coulomb-Retardation NVP 1.2 1.2
Breit-Breit NVP
Total NVP -112.47 -32.1 -32.0
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Effective potential

(with single covariant photon)
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Comparison with S-matrix:

(with two covariant photons)
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Dominating part of 3-, 4-, ... photon exchange

included in effective-potential approach

76



Effect of correlation on QED effect for helium atom
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Gr. state 1s2

Interaction Sing. phot. two-phot. multi-phot.
Gaunt 107 -65
Scalar ret. 0 10

Exc. state 1s2s 1S
Interaction Sing. phot. two-phot. multi-phot.
Gaunt 19.7 -16.6
Scalar ret. 1.4 0.6
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Effect of correlation on QED effect for helium atom
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Gr. state 1s2

Interaction Sing. phot. two-phot. multi-phot.
Gaunt 107 -65 11
Scalar ret. 0 10 -2

Exc. state 1s2s 1S
Interaction Sing. phot. two-phot. multi-phot.
Gaunt 19.7 -16.6 4.7
Scalar ret. 1.4 0.6 -0.5
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Effective potential

(with single covariant photon)
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Comparison with S-matrix:

(with two covariant photons)
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Effects beyond two-photon exchange orders of magnitude more

important than Breit-Breit for light elements
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The effective-potential approach leads faster

to the Bethe-Salpeter equation:

(E − H0)Ψ = V(E) Ψ
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The effective-potential approach leads faster

to the Bethe-Salpeter equation:

(E − H0)Ψ = V(E) Ψ

and to the Bethe-Salpeter-Bloch equation:[
Ω, H0

]
= V(E) Ω − ΩP V(E) ΩP

for treating quasi-degeneracy

Analogous to MBPT-Bloch equation:[
Ω, H0

]
P = V ΩP − Ω PV Ω P
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MBPT-QED
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MBPT-QED

Connection with Bethe-Salpeter Eq.
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MBPT-QED

Connection with Bethe-Salpeter Eq.
Can. J. Physics (2005)
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MBPT-QED

Connection with Bethe-Salpeter Eq.
Can. J. Physics (2005)

RSPT MBPT

Bloch
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Summary and Conclusions

1. By combining Evolution operator and MBPT

numerical QED technique is being developed

capable of handling quasi-degeneracy (Cov. Ev. Op. Method)

(Demonstrated with energy of 3P1 state of He-like ions)

as well as electron correlation to all orders

(Solving Bethe-Salpeter eqn by eff. pot. method)

2. Will lead to higher accuracy when

combined QED and correlation significant

Vital for light elements

Important for medium-heavy elements

3. Can contribute to extracting more accurate

fine-structure constant from the helium fine structure

by combining analytical and numerical techniques.
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Fine-structure constant

(from Drake, Can. J. Phys. 80, 1195 (2002))
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