Page 0

A Covariant Form of

Relativistic Many-Body Calculations

Combining Many-Body and QED Effects

Ingvar Lindgren

Physics Department, University of Gothenburg, Sweden

Coworkers

Sten Salomonson Björn Åsén Daniel Hedendahl Performing relativistic calculations covariantly implies that many-body effects (electron correl.) and quantum-electro-dynamical effects (QED) are treated simultaneously in a rigorous way

Heavy-ion research

Test of Quantum-Electro-Dynamics at strong fields

Why is that of interest?

Heavy-ion research

Test of Quantum-Electro-Dynamics at strong fields

Precision experiments on light systems

Can lead to independent determination of fine-structure constant α

Introduction

Exciting new possibilities for heavy-ion research

New situation for theory

Requires further development of theory in order to match the new experimental situation

Fine structure of helium atom

Fine structure of helium atom

Fine structure of helium atom

Once the theoretical discrepancies are resolved, this can lead to an independent

determination of the fine- structure constant α

Analytical approach

Drake's calculations based upon non-relativistic Hylleraas-type wave functions

and analytical power expansion of relativistic and QED effects up to order $\alpha^7 mc^2$

Analytical approach

Analytical approach

Numerical approaches

We would prefer numerical approach

(Relativistic) Many-body perturbation theory

can treat correlation and (relativistic) effects to all orders **no QED effects**

Numerical approaches

Standard methods for atomic calculations

(Relativistic) Many-body perturbation theory

can treat correlation and (relativistic) effects to all orders **no QED effects**

S-matrix formalism

can treat QED effects to second order no electron correlation

Fine structure of heliumlike ions

9	701(10) μ H		$4364,\!517(6)$	$\mathbf{Expt'l}$
	680	5050	4362(5)	Drake
	690	5050	4364	Göteborg
10	1371(7)	8458(2)		Expt'l
	1361(6)	8455(6)	265880	Drake
	1370	8460	265880	Göteborg
18		124960(30)		Expt'l
		124810(60)		Drake
		124940		Göteborg

Our goal is to merge the covariant-evolution-operator procedure with the well-established many-body perturbation technique

Covariant relativistic MBPT procedure

Question

How can this be done?

Std relativistic MBPT:

Dirac-Coulomb Approximation

$$H = \Lambda_+ \Big[\sum_{i=1}^N h_D(i) + \sum_{i < j}^N rac{e^2}{4\pi r_{ij}} \Big] \Lambda_+$$

Std relativistic MBPT: Dirac-Coulomb Approximation

$$H = \Lambda_+ \Big[\sum_{i=1}^N h_D(i) + \sum_{i < j}^N \frac{e^2}{4\pi r_{ij}}\Big]\Lambda_+$$

Dirac-Coulomb-Breit Approximation

$$H = \Lambda_+ \Big[\sum_{i=1}^N h_D(i) + \sum_{i < j}^N rac{e^2}{4\pi r_{ij}} + H_B \Big] \Lambda_+$$

$$H_B = -rac{e^2}{8\pi} \sum_{i < j} \left[rac{lpha_i \cdot lpha_j}{r_{ij}} + rac{(lpha_i \cdot r_{ij})(lpha_j \cdot r_{ij})}{r_{ij}^3}
ight]$$

Instantaneous Breit interaction

Std relativistic MBPT: Dirac-Coulomb Approximation

$$H = \Lambda_+ \Big[\sum_{i=1}^N h_D(i) + \sum_{i < j}^N \frac{e^2}{4\pi r_{ij}}\Big]\Lambda_+$$

Dirac-Coulomb-Breit Approximation

$$H = \Lambda_+ \Big[\sum_{i=1}^N h_D(i) + \sum_{i < j}^N rac{e^2}{4\pi r_{ij}} + H_B \Big] \Lambda_+$$

No QED effects

Not relativistically covariant

Correct to order α^2

QED effects

QED effects

A covariant many-body procedure should include all many-body and QED effects

Requires field-theoretical approach

Bethe-Salpeter equation

In principle, the BSE has separate times for the particles

$$\Psi(x,x') = \Psi(\mathbf{t},x,y,z;\mathbf{t'},x',y'z')$$

In principle, the BSE has separate times for the particles

$$\Psi(x,x') = \Psi(\mathbf{t},x,y,z;\mathbf{t'},x',y'z')$$

Equal-time approximation: t = t'leads to Schrödinger-like eqn

$$(E-H_0)\Psi(E)=\mathcal{V}(E)\,\Psi(E)$$

 ${\mathcal V}(E) = \Sigma^*(E)$ Effective potential

Bethe-Salpeter equation

BSE can be solved by means of Brillouin-Wigner PT

$$(E-H_0)\Psi(E) = \mathcal{V}(E)\Psi(E)$$

$$Q\Psi(E) = rac{Q}{E-H_0}\Psi(E)$$

$$\Psi(E) = \left[1 + rac{Q}{E-H_0}\mathcal{V}(E) + rac{Q}{E-H_0}\mathcal{V}(E)rac{Q}{E-H_0}\mathcal{V}(E) + \cdots
ight]\Psi_0$$

Not useful as base for MBPT-QED procedure

 $H = H_0 + H'(t)$

Evolution operator Interaction picture

 $\ket{\Psi(t)} = U(t,t_0) \ket{\Psi(t_0)}$

$$\mathrm{i}rac{\partial}{\partial t}U(t,t_0)=H'(t)U(t,t_0)$$

$$U(t,t_0)=\sum_{n=0}^\infty rac{(-\mathrm{i})^n}{n!}\int_{t_0}^t\mathrm{d} x_1^4\ldots\int_{t_0}^t\mathrm{d} x_n^4 \ T\Big[\mathcal{H}'(x_1)\ldots\mathcal{H}'(x_n)\Big]$$

 $H = H_0 + H'(t)$

Evolution operator Interaction picture

 $\ket{\Psi(t)} = U(t,t_0) \ket{\Psi(t_0)}$

 $i\frac{\partial}{\partial t}U(t,t_0) = H'(t)U(t,t_0)$

$$U(t,t_0)=\sum_{n=0}^\infty rac{(-\mathrm{i})^n}{n!}\int_{t_0}^t\mathrm{d} x_1^4\dots\int_{t_0}^t\mathrm{d} x_n^4\,T\Big[\mathcal{H}'(x_1)\dots\mathcal{H}'(x_n)\Big]$$

$${\cal H}'(x)=-e\hat\psi^\daggerlpha^\mu A_\mu\hat\psi$$

interaction density with the e-m field emission and absorp. of virtual photon

Green's function

contains additional electron propagators integration over all times

Time runs in **BOTH** directions

Relativistically covariant

Covariant evolution operator

contains additional electron-field operators integration over all times

Time runs in **BOTH** directions

Relativistically covariant

Std evol. operator represents the evolution of the non-relativistic wave function

 $\Psi(t) = U(t,t_0) \, \Psi(t_0)$

Cov. evol. operator represents the evolution of the relativistic wave function

$$\Psi_{
m Rel}(t) = U_{
m Cov}(t,t_0) \, \Psi_{
m Rel}(t_0)$$

Closely connected to MBPT wave operator

 $\Psi_{
m Rel} = \Omega \, \Phi_{
m Rel}$

I.Lindgren, S.Salomonson, and B.Åsén Physics Reports, <u>389</u>, 161 (2004)

مر م

interaction with the e-m field emission and absorp. of virtual photon

مر م

interaction with the e-m field emission and absorp. of virtual photon

Numerical results

Numerical results

Conclusions

Relativistically covariant MBPT procedure

• can be constructed by means of Covariant-Evolution-Operator/ Green's-Operator technique

Conclusions

- can be constructed by means of Covariant-Evolution-Operator/ Green's-Operator technique
- Based on Rayleigh-Scbrödinger PT compatible with non-rel linked-diagram procedures

- can be constructed by means of Covariant-Evolution-Operator/ Green's-Operator technique
- Based on Rayleigh-Scbrödinger PT compatible with non-rel linked-diagram procedures
- Contains in principle all relativistic and QED effects. Leads for two-electron systems ultimately to Bethe-Salpeter eqn

Outlook

• The new procedure is only partly implemented. Retardation and virtual pairs essentially done, radiative effects (Lamb shift) remain.

Outlook

- The new procedure is only partly implemented. Retardation and virtual pairs essentially done, radiative effects (Lamb shift) remain.
- It will primarily be used in conjunction with highly-charged ion experiments – for medium-heavy few-electron ions in order to test the combined MBPT-QED effect.

Outlook

- The new procedure is only partly implemented. Retardation and virtual pairs essentially done, radiative effects (Lamb shift) remain.
- It will primarily be used in conjunction with highly-charged ion experiments – for medium-heavy few-electron ions in order to test the combined MBPT-QED effect.
- Particularly challenging are high-accuracy calculations on very light elements (He) in order to resolve the present discrepancy between theory and experiments.

Fundamental problem

The original Bethe-Salpeter equation:

 $\Psi(x,x') = - \iiint d^4x_1 d^4x_2 d^4x'_1 d^4x'_2$

 $imes G_0(x,x';x_2,x_2')\,\Sigma^*(x_2,x_2';x_1,x_1')\,\Psi(x,x')$

has separate times for the individual particles

$$\Psi(x,x') = \Psi(t,x,y,z;t',x',y'z')$$

Not consistent with std QM picture

Fundamental problem

The original Bethe-Salpeter equation:

 $\Psi(x,x') = - \iiint d^4x_1 d^4x_2 d^4x'_1 d^4x'_2$

 $imes G_0(x,x';x_2,x_2')\,\Sigma^*(x_2,x_2';x_1,x_1')\,\Psi(x,x')$

has separate times for the individual particles

$$\Psi(x,x') = \Psi(t,x,y,z;t',x',y'z')$$

Not consistent with std QM picture

Potential conflict

between field theory and quantum mechanics

Recent publications

- I.Lindgren, S.Salomonson, and B.Åsén Physics Reports, <u>389</u>, 161 (2004)
- I.Lindgren, S.Salomonson and D.Hedendahl Can. J. Phys. <u>83</u>, 183 (2005) "Einstein Centennial paper"
- I.Lindgren, S.Salomonson and D.Hedendahl Phys. Rev. A<u>73</u>, 062502 (2006)