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Introduction

Performing relativistic calculations covariantly

implies that many-body effects (electron correl.)

and quantum-electro-dynamical effects (QED)

are treated simultaneously in a rigorous way
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Introduction

Why is that of interest?
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Heavy-ion research

Test of Quantum-Electro-Dynamics
at strong fields
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Introduction

Why is that of interest?

Heavy-ion research

Test of Quantum-Electro-Dynamics
at strong fields

Precision experiments on light systems

Can lead to independent determination of
fine-structure constant α
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Introduction

FAIR – Facility for Antiproton and Ion Research
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Introduction

Exciting new possibilities for heavy-ion research

New situation for theory

Requires further development of theory in order
to match the new experimental situation
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Fine structure of helium atom

Fine structure of the helium atom

23P0

29.6 GHz
����

����23P1
2.29 GHz���

23P2
��

23S1
�

�
�

��
108 nm
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Fine structure of helium atom

Comparison between experimental and theoretical

fine structure for the 2 3P state of neutral helium

3P0 −3 P1

Exptl: Gabrielse, Inguscio...
Theory: Drake, Pachucki-Sapirstein
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Fine structure of helium atom

Once the theoretical discrepancies are resolved,

this can lead to an independent

determination of the fine- structure constant α
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Analytical approach

Drake’s calculations based upon non-relativistic

Hylleraas-type wave functions

and analytical power expansion of relativistic

and QED effects up to order α7mc2
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Analytical approach

Drake, Zhang 1996
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Analytical approach

One of 18 energy contributions
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Numerical approaches

We would prefer numerical approach
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Numerical approaches

Standard methods for atomic calculations

(Relativistic) Many-body perturbation theory

can treat correlation and (relativistic) effects to all orders

no QED effects
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Numerical approaches

Standard methods for atomic calculations

(Relativistic) Many-body perturbation theory

can treat correlation and (relativistic) effects to all orders

no QED effects

S-matrix formalism

can treat QED effects to second order

no electron correlation
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Numerical approaches

We have developed an alternative numerical

procedure for QED calculations

Covariant Evolution Operator technique

Can treat quasi-degeneracy

Similarity with MBPT
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Fine structure of heliumlike ions

Z 3P1 −3P0
3P2 −3P0

3P2 −3P1

9 701(10) µH 4364,517(6) Expt’l

680 5050 4362(5) Drake

690 5050 4364 Göteborg

10 1371(7) 8458(2) Expt’l

1361(6) 8455(6) 265880 Drake

1370 8460 265880 Göteborg

18 124960(30) Expt’l

124810(60) Drake

124940 Göteborg

I. Lindgren, S. Salomonson, and B. Åsén, Physics Rep. 389, 161 (2004)
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Goal

Our goal is to merge the

covariant-evolution-operator procedure

with the well-established many-body

perturbation technique

Covariant relativistic MBPT procedure
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Question

How can this be done?
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Std relativistic MBPT

Std relativistic MBPT:
Dirac-Coulomb Approximation

H = Λ+

[ ∑N
i=1 hD(i) +

∑N
i<j

e2

4πrij

]
Λ+
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Std relativistic MBPT

Std relativistic MBPT:
Dirac-Coulomb Approximation

H = Λ+

[ ∑N
i=1 hD(i) +

∑N
i<j

e2

4πrij

]
Λ+

Dirac-Coulomb-Breit Approximation

H = Λ+

[ ∑N
i=1 hD(i) +

∑N
i<j

e2

4πrij
+HB

]
Λ+

HB = − e2

8π

∑
i<j

[
αi·αj

rij
+ (αi·rij)(αj ·rij)

r3ij

]

Instantaneous Breit interaction
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Std relativistic MBPT

Std relativistic MBPT:
Dirac-Coulomb Approximation

H = Λ+

[ ∑N
i=1 hD(i) +

∑N
i<j

e2

4πrij

]
Λ+

Dirac-Coulomb-Breit Approximation

H = Λ+

[ ∑N
i=1 hD(i) +

∑N
i<j

e2

4πrij
+HB

]
Λ+

No QED effects

Not relativistically covariant

Correct to order α2
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Std relativistic MBPT

Diagrammatic representation of

Dirac-Coulomb-Breit
for He-like systems

Coulomb Coulomb-

Coulomb

� � � � �� �

Coulomb-

Breit

� � � � �� �

Coulomb-

Breit-

Coulomb
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QED effects

QED effects—effects beyond Dirac-Coulomb-Breit

(order α3 and higher)

Non-radiative effects (retardation, virtual pairs)

�
�

Retarded Breit

�
��
�

Araki-Sucher

�

�

�

�
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QED effects

QED effects—effects beyond Dirac-Coulomb-Breit

(order α3 and higher)

Non-radiative effects (retardation, virtual pairs)

�
�

Retarded Breit

�
��
�

Araki-Sucher

�

�

�

�

Radiative effects (Lamb shift)

Self energy

�
� ����������� �

Vacuum polarization

������ �
�

� � � �������� � �
�

Vertex corr.
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Covariant relativistic procedure

A covariant many-body procedure should

include all many-body and QED effects

Requires field-theoretical approach
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He-like ions
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Bethe-Salpeter equation

First relativistically covariant theory:

Bethe-Salpeter eqn
Salpeter and Bethe 1951; Gell-Mann and Low 1951

Ψ(x, x′) = − ����

d4x1 d4x2 d4x′
1 d4x′

2

×G0(x, x
′;x2, x

′
2) Σ∗(x2, x

′
2;x1, x

′
1) Ψ(x, x′)

Based on field theory

Ψ

� �

= - ················································································�
�

�
�

� �

Σ∗
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Bethe-Salpeter equation

”Proper” self-energy represented by all

irreducible interaction diagrams

Σ∗ = �
�

�
��
�

�

�

�

�
� � �������� � �

�

�
��
��
�
· · ·
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Bethe-Salpeter equation

In principle, the BSE has separate times for the

particles

Ψ(x, x′) = Ψ(t, x, y, z; t′, x′, y′z′)
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Bethe-Salpeter equation

In principle, the BSE has separate times for the

particles

Ψ(x, x′) = Ψ(t, x, y, z; t′, x′, y′z′)

Equal-time approximation: t = t′

leads to Schrödinger-like eqn

(E −H0)Ψ(E) = V(E) Ψ(E)

V(E) = Σ∗(E) Effective potential
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Bethe-Salpeter equation

BSE can be solved by means of Brillouin-Wigner PT

(E −H0)Ψ(E) = V(E) Ψ(E)

QΨ(E) = Q
E−H0

Ψ(E)

Ψ(E) =
[
1 + Q

E−H0
V(E) + Q

E−H0
V(E) Q

E−H0
V(E) + · · ·

]
Ψ0

Not useful as base for MBPT-QED procedure
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Covariant evolution operator

Time-dependent perturbation theory

H = H0 +H ′(t)

Evolution operator
Interaction picture

|Ψ(t)〉 = U(t, t0) |Ψ(t0)〉

i ∂
∂t
U(t, t0) = H ′(t)U(t, t0)

U(t, t0) =
∞�

n=0

(−i)n

n!

� t

t0

dx4
1 . . .

� t

t0

dx4
n T

�

H′(x1) . . .H′(xn)

�
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Covariant evolution operator

Time-dependent perturbation theory

H = H0 +H ′(t)

Evolution operator
Interaction picture

|Ψ(t)〉 = U(t, t0) |Ψ(t0)〉

i ∂
∂t
U(t, t0) = H ′(t)U(t, t0)

U(t, t0) =
∞�

n=0

(−i)n

n!

� t

t0

dx4
1 . . .

� t

t0

dx4
n T

�

H′(x1) . . .H′(xn)

�

H′(x) = −eψ̂†αµAµψ̂

interaction density with the e-m field

emission and absorp. of virtual photon
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Covariant evolution operator

Interaction between the electrons represented
by exchange of virtual photons

Evolution operator for single-photon exchange

Contraction of two interactions: H′(x1)H′(x2)

t = t′

	 	

	 	
�

�

t = t0

Time runs only in POSITIVE directions

NOT relativistically covariant
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Covariant evolution operator

Green’s function

contains additional electron propagators
integration over all times

t = t′

SF
SF

�
�SF
SF

� �

t = t0 � �

Time runs in BOTH directions

Relativistically covariant
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Covariant evolution operator

Covariant evolution operator

contains additional electron-field operators
integration over all times

t = t′
ψ̂† ψ̂†

SF
SF

�
�SF
SF

� �

t = t0 � �
ψ̂ ψ̂

Time runs in BOTH directions

Relativistically covariant
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Covariant evolution operator

Std evolution

operator

ψ̂† ψ̂†	 	

ψ̂ ψ̂	 	
�

�

Not rel.
covariant

Green’s

function

SF
SF

�
�SF
SF

� �

� �

Relativistically covariant
Field-theoretical concepts

Cov. evol.

operator

ψ̂† ψ̂†

SF
SF

�
�SF
SF

� �

� �
ψ̂ ψ̂
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Covariant evolution operator

Std evol. operator represents the evolution of

the non-relativistic wave function

Ψ(t) = U(t, t0) Ψ(t0)
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Covariant evolution operator

Cov. evol. operator represents the evolution of

the relativistic wave function

ΨRel(t) = UCov(t, t0) ΨRel(t0)
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Covariant evolution operator

Cov. evol. operator represents the evolution of

the relativistic wave function

ΨRel(t) = UCov(t, t0) ΨRel(t0)

Closely connected to MBPT wave operator

ΨRel = Ω ΦRel

I.Lindgren, S.Salomonson, and B.Åsén

Physics Reports, 389, 161 (2004)
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Covariant evolution operator

H′(x) = −eψ̂†αµAµψ̂

interaction with the e-m field

emission and absorp. of virtual photon
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Covariant evolution operator

H′(x) = −eψ̂†αµAµψ̂

interaction with the e-m field

emission and absorp. of virtual photon

�

�

�

�

�

�
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Covariant evolution operator

Leads to the desired field-theoretical form of MBPT

Compatible with Bethe-Salpeter equation

which verifies the relativistic covariance

Compatible with std MBPT

can treat electron correlation to all orders

I.Lindgren, S.Salomonson and D.Hedendahl

Can. J. Phys. 83, 183 (2005) ”Einstein Centennial paper”
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Numerical results

He-like neon ground state, non-rad. effect (in µH)

Coul.-Coul.

NVP: -158 000

� � � � �� �
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Numerical results

He-like neon ground state, non-rad. effect (in µH)
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He-like ions
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Conclusions

Relativistically covariant MBPT procedure

• can be constructed by means of
Covariant-Evolution-Operator/
Green’s-Operator technique
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Conclusions

Relativistically covariant MBPT procedure

• can be constructed by means of
Covariant-Evolution-Operator/
Green’s-Operator technique

• Based on Rayleigh-Scbrödinger PT
compatible with non-rel linked-diagram procedures

• Contains in principle all relativistic and QED effects.
Leads for two-electron systems ultimately to
Bethe-Salpeter eqn
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Outlook

• The new procedure is only partly implemented.
Retardation and virtual pairs essentially done,
radiative effects (Lamb shift) remain.
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• The new procedure is only partly implemented.
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highly-charged ion experiments – for medium-heavy
few-electron ions in order to test the combined
MBPT-QED effect.
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Outlook

• The new procedure is only partly implemented.
Retardation and virtual pairs essentially done,
radiative effects (Lamb shift) remain.

• It will primarily be used – in conjunction with
highly-charged ion experiments – for medium-heavy
few-electron ions in order to test the combined
MBPT-QED effect.

• Particularly challenging are high-accuracy calculations
on very light elements (He) in order to resolve the
present discrepancy between theory and experiments.
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Fundamental problem

The original Bethe-Salpeter equation:

Ψ(x, x′) = − ����

d4x1 d4x2 d4x′
1 d4x′

2

×G0(x, x
′;x2, x

′
2) Σ∗(x2, x

′
2;x1, x

′
1) Ψ(x, x′)

has separate times for the individual particles

Ψ(x, x′) = Ψ(t, x, y, z; t′, x′, y′z′)

Not consistent with std QM picture
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Fundamental problem

The original Bethe-Salpeter equation:

Ψ(x, x′) = − ����

d4x1 d4x2 d4x′
1 d4x′

2

×G0(x, x
′;x2, x

′
2) Σ∗(x2, x

′
2;x1, x

′
1) Ψ(x, x′)

has separate times for the individual particles

Ψ(x, x′) = Ψ(t, x, y, z; t′, x′, y′z′)

Not consistent with std QM picture

Potential conflict
between field theory and quantum mechanics
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