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In this paper we apply the single-particle Green’s-function method to the atomic many-body perturbation
theory. We present an all-order evaluation scheme for the proper self-energy operator based on the systematic
use of Dyson’s integral equations. The method is complete to third order in perturbation theory and, in
addition, large classes of higher-order effects are included by solving the Dyson equations. Certain classes of
many-body correlation effects beyond the pair-correlation approximation are included. The proposed method is
tested by calculating the ground-state valence-electron binding energy for the alkali-metal atoms Li, Na, and K.
Agreement with experimental results corresponds to an error in the correlation energy contribution of 3—4 %.

If certain three-particle effects, not evaluated in this work, are added, the agreement with experiments is, for
sodium and potassium, approximately within 1% of the correlation eng€&jy050-294{@7)08604-9

PACS numbgs): 31.10+z, 31.15.Ar, 31.15.Md, 31.25.Eb

[. INTRODUCTION only 94% of the correlation energy can be explained as pair
correlation. For 4 in potassium, the CCSD result for the
During the last decades, several methods have been dbinding energy agrees well with experiment. This agreement,
veloped for performing accurate atomic and molecular struchowever, seems fortuitous, since certain classes of effects
ture calculations. In particular, the multiconfiguration beyond the CCSD approximation have been evaluated by
Hartree-Fock method and the many-body perturbation theorynnerman[16] and found to decrease the correlation energy
(MBPT) have been used successfully to evaluate atomievith 6.5%. The correlation energy is therefore also underes-
properties, e.g., binding energies and hyperfine structuresimated in potassium. It is therefore of interest to find meth-
The MBPT approach based on the works by Brueckner andds where classes of many-body effects beyond the pair-
Goldstone was first applied by Kelly to closed-shell atomscorrelation approximation can be included systematically to
and other atomic systems being described with a singleall orders in perturbation theory.
determinant wave functiopl—4]. The approach was later In this paper we apply an alternative approach to the
generalized to open-shell systems by Brandow, Sandars, asdomic many-body theory, the single-particle Green's-
Lindgren([5, 6, and 7, respectivelyA comprehensive treat- function method, which is based on the time-dependent for-
ment of atomic MBPT can be found in R¢8]. Perturbative mulation of perturbation theory and the diagrammatic formu-
procedures, however, become unmanageable beyond thitation of quantum field theory by Feynman, Gell-Mann,
order due to the exploding number of terms in the perturbabyson, and other$17—21. The method is formulated in
tion series. This has led to the development of various nonterms of renormalized or dressed electron propagators and
perturbative schemes of which the coupled-clust€C) screened Coulomb interaction lines. The ideas behind the
method, first developed by Coester andniael [9,10] in renormalization(inclusion of electron-correlation effects to
nuclear physics and then introduced into quantum chemistrinfinite order in perturbation theoryf the electron propaga-
by Cizek [11,12, is so far the most powerful and widely tor and the Coulomb interaction for many-body systems are
used procedure. The CC method has been successfully apell known and have been used frequently in solid-state
plied to atomic-structure calculations in the coupled-clustepphysics. See, for example, the textbooks by Fetter and Wa-
singles and double€CCSD approximation, where only the lecka[22] and by Mattuck[23]. The electron correlation is
one-electron and two-electron correlation effects are retainedescribed, in this approach, by the so-cakedf-energy op-
[8,13-15. erator. In this method, correlation effects are included to
In the coupled-cluster approach, however, it has turnedhigher orders in a straightforward manner by evaluating the
out to be difficult to go beyond the pair-correlation approxi- effect to lowest order and then solving the appropriate Dyson
mation and include correlation between more than two elecequation for the effect.
trons in a systematic way. There are small but significant There are several advantages with such a formulation of
discrepancies between the experimentally measured bindirthe atomic many-body theory. First of all, a formulation in
energies and the ones calculated using the CCSD method.tdrms of non-time-ordered Feynman diagrams is much more
is reasonable to assume that these discrepancies are largelympact than the ordinary diagrammatic formulation of
due to many-body correlation effects beyond the pairMBPT in terms of time-ordered Goldstone diagrams. Sec-
correlation approximation. Even for alkali atoms, with aond, all possible time orders of the interaction lines are au-
single electron outside a closed core, these many-body cotematically included in the evaluation of the Feynman dia-
relation effects make significant contributions to the bindinggram. This is not the case, for example, in the CCSD, where
energy. For the binding energy of the 8lectron in sodium, time orders describing three-electron correlation effects are
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omitted and other time orders need to be explicitly included The Green’s-function method has also been used in
in order to include Hermitian conjugates of certain classes o&tomic MBPT calculations by Dzubet al. [36—39 in their
effects. A third advantage is that the approach is Hermitiangalculations of the properties of cesium and negative alkali
in contrast to, e.g., the coupled-cluster approach in intermeions. In these works they have, however, focused on the
diate normalizatiorj24]. effect of screening of the Coulomb interaction and only in-
Single-particle Green's-function methods have been usefluded a sub_set of the leading correlat_ion cont_ributions to all
extensively in quantum chemistry to calculate binding enerorders. The importance of a systematic inclusion of all low-
gies and electron affinities for molecules. Reviews on how?Prder correlation contributions was demonstrated by Blun-
the Green’s-function methods are applied in quantum cherf@€!l. Johnson, and Sapirstei0] in their calculations of the
istry are given by Linderberg andHin [25,26], by Ceder- ground-state energies of cesium and thallium. In the present
baum and DomckE27], by von Niessen, Schirmer, and Ced- work, correlation effects are included systematically to all

erbaum[28], and also by Oddershed@9]. Many of the orders in perturbation theory. All effects that appear in sec-
reported caylculations in quantum chemistry where single-ond and third order and also a large fraction of those appear-
ing in fourth order are included in the proper self-energy

electron Green’s-function methods are used are, howevel! .
performed in the so-calledwo-particle one-hole Tamm- Operator. Furthermore, large classes of higher-order effects
Dancoff approximatiorn(2ph TDA), where the leading con- are l_ncluded by solving the Dyson equations.

tributions to the ground-state correlation are only partly ac- Itis the purpose of the present paper to test our procedure

counted for, yielding a relatively poor agreement betweerP" the alkali atoms lithium, sodium, and potassium, which

the calculated binding energies and the experimental resultgl.II have a single valence electron outside a closed core. The

In the extended 2ph TDAethod[30], which is complete to correlation energies and binding energies for the ground state
third order in perturbation theory, the leading contributions®€ compared with other calculations as well as with experi-

to the ground-state correlation are included and the agretgUental data.

. o airif .~ The plan of this paper is the following. In Sec. Il a brief
g]r(ejctedt?etween theory and experiment is significantly im review of the theoretical methods on which our work is

In 1983, Schirmer, Cederbaum, and Walféd] intro- based is given. Special attention is given to the proper self-
duced the,AIgebraic 7Diagrammati(1: ConstructiofADC) ~ €Nergy operator and the proper polarization operator, which
method, which can be used to devise systematic approximzf‘-re fund_amental_ cornerstones m_the method. In Sec. Il a
tions for the Green's function. In the ADC approach theschematlc overview of the numerl_cal procedure and_the re-
diagrammatic expansion of the proper self-energy operator i§UItS. are given. The_results are discussed .and spemal atten-
combined with an assumed algebraic form for the propefon is given to the difference between the inclusion of only

self-energy operator. The algebraic equation is expanded in'5¢ low-order contributions and a systematic inclusion of the

perturbation series and the terms in the series are then idefz’i-fects to all orders using Dyson equations. The method is

tified with the diagrams of the same order in the diagram_compared with similar results from calculations using the

matic expansion. In this way, approximations of the func—C.CSD. approach. A short summary and some conclusions are
tions included in the algebraic equation can be generatecg.'ven in Sec. IV.
The approximations are then substituted back into the origi-
nal equation and the self-energy operator is calculated. The Il. THEORY
self-energy operator calculated in this way includes infinite
partial summations of contributions. With this approach, sys- The formalism on which our computational procedure is
tematic approximations can be devised by identifying thedased has been described in detail in the litergfi8y22,23,
diagrams in the expansion to a certain order in perturbatioRut for the convenience of the reader a summary is given
theory. The ADC approach including all third-order effects,here as a basis for the following treatment. We are using
ADC(3), was shown to yield the same results as the extende@tomic units where=m=#%=4meo=1.
2ph TDA approximation. A drawback of the ADC method,
however, seems to be that the identification of the higher-
order contributions, included in the self-energy beyond the
diagrams used when devising the approximation, is non- We consider aN-electron atomic system with a nonde-
trivial. The infinite class of correlation effects included in the generate ground statg¥°). The nonrelativistic atomic
proper self-energy operator is therefore hard to identify. ~ Hamiltonian describing this system,

The method of including electron correlation by evaluat- N N N
ing the proper self-energy operator has also been used when A=_ EE v2_ 2 E+ 2 i (1)
treating different types of scattering processes on atoms. 2= " ’
Amusia and Cherepkov have used tmandom-phase-
approximation-with-exchang&®PAE) method in their calcu-
lations of photoionization cross sections and inelastic scatte
ing of electrons on atom$32]. Also Wendin and Ohno
[33,34] and others have used similar RPAE methods when . N
investigating correlation effects for core holes induced in Ho= 2, —EVﬁ—r—JrU(rn) =2 ho(r) @
heavy atoms. A thorough discussion of both theoretical and n=1 n n=1
experimental aspects of the photoionization process is given
in the review paper by Wendif85]. and a perturbation

A. Basic formalism

n=1 rn m<n rmn

Ii§, partitioned into an unperturbed Hamiltonian,

N
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o NCoq N found in the literaturdsee, for example, Ref§22,23), it is
Hi=H—-Hg= Z — = E u(ry,). (3 possible to show that the exact propagator can be written in
nfmn n=1 the interaction picture as a perturbation expansion as

The model potential can be written as

. o (=)™ (= -
|G(r’t’,rt)=2 —f dtl...f dt.,
m=0 m' — o0 — o0

U(rZ)(P:fdsrl[ul(rzvr1)+unl(r21r1)]¢’(rl)- (4)
X(DOIT[Hy(ty) . .. Hy(ty)

At this stage no assumptions are made about the model po-

tential. It is considered to be a general model potential con- XP(r't )P )12 connectes (9
taining both local [) and nonlocal §l) parts, where the
former is given by Here, |®°) is the ground state for the unperturbed system
described byH,. T[ - - - ] denotes a time-ordered product that
u(rz,ra)=a(rz=ryUi(ra). (®  implies that the operators should be reordered from right to
The single-particle equation left with increasing timeH (t) is the perturbation in second-

quantized form for a single electron, i.e., the difference be-
(6)  tween the Coulomb interaction with the electrons in the core
_ _ _ _ and the model potentiai(r,,r;). ¢(r't’) and¢'(rt) are the
defines a set of electron orbltal§, which form the basis of thejg|d operators in second quantization, given by
calculation. The Slater determinarjt®”) formed by these

orbitals are antisymmetrized eigenfunctionsHy,

F1o|€Di>:8i|¢>i>

fﬂ(r’t’)=§ er(re e,
Hol @)= Eg|®*) 7

with the eigenvalue equal to the sum of the orbital eigenval- {/,T(rt)zz @E(r)eigktél, (10)
ues of the determinant k

e where theg,(r) are the one-electron eigenfunctions ftg

EQZEi &i- (8)  ands, the corresponding energy eigenvalues. The summa-
tion runs over the complete set of one-particle states. The
We are considering alkali atoms, which have a singlesubscriptconnectedin Eq. (9) means that only connected
electron outside a closed core. Such Systems can be treatedtﬁ{ms Contribute, i.e., terms that do not factorize into several
MBPT as effective one-body systems. The propagation ofndependent parts. Equatidf) is analogous to théinked-
the outer electron between two poimtsandr’t’ in space- diagram theoremin MBPT, and was first proved by Gold-
time, while interacting with the nucleus and all the electronsstone[2] to all orders in perturbation theory. The perturba-
in the core, is described by thexactsingle-particle Green’s tion expansion of the exact electron propagator in €.
function G(r’t’,rt)’ also known as thelectron propagator forms the basis for the MBPT formalism employed in this
Evaluation of the exact electron propagator is of the samdvork. R
degree of complexity as solving the full Scdinger equa- The perturbatioH(t) in second quantized form is given
tion for the atom. From the formal definition, which can be by

n 1 “ “ S(t,—19) - “
Hl(tl)zif f d3r1d3r2f dtz( z,bT(rltl)¢T(r2t2)(2—111//(r2t2)¢//(r1t1)

ra

_J fd3r1d3r2f dt{ T (roto)u(ry,ry) 8(t,—ty) gh(raty)}, (11

where the first term is the instantaneous Coulomb interactionrdered product plus the sum of all possible contractions
between two electrons in the field and the second term is theithin the normal-ordered product, i.e.,
interaction with the model potential. Due to the complex L o

structure ofH;, even the lowest-order terms in E@) will T[ABC---U]=N[AB---U]J+N[ABC- - -U]
have a very complicated form. Wick’s theorgmhl], how-
ever, provides a powerful tool for singling out the contribut-
ing terms in the expansion. The theorem states that a time-
ordered product of operators can be written as the normal- it
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where AB denotes that the operators are contracted. In Eq.

(9) the electron propagator is given as the unperturbed

ground-state averade®|- - - |®9). If the time-ordered prod-

ucts in Eq.(9) are expanded using Wicks theorem, only AU ---------X
terms that are fully contracted will yield nonzero contribu-

tions since the ground-state average of a normal-ordered op-

erator product is zero by definition. Furthermore, the only

contractions that are not zero are contractions betweand Propagating  Coulomb Model potential

~ . . . i electron interaction interaction
J%. Applying this to the first term in Eq(9), m=0, the
zeroth-order electron propagat@p(r’t’,rt) can be directly

identified as the contraction FIG. 1. Graphical representation of the Feynman diagram build-

ing blocks.

IGo(r't’,rt)=g(r't) '(rt). (13 respect tee. The resulting energy eigenvalue is equal to the

) _ _ binding energy of the outer electron.
This means that the perturbation expansion of the exact elec-

tron propagator in Eq(9) can be expressed more simply in
terms of the zeroth-order electron propagd®gy the instan- _ .
taneous Coulomb interactionr}{, and the interaction with A graphical representation of the exact electron propaga-
the model potentiat-u(r,,r,). tor in Eq.(14) can now be formulated, using the zeroth-order
If the electron propagator is Fourier transformed with re-electron propagatoB, the instantaneous Coulomb interac-

spect tot—t’, it is possible to reformulate the expansion of tion 1f>;, and the interaction with the model potential
G in a very compact form as —u(r,,rq) as building blocks. In diagrammatic form, the

zeroth-order electron propagator is represented by a vertical

B. Graphical representation

line; see Fig. 1. The Coulomb interaction is represented by a
G(r’,r,w)zGo(r’,r,w)+f f d3r,d%r 1 Go(r',r2, @) wavy line and the interaction with the model potential by a
dotted line with a cross. The contributions to ordein Eq.
XZH(ry,r,w)G(ry,r,o). (14 (9) can then be constructed in the following way.

_ (i) Draw all topologically distinct connected diagrams
The Fourier-transformed zeroth-order electron propagatogontainingn interaction lines and 2+ 1 electron propagator

Gy(r',r,w) is given by lines.
. (ii) The contribution to the electron propagator from each
ot )= S em(r")em(r) | 7m<<O core states diagram can be constructed following the rules given in Fig.
oth 1@ m (w—enting | >0 Vvirtual states. 2. ) ) ) )
(15) The diagrammatic expansion of the electron propagator is

given to first order in Fig. 3. If the Hartree-Fo¢KF) poten-
7m is @ small real number added when defining the Fouriefial from the closed-shell core is used as the zeroth-order
transformation to ensure the convergence of the Fourier inmodel h,, the sum of the three first order modifications in
tegrals, and the limitp—0 should be taken after the calcu- Fig. 3 is zero. The use of the HF model substantially reduces
lation is doneX*(r,,rq,w) in Eq. (14) is the proper self-

energy operator accounting for the correlation effects v
beyond the independent-particle model, describedI:l@y
Equation(14) is known as theDyson equatio_n‘or the elec- ® 1. Intemal electron line:  iG,( 'y, @)
tron propagator and plays a central role in our treatment.
>From the Dyson equation it can be shown that the motion .
of the outer electron in the presence of the closed-shell sys-
tem can be described by quasiparticle wave function o o .
. . . . . r YN 2. Internal interaction line : 1 V(1,1 )=
¢(r) satisfying the quasiparticle equatiéQPE [-1q
hod)(r)—’_f E*(r,rl ,8)¢(r1)d3r1: 8¢(r). (16) *\f\/\/‘ 3. Y:etf;(d fvfzgo\;e;tex corresponds to a space-coordinate,
¢(r) describes the wave function for the electinrthe pres- O 4. Closed electron loop: Factor (1) and a trace symbol
ence of the other electrons in the atofe effects due to the
relaxation of the core electrons in the atom are taken into 5. The energy is conserved at every vertex of the diagram.
account in this wave function and(r) is therefore usually
referred to as @uasiparticle orbital Having calculated the 6. Inteerati R
. R . Integration over all space and energy- coordinates, r; and o,
proper self-energy operatdy*(e) to some level of approxi- Factor 1427) for each nontrivial - integration.
mation, it is added td, and the QPE is solved in the same
way as the zeroth-order equation. SicH ) is energy de- FIG. 2. Rules for evaluating the Feynman amplitudes from a

pendent, the equation has to be solved self-consistently withiagram.
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FIG. 5. The diagrammatic formulation of the Dyson equation
for the electron propagatd@s(r',r,w).

*® ® [ ] [ ]
Correlation also affects the interaction between the elec-
FIG. 3. Graphical representation of the electron propagator tdrons. This is described as screening of the Coulomb interac-
first order in perturbation theory. tion. It is taken into account by evaluating theoper polar-
ization operatorIT*(r,,r,,w)=I15,(w). In analogy to the
the number of contributions to the electron propagator, sinc@€finition of the self-energy operator, the polarization opera-
all higher-order iterations of the sum of the first-order con-{or I is defined as a structure connected to the rest of the
tributions also yield zero contributions. The first nonvanish-diagram with only two Coulomb interactions. Thoper
ing contributions, beyond zeroth order, to the electron propaPolarization operatod1* is defined as a structure thzgnnot
gator, using the HF approximation, are given by the twobe Q|V|ded.|nto t_wo Iow.er—or.der polanza‘uo_n qperators by
second-order diagrams in Fig. 4. cut_tlng_ a single interaction Im(_e. T_he polarization operator
The exact electron propagator consists of the unperturbell iS given by the proper polarization operatd” plus the
zeroth-order electron propagat6y, plus all connected dia- SUM of all successive iterations bif*,
grams with a zeroth-order electron propagator at each end. T=TI1* + [1*VOIT* + IT*VOTT*VOIT* + (18)
This defines the self-energy operatbrdiagrammatically as Y
a structure which is connected to the rest of the diagram withy here in our cas&"’:llrij . The proper polarization of the

only two zeroth-order electron lines. It is the self-energy op-coylomb interaction is therefore taken into account to all
erator that contains all the effects of the perturbatianThe  orders by solving the Dyson equation

proper self-energy operatdt* is defined as a structure that

cannotbe divided into two lower-order self-energy operators 0 3, 3. \/0 1%

by cutting a single electron line. The self-energy operator Vai(@)=Var+ drsd™r4Vodlagl@)Vai(w). (19)

2 is then given by the proper self-energy operaidr plus

the sum of all successive iterations Bf, Equation(19) is given in diagrammatic form in Fig. 6. An
all-order approximation of the screened Coulomb interaction
=33 G GG+ ... (17)  Vjj(w) can therefore be calculated by evaluating the proper

polarization to some level of approximation and then solving

the Dyson equatiofi19).
The diagrammatic expansion of the electron propagator The proper self-energy operator can be formulated in
terms of the proper self-energy operator is given in Fig. 5terms of so-callecgkeleton diagramsThese are obtained by
which is the graphical equivalent of the Dyson equati®  taking a proper self-energy operator and removing all elec-
in the preceding section. An all-order approximation of thetron self-energy insertions and all polarization insertions on
electron propagatds(r’,r,w) can therefore be calculated by the interaction lines. The remainder is defined as a skeleton
evaluating the proper self-energy operator to some level ofliagram for the proper self-energy operator. The same can be
approximation and then solving the Dyson equation. This igione for the proper polarization operator resulting in a set of
referred to agenormalizingor dressingthe electron propa- polarization skeletons. In Fig. 7 the self-energy operator
gator. skeletons including up to three interactions are given and in
Fig. 8 the skeletons for the polarization including up to two
interactions is given. The dressed electron propagators and
the screened Coulomb interactions are evaluated from Eqgs.
§ (14) and(19) and are then used to calculate the proper self-
energy operator and the proper polarization operator from
these skeletons in Figs. 7 and 8. A large number of high-
order correlation effects are included automatically, using a
o very limited number of skeleton diagrams. Which skeletons
should be included depends on which diagrammatic building
blocks are used. In this work we are using the dressed elec-
tron propagators and the screened interaction lines as build-

FIG. 4. Second-order contributions to the electron propagator. 1fNg blocks. If so-called vertex corrections

using HF as the zeroth-order model, these are the first nonvanishidg(r1,r,,rs,w;,w,) modifying the vertices were also used,
contributions beyond the zeroth-order approximai@ then the entire perturbation expansion could be very com-
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FIG. 6. The diagrammatic formulation of the Dyson equation
for the screened Coulomb interactidhy (o). 1 2 3 4 s 6

pactly formulated in terms of only the two first skeletons, 1 . 8. Graphical expansion of the proper polarization operator
and 2, in Fig. 7 and skeleton 1 in Fig. 8. This is, however,i; terms of skeletons.

not possible today with the computing power we have avail-
able, since a general evaluation procedure for vertex correTi
tions would require a very large internal computer memory! 42]. Since a spherically symmetric model potential is used,
For that reason, vertex modifications lead, in our procedureé?nly the radial electron propagat@(r’,r,«), the radial
to distinct skeletons, as illustrated in Figs. 7 and 8. self-energy operata(r,,r1, ), and the radial polarization
Finally, the all-order proper self-energy operator is usedI(r2.r1,»;) need to be evaluated for each angular-
in the quasiparticle equatiaii6). The binding-energy of the Momentum symmetry. The angular momentum integrals are
outer electron is then given by the energy eigenvalue of th@andled using the graphical techniques developed in ordinary
quasiparticle equation. MBPT,; see, for example, Reff8].
As pointed out in the preceding section, by using the HF
model, the number of diagrams contributing to the self-
Il. NUMERICAL PROCEDURE AND RESULTS energy operator is significantly reduced. The first nonvanish-
A. Numerical procedure ing contributions beyond zeroth order are given by the two

self-energies in Fig. 4. In third order there are 14 contribut-
By the use of dressed electron propagators and screen diagrams. Of this number only 12 need to be explicitly
Coulomb interactions, when evaluating the proper self-

alculated, as the remaining two are Hermitian conjugates of
energy operator, a considerable amount of higher-order e§wo other graphs. In fourth order we have found 122 contrib-

fects are automatically included in the procedure. A generautlng Feynman diagrams, Hermitian conjugates included
calculation procedure including all self-energy and polanzaand 34 of these have been evaluated in this work. ’
tion effects given by Figs. 7 and 8 is, however, not possible

fevel; see Fig. 9. The effects included $ in Fig. 9 origi-
tion our computational procedure and the apprOX|mat|0n§]ate from skeleton 1 in Fig. 7. The leading-order diagram
used will be discussed. _ from this skeleton is included in the HF potential and de-
As the zeroth-order model of the single-electron Hamil- scribes how the electron interacts with the average charge
tonian hy we have used the spherically symmetric Hartree-gensity of the core electrons in the system. This diagram is
Fock model of the closed-shell pOSItlve alkali ion to d8f|nerespons|b|e for the main part of the Screemng of the interac-
the zeroth-order approximation. This means that all electrongon with the nucleus and the contribution to the binding
in the atom feel the direct and eXChange interactions with th@nergy from this d|agram is almost as |arge as the contribu-
electrons described by the HF orbitals from the positive iontjon from the interaction with the nucleus, but with opposite
This model is commonly known as the W ~* model. The  sign. The correlation effects given 84 in Fig. 9 describe
basis functions used in our calculations are obtained usingygdifications of the average charge density due to correla-
the numerical finite basis set method as described in Refjon effects in the core. Since the first-order contribution to
skeleton 1 is so large, it is reasonable to expect that for
valence electrons penetrating the core modifications of the

skeleton also yields significant contributions to the self-
M/O - energy operator.
The correlation effects given b$, in Fig. 9 describe the

attraction between the electron and the core due to the polar-
ization of the core. The core polarization yields by far the
most important correlation contributions to the self-energy

operator, as will be seen in the results presented later.
Skeletons 3, 4, 5, 6, and 7 in Fig. 7 all describe compli-
o cated correlation effects. Skeleton 3 contains only two inter-
action lines while the others contain three interaction lines. It

is reasonable to assume that skeleton 3 yields significantly
larger contributions than the other skeletons. Skeleton 3 is
therefore included, while skeletons 4, 5, 6, and 7 are ne-
FIG. 7. Graphical expansion of the proper self-energy Oloeratoglected in the self-energy operator which is used for evalu-
in terms of skeletons. The all-order proper self-energy operator i§ting dressed electron propagators.

evaluated from these skeletons using dressed propagators and For the proper polarization operatds,(w,), skeletons 1,
screened interaction lines. 2, and 3 in Fig. 8 have been included, using zeroth-order
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Q- (D) FIG. 9. Graphical representation of the proper
- WO - N@ ’ - - * - self-energy operatat (r’,r,w) used for evaluat-
ing the dressed electron propagator. The thick
g v Y
8, . 83

lines are dressed using the Dyson equation.

S

electron propagators and the ordinary Coulomb interactioncomplete to third order in perturbation theory, however, the
The polarization can, in this approximation, be evaluated as bowest-order contributions to the skeletons, depicted in Fig.
function of the energyw,, using ordinary calculus of resi- 13 have been added to the self-energy operator.

dues. If modified propagators and interaction lines are in- The numerical procedure employed in this work is sche-
cluded in the polarization, numerical integration methodsmatically divided into five different steps.

have to be used for the energy integrations included in the (1) A proper polarization operatdi*(r,,r;,w;) is first
polarization. This is far more demanding computationallyeyajuated in the approximation given above. The evaluated
and is not done in this work. polarization is used when setting up the Dyson equatléh

For the proper self-energy operatdr'(s), used when {o the screened interactiovt;; (w,). In this way a set of
solving the quasiparticle E¢16), a larger set of skeletons is ¢ eaned interaction lines is generated

included than for the self-energy operator used for dressing (2) A proper self-energy operata*(r,,ry,w), which
- 211 ]

Fhe e_Iectron propagator. Th‘? most computationally der’nan(%hould be used for evaluating the dressed electron propaga-
ing diagrammatic structures in our approach are the so-calle

Vertex Correctionsl'(ry,r,,rs,@1,0,); see Fig. 10. The tors, is _calculated. The calcplation of*(r,,rq,w) is per- _
ability to evaluate the different contributions to the vertex 0rMed in two steps. In the first step, the self-energy contri-
correction will limit how many of the skeletons in Figs. 7 Putions froms, andS; in Fig. 9 are calculated using zeroth-
and 8 can be included. In this work we have used the ap(_)rder propagators an_d scree_ned mteractm_n Ilnes, evaluated
proximation given in Fig. 11 for the vertex corrections, whenfrom the Dyson equatioL9) with the approximation for the
modifying the vertices in skeleton 2 in Fig. 7. In this way, Polarization discussed abov8, and S; are used together
skeletons 3, 4, and 5 in Fig. 7 are generated. This approxith the Dyson equatiofil4) in order to calculate a first set
mation for the vertex correction will lead to the self-energyof dressed electron propagators. In the second step, these
operator given in Fig. 12, used when solving the quasipartipropagators are used in the evaluation of the self-energy op-
cle Eq.(16). In this approximation skeletons 6 and 7 in Fig. eratorS,; in Fig. 9. S, is then added t&,+ S;. The proper

7 are not included. In order to make the self-energy operatoself-energy operator in Fig. 9 can be written as

o _ 2 0 dw; ~ 2 0 2.2
i (rz,rl,w)——25(r2—r1)f rzdraV (r2,r3)f - G(r3,r3,w1)—25(r2—r1)f rzdrgV (r2,r3)f fr4r5dr4dr5
dwl_ ~ d(!)l ~
XfElFl(r3,r4,r5,o,a)1)G(r5,r4,w1)+fZGO(erlyw_wl)v(rZ!rluwl)

d(l)l 2.2 )
+ E r3r4dr3dr4GO(r3!rlrw_wl)lrl(r4vr31r2!wllw_wl)v(rllarlywl)

do _
+fz_ﬂ_lf f I’gl’idr3dr4V(r2,r3,w1)iF1(r3,r1,r4,—wl,w)GO(rz,u,w—wl) (20

where the first two terms are representedshyn Fig. 9. The  energyw, in all four terms is performed numerically, using a
third term is represented I, and the fourth and fifth terms  Wick rotation into the complex»; plane. .
by Ss. G is the dressed electron propagator with the zeroth- (3) The Dyson equatior14) is set up using the self-
order propagatorG, subtracted.V is, analogously, the <o 9Y Operatok™(r,1,) evaluated in the previous step.
propagatortso - " 9 Oy’ The equation is solved, using matrix inversion, and the result
dressed interactiol with the Coulomb interactio™ sub- is a dressed-electron propaga®¢r’ ., ).
tracted. In th_e flrst th_ree terms these subtraqtlons are done In (4) The proper self-energy operatdr (r,,f,), which
order to avoid including any of the HF contributions. In the ghou1d pe used in the QPE, is evaluated. The proper self-
fifth term, contributing toS;, V is used in order to avoid energy is evaluated here in the approximation indicated in
double counting the symmetric second-order term, as indiFig. 12, using the dressed electron propagators calculated in
cated in Fig. 9iI'; is the first-order vertex correction given step (3) together with the screened interaction lines calcu-
by the first diagram in Fig. 11. The integrations over thelated in step(1).
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e e o nee FIG. 10. Graphical representation of the ver-
! Loy oy 1L tex correctionl'(r,r,,r3,w;,w,). Note that the
i f"l'*”@ = * * te incoming interaction line i, is not included in
i 3 the vertex correction, but is included in the figure
0, o, r o, r 0, for reasons of clarity.

(5) The self-energy operatoE*(r,,r;,e) is added to This yielded an accuracy of at least 1 part irf When com-

ho, and the quasiparticle equation is solved in the same wapared with the results for the same effects evaluated using
as the zeroth-order equation. The resulting energy eigenvaldinary MBPT method$8,15,43. o
is the binding energy for the electron. The second-order and third-order contributions to the
SinceX* is energy dependent, the procéss-(5) should, ~ Proper self-energy, evaluated in this work, are given graphi-
in principle, be repeated until self-consistency is reached fofally in boxes I and Il in Fig. 14. The results for all second-
the energye. The energy dependence df is almost linear, and third-order corrections to the valence electron binding
and two iterations together with a linear extrapolation is usu€nergy are given in Tables I and Il.
ally enough, if a good first choice of the energy is made. For We have also solved the QPE, using the proper self-
the alkali atoms treated in this paper the change lretween ~ €nergy operator including the second- and third-order contri-
iterations one and two is so small, less than 0.4% of théutions. In this way, iterations of the proper self-energy op-
correlation energy, that even the second iteration can b@rator are included to infinite order. The difference between
omitted. This depends, of course, on the numerical accuracge QPE eigenvalue and the HF eigenvalue then gives the
that is wanted. In this paper, the second iteration was omittetptal correlation energy due to the effects included in the

after tests including the second- and third-order contribution®roper self-energy operator. This method has, in recent
to the proper self-energy*(e). years, been used in calculations of the valence-electron bind-

ing energies in negative alkaline-earth iof88,39,44—-47Y
and also in calculations of the cesium ground sfaf&.

The second-order corrections for the alkali metal atoms
1. Second- and third-order self-energy calculations have also been evaluated by Johnson, Idrees, and Sapirstein

In order to test the numerical accuracy of our procedure[4.8]' O_ur results are in good agreement with the values ob-
tained in Ref[48].

we have evaluated the low-order contributions to the ground- For the alkali-metal atoms Li. Na. and K there are no
state binding energy for the valence electron. The correction - . . X .
reviously published calculations of the third-order correc-

E)?c tﬂi blrr:)dlggseer;ﬁre%yelrs flrst ee;/;;gjrated as the matrix EIemerﬁons to binding energy. A detailed analysis of the third-order
prop gy op corrections is, however, given for Cs and Tl by Blundell,

Johnson, and Sapirstein in R@40]. The third-order contri-

butions to the proper self-energy operator, given in box Il in

. . Fig. 14, are interesting because a number of different types

where g, is the zeroth-order orbital for the valence electronof conceptually important correlation effects enters into the

ande, is the corresponding energy eigenvalue. perturbation expansion for the first time. Diagr&min Fig.

. The electron propagators and the screened.|nterac_t|0f4 represents an iteration of the polarization operator in-
lines were expanded in partial waves, each associated with ded in the second-order diagra@y in the same figure

function of the radial coordinates. The radial coordinatesDiagraImsG andF, are the leading corrections included in
1 1

were discretized witlr=¢e*/Z, whereZ denotes the nuclear the random-phase aporoximation. Often. diagEnis con-
charge, and the grid points were equidistantly distributed in P PP ’ - dlagkam

. sidered as direct process and the diagfanas its exchange,
X from Xpyin=—8.0 t0 X;,4= 6.0, corresponding to the box N !
size R, .,~130 a.u. for lithium,R,,.~37 a.u for sodium, and together with diagrams; andG, they contribute to the

andR,,=21 a.u. for potassium. Two different grids with 41 random-phase approximation with exchang&RPAB

and 61 points were used. The results from the two grids werg32.’3:ﬂ' DiagramsF,,~F 1, all contain electron propagators
which are modified due to the electron correlation. These

extrapolated to acgount for the finite number of grid pomtsdci{agrams include the second-order electron propagators
used. The summations over angular momenta were truncate

- o . given in Fig. 4.

Iatlilrrlllirtglt\?v:anrqut_réhaéjtrzr;)%Igfe-gh?nrifggf :gozr;:égirilig:et?lte The results. of our calculations of.the _third-order self-
; energy corrections to the energy are given in Table Il. There

complete angular-momentum sum. Energy integrals were

evaluated using either calculus of residues or numerically,

using Gaussian quadrature. In general, the proper polariza-

tion operator and the vertex correction were evaluated using

calculus of residues and the proper self-energy operators, in = + +

Figs. 9 and 12, were evaluated numerically, using a Wick

rotation of the integration contour into the complexplane

and Gaussian quadrature techniques. For the self-energy op-

erator used for dressing the electron propagator, 100 to 175

grid points in every integral were used. For the self-energy FIG. 11. The approximation of the vertex correction

operator used in the QPE, only 60 grid points were needed(r,,r,,r;,w;,w,) used in this work.

B. Results and discussion

W*=(¢o|2*(&0)| o). (21)

in iTy i
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FIG. 12. Graphical expansion of the proper
all-order self-energy operator used in this work

g s Y

Hl HZ H!
when solving the quasiparticle equation. The
8 thick lines denotes dressed electron propagators
+ - - - . . . . . and screened interaction lines.
0
-

H) H H

4 5

are several points to be made in connection with the thirdeut before, we found 122 contributing Feynman diagrams,
order results. The first observation to make is that the domiHermitian conjugates included, in fourth order if HF was
nating corrections for all three atoms in third order are dia-used as the zeroth-order model. In our approach, 34 of these
gramsF, andF,. These diagrams are particularly large for diagrams are included and we have also evaluated them ex-
potassium. The energy correction frdf is —51% of the  plicitly here. All evaluated fourth-order diagrams are given
total correlation energy for potassium akd gives a 40% in box IIl in Fig. 14 and the numerical results are given in
contribution to the correlation energy. Note also that there isfgpe 1.
a substantial cancellation betweén and F, for all three When analyzing the fourth-order results, it is more ad-
atoms. , , equate to investigate the contributions from the groups of
For sodium and potassium the ladder diagraéfgsand  giagrams originating from the different skeletons in Fig. 7
Fq also give large individual contributions. These diagramsyap the results for the individual diagrams. There are sub-
can, however, be expected to cancel each other t0 a largg, s cancellations within the groups and the total contri-

extent. This can be seen in the following way. Diagr&m : P
can be interpreted as the interaction between the excited v%u;r??; efriﬁglr}vf(;ea/aelrzli Egrg;ﬁsgroups are significantly smaller

lence electron and the hole in the core, created when a core The first group of fourth-order diagrams in Fig. 14,

electron is virtually excited. Diagrarfrg can in the same _F tribute t H. of th if
way be interpreted as the interaction between the excitefj 15~ F26. contribute to part, of the proper self-energy
perator in Fig. 12. This part of the self-energy operator

valence electron and the excited core electron. If the valenc8P® g ) o
electron is far from the rest of the atom, it will see the com-Originates from skeleton 2 in Fig. 7. All correlation modifi-
bined field from the core hole and the electron excited out oftions of the skeleton are either self-energy insertions on the
the core. At large distances, this field will be zero and there€lectron line or polarization insertions on the interaction line.
fore diagramg¢= andF 4 will cancel each other perfectly. Of Diagrams F;s—Fys are divided into three subgroups.
course, the actual field from the electron and the core holes; 15— F1g contain higher-order modifications of the interac-
seen by the valence electron, is not zero so the cancellatidipn line, while the electron propagator is given by the
will be incomplete. For sodium the cancellation is very large.zeroth-order approximatio,. DiagramsF q— F,4 contain
The remaining energy correction froRy+ Fg in sodium is  third-order self-energy modifications of the electron propa-
—0.9% of the total correlation energy. For potassium, on theyator but no modification of the interaction line. Finally, dia-
other hand, the cancellation is much less pronounced. In thigrams F,5 and F,s contain both second-order self-energy
caseFg+Fg give a—5.3% correction to the correlation en- insertions on the electron line and screening of the interac-
ergy. It can be argued that the same type of cancellatiotion line.
between the ladder diagrams will also occur in higher orders The first subgroupfF,s—F;g, is of particular interest,
of perturbation theory and that the net contribution from thesince, in general, these diagrams give the largest individual
ladder diagrams will therefore be fairly small for these sys-contributions but also the largest cancellations between the
tems. If, however, the cancellation does not occur in highediagrams. For lithium, the largest evaluated fourth-order dia-
orders, it is possible that the higher-order ladder diagramgram isF;g, which gives a 5.6% contribution to the corre-
will yield significant contributions. lation energy. The total contribution from the subgroup is,
The third point to be noted is the large contribution from however, only 1.8% of the total correlation energy. The situ-
diagramsF; and F, for sodium. The diagrams represent a
polarization modification of the second-order exchange dia-

gram G,. For both lithium and potassium the contribution T T
from F3+F, is much smaller than the contribution from
G,. For sodium, on the other hanBz+F, is almost three
~T
F F

times larger tharGG,. Also, for diagrams-,,—F 14, sodium
and potassium behave differently from each other. In the
sodium case, botlr,; and F5 give large contributions to
correlation energy, while for potassiufy is negligible. 8 9 10

~T"

2. Fourth-order self-energy corrections FIG. 13. Third-order diagrams added to the proper self-energy

In our approach, a large fraction of the fourth-order con-operator in order to make it complete to third order in perturbation
tributions to the proper self-energy are included. As pointedheory.
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TABLE |. Second-order self-energy contributions to the corre-
lation energy in millihartrees for Li & Na 3s, and K 4s. G; and
G, refer to the second-order diagrams given in box | in Fig. 14. The
relativistic correction is defined as the difference between the
Dirac-Fock and the Hartree-Fock energies.

Diagram Li 25 Na 3s K 4s
G, -2.094 -6.099 -13.448
G, 0.445 0.247 1.142
Sum: -1.649 -5.852 -12.305
QPE: -197.967 -187.900 -160.551
Correlation: -1.663 -6.099 -13.597
Relativity: -0.016 -0.232 -0.536
QPE+relativity: -197.983 -188.132 -161.087
Experiment: -198.159 -188.859 -159.517
Hartree-Fock: -196.304 -181.801 -146.954

diagramsF in third order andF 5 in fourth order are in-
cluded, while diagramF, in third order and diagrams

Bz F 16— F1g in fourth order are omitted and the important can-
cellation does not occur.
GOV»> ®4[> ﬂp @ 4} E} < The second subgroup, contributing i, in Fig. 12, is
t@ given by diagramd=,9—F,,. For both lithium and potas-
B B TABLE II. Third-order self-energy contributions to the correla-
tion energy, in millihartree, for Li & Na 3s, and K 4s. F, refers to
‘i the third-order diagrams given in box Il in Fig. 14. The relativistic
Qﬂ“g O > :} > correction is defined as the difference between the Dirac-Fock and
- {: g the Hartree-Fock energies.
By Diagram Li 2 Na 3s K 4s
< 2nd order -1.649 -5.852 -12.305
{?) ) QPE (2nd) 197.967  -187.900  -160.551
E, Fq 0.177 0.993 6.151
F, -0.398 -1.303 -4.764
Fs 0.061 0.337 -0.102
-0 @ Fs 0.061 0337  -0.102
Fs 0.016 -0.115 0.237
Fs 0.016 -0.115 0.237
F- -0.075 -0.178 -0.035
Fg -0.048 -0.446 -2.722
FIG. 14. Second-, third-, and fourth-order contributions to theFq 0.054 0.505 3.352
ground-state energy, evaluated for lithium, sodium, and potassiurg 0.044 0.122 -0.421
in this paper. Fu -0.060 -0.356 0.014
Fio 0.030 0.094 -0.019
ation is similar for sodiumFg gives a 4.8% contribution Fi3 0.003 -0.287 0.555
while the total contribution from the subgroup is only 1.3%. Fa4 -0.001 0.079 -0.161
For potassium, the cancellations within this subgroup are
very large.F 5 gives a 34.4% contribution to the correlation Sum: -0.120 -0.333 2.220
energy,F 1+ F17 gives —44.8%, and- g gives 16.3%. The
total contribution from the subgroup to the correlation en-Sum(2nd +3rd ordey: -1.769 -6.185 -10.085
ergy is, however, only 5.9%. This demonstrates the imporQPE: -198.089 -188.249 -157.791
tance of a systematic inclusion of the low-order diagrams ircorrelation: -1.785 -6.448 -10.836
the proper self-energy operator. If, for example, the propetpe+Relativity: -198.105  -188.481  -158.327

polarization is approximated with only skeleton 1 in Fig. 8,
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TABLE Ill. The fourth-order self-energy energy contributions sium, all diagrams in this subgroup are smaller than 1% of
to the correlation energy in millihartrees, evaluated in this work, forthe correlation energy. The total contribution from this sub-
Li 2s, Na 3s, and K 4s. F, refers to the fourth-order diagrams group is 0.9% for lithium and 0.4% for potassium. For so-

given in box Il in Fig. 14. The relativistic correction is defined as dium the situation is somewhat different. Diagrams
the difference between the Dirac-Fock and the Hartree-Fock enek —F,, are, in this case, fairly largds,q is —5.2% of the

gies. correlation energyF ,o is 2.8% andF,;+ F,, gives a 3.4%
_ ) contribution. Still, the total contribution from the subgroup is
Diagram Li 2 Na 3s K4s only 0.7%
2nd+3rd order -1.769 -6.185 -10.085 The next group of fourth-order diagrants;—F 35 in Fig.
QPE (2nd+3rd) -198.089  -188.249  -157.791 14 contributes to pafd s+ Hé Qf the self-energy operator in
Fig. 12. These diagrams originate from skeleton 3 in Fig. 7.
Fie 20.022 0.252 4139  For lithium and sodium, the group is dominated by ldiagrams
Fue 0046 0.247 2689 F?7+ F,g and E29+ F?*O' In 'Ilthlum, F,7+ Fog contributes
with 2.8% and in sodium with 7.4%: 9+ F 3, On the other
F7 0.046 0.247 2.689 . s .
F 0.102 0.329 1964 hand, gives—3.6% for lithium and—4.4% for sodium. The
18 : : ' total contribution to the correlation energy from this group is
—1.3% for lithium and 4.0% for sodium. In the potassium
Fio 0.009 0.355 0.071 case, all diagrams in the group excépy; are smaller than
Fao -0.008 -0.192 -0.070 104 in size. The total contribution from this group for potas-
Fa2 -0.009 -0.114 -0.006 DiagramsF 35— F 4, contribute to part$d, andHs of the
Fas 0.002 0.017 -0.027  self-energy operator in Fig. 12. For both lithium and sodium,
Fou -0.001 -0.003 0.018  these diagrams yield large contributions. In lithium, the total
contribution from these diagrams is4.4% and in sodium it
Fas -0.016 -0.036 -0.181 is —6.6% of the correlation. For potassium the contribution
Fas 0.007 0.010 0035 is only 0.6%.
The final group of fourth-order diagrams,;— F,g, con-
Foy -0.026 -0.252 0.090 tributes to parH, of the self-energy operator in Fig. 12. For
Fag 0.026 0.252 0.090 lithium and sodium, the group is dominated by the dlagrams
Fag 0.034 0.149 0049 Fa3 Faa anQF47+ Fas. .For Ilthlum, the Ia[)gest dlagram in
Fao 0.034 0.149 -0.049 the group IS Fyus, which gives a 1.7% contribution.
F 47+ F4g contribute 1.4% to the correlation energy afg,
Fa1 -0.001 -0.076 -0.147 _— e .
—1.1%. The total contribution from the group for lithium is
Fao 0.008 0.010 0.103 - . .
F 0.008 0.010 0.103 2.1%. For sodium all diagrams in the group excEpj and
33 ‘ ' ' F. are larger in size than 1% of the correlation energy.
Fas -0.003 -0.007 -0.035 Large contributions come fronk,; and F,;+F,g, which
Fas -0.003 -0.007 -0.035  together are as large as 8.2%. This is cancelled to a large
extent byF,, which is —6.8%. The total contribution from
Fas 0.034 0.148 0.095  the group for sodium is only 1.8%. Finally, for potassium
Far 0.006 0.029 -0.028  only F4; andFys5 are larger than 1% in size. The total con-
Fag 0.006 0.029 -0.028  tribution from this group for potassium is 0.9%.
Fao 0.019 0.122 -0.055 The contribution from all evaluated fourth-order diagrams
Fao 0.019 0.122 -0.055 is —0.6% of the correlation energy for lithium, 1.6% for
sodium, and 8.2% for potassium. Thus, the proper self-
Fa -0.003 0.082 0357 energy including all second- and third-order effects and the
Fu 0.002 .0.029 0.098 Cclass of fourth-order effects evaluated in this paper accounts
Fus 0.032 0.275 20.022 in |Itf(1)|um for _95.7% of _the correlauoon energy, in sodium fpr
Fu 0.020 0.463 0072 92.2%, and in potassium for 92.1%. The total correlation
energy accounted for with this approximation of the proper
Fas -0.001 -0.097 0.171 . .
. 0.000 0.028 0.050 self-energy operator is deduced as the difference between the
46 ' ' o~ QPE eigenvalue and the HF eigenvalue. For lithium, the re-
Fa7 -0.012 -0.146 0065  guitis—1.773 mhartree, which corresponds to 96.4% of the
Fas -0.012 -0.146 0.065  correlation energy. For sodium, the result-i$.548 mhar-
tree, which is equal to-95.9% of the correlation energy.
Sum: 0.010 -0.112 -0.991  Finally, for potassium the calculated correlation energy is
—12.070 mhartree, which is 100.4% of the correlation.
Sum (2nd+3rd+4th): -1.760 -6.297 -11.078 It is clear from the low-order calculations, presented in
QPE: -198.077 -188.349 -159.024  this paper, that a large portion of the low-order effects make
Correlation: -1.773 -6.548 -12.070 significant contributions to the correlation energy. In third
QPE+Relativity: -198.093 -188.581 -159.560 order almost all diagrams are larger in size than 1% of the

correlation and we have also in fourth-order identified sev-
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. TABLE IV. Final results. Contributions to the correlation en-
ergy, in millihartrees, calculated using dressed electron propagators
and screened interaction lines, for L§2Na 3s and K 4s. The
notationH,, refers to Fig. 12. The remaining third-order contribu-
tions added is the sufig+ Fq+Fqy. The relativistic correction is

~ ~ L~ defined as the difference between the Dirac-Fock and the Hartree-
Fock energies.

a. b. c. d.
. Diagram Li 2s Na 3s K 4s

H, -0.016 -0.340 0.244

o~ o e H, -2.456 -6.807 -12.383

Ha+Hg 0.602 0.705 0.898

~ ~ L~ ~ H, -0.027 -0.029 -0.016

Hsg 0.081 -0.045 0.430
e f. g h. Remaining 3rd order 0.051 0.180 0.208
FIG. 15. Fourth-order self energies likely to give large contri- Sum: -1.766 -6.333 -10.619
butions to the proper self-energy operator. QPE: -198.084 -188.408 -158.453
Correlation: -1.780 -6.607 -11.499

eral important effects. We have also found that there ar@®PE+Relativity: -198.100 -188.640 -158.989

large cancellations between the leading effects. Thus, fot
these atoms there seems to be no substitute for the most
complete possible calculation, with respect to the low ordergnergy operator, is again deduced as the difference between
of perturbation theory. It must be emphasized that calculathe QPE eigenvalue and HF eigenvalue. For lithium, our
tion of the effectsF,5—F4g, presented in this paper in no result is—1.780 millihartree(mhartreg, which corresponds
sense represents a complete calculation of fourth order. Itb 96.8% of the total correlation energy in lithium.
Fig. 15 a set of_ fourth—ord(_ar Feynman dlagramg, not !ncluded For sodium and potassiurki; and H;+H} are compa-
in the qalql,!latlons, are given, which we consider likely to gpie in size.H; contributes with 5.0% andt,+H} with
make significant contributions to the proper self-energy op-_ 19 304 In potassiumH, contributes with—2.0% and
erator. _ _ _ Hs+HJ5 with —7.5%. FurthermoreH,+Hs gives a 1.1%
Itis also_clear th_at higher orders in .perturbatlon Fhe.orycontribution in sodium and a 3.5% contribution in potas-
play a g:ruual role in accurate calculatlons of Fhe b'nd'n.gsium. The evaluated proper self-energy for sodium accounts
energy in these atoms. We now wrn to th|§ subject and dISfor 92.8% of the correlation energy and for potassium we get
cuss the results from our all-order calculations. 88.3%. In addition, we have the effects coming from itera-
_ tions of the proper self-energy. As mentioned, these are
3. All-order self-energy calculations taken into account by solving the quasiparticle equation lead-
In the final calculations we evaluated the proper self-ng to the total result-6.607 mhartree, corresponding to
energy operator in the approximation given in Fig. 12. The96.8% of the correlation energy in sodium. For potassium
dressed electron propagators and interaction lines wereur total result is—11.499 mhartree, which is 95.6% of the
evaluated, as previously discussed, by solving the Dysogorrelation energy.
equationg14) and(19). The contributions to the proper self-  Finally, in Tabe V a comparison with some accurate
energy, W* in Eq. (21), from the dressed skeletons, CCSD calculations is presented. For both lithium and potas-
H,—Hs in Fig. 12, were evaluated also in this case. Thesium, the CCSD resultl4,16,43,40 agree very well with
quasiparticle equation was solved, using this dressed propéte experimental results. For sodium, on the other hand, the
self-energy operator. The results from these calculations a@greement with experiment is relatively poor. In this case,
given in Table IV. the CCSD method only manages to account for 94% of the
The first observation to make is that the proper self-correlation energy. Blundell, Johnson, and Sapirsfei@l
energy is dominated biyl,. H gives for lithium 134% of the ~and Salomonson and Ynnerm@3,16 also evaluated the
correlation energy, for sodium 99.7%, and for potassiunthe so-calledE(3), , terms, which can be considered as a
103%. The large size dfl, is mainly due to the fact that the Hermitian-conjugate correction to CCSD. For both lithium
second-order diagrar®, is included here, but also higher- and sodium, theE®) . correction was found to be very
order core polarization effects such ds,, F,, Fis, small. For lithium it was found to be 0.011 mhartfd®] and
F.6+F.7andFg, in Fig. 14, are included. for sodium —0.030 mhartre¢43]. However, for potassium
For lithium, the large overestimation of the correlation by the correction was found to be huge. In this caseBfg,,
H, is compensated byl 3+ H3, which gives a-32.7% con-  contributes with 1.396 mhartrefl6], which completely
tribution. The contribution fromH, is only 0.9%,H, con-  spoils the agreement with experiment for potassium.
tributes with 1.5% andHgs with —4.4%. In lithium, this Salomonson and Ynnerman also evaluated, for sodium and
proper self-energy accounts for 96.0% of the correlation. Theotassium, a class of three-particle effects which are ex-
total correlation energy due to the effects pected to be important. When including these effects, very
H,+H,+Hs+H;+H,+Hs, included in the proper self- good agreement with experiment for sodium was found but
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TABLE V. Comparison with other calculations. Energies are given in millihartrees.

Li 2s Na 3s K 4s

This work Correlation -1.780 -6.607 -11.499

Binding energy -198.100 -188.640 -158.989
This work+three-particle Correlation -6.852 -11.880
effects in Refs[43,16

Binding energy -188.852 -159.369
CCsD Correlation -1.8%4 -6.428 -12.044

Binding energy -198.154 -188.46% -159.534
Relative CCSB-ES), ., Correlation -1.841

Binding energy -198.142
CCSD+E), +rel Correlation -6.840 -11.250
+three-particle effects

Binding energy -188.873 -158.740
Experiment -198.159 -188.859 -159.517

. Lindgren[14].

bBlundell et al. [49].

S. Salomonson and A. Ynnerma#3].
dA. Ynnerman[16].

only 93.5% of the correlation was accounted for in potas- In order to test our method, we have carried out extensive
sium. calculations on the ground-state valence-electron binding en-
A large subset of the three-particle effects, evaluated byrgy for the alkali-metal atoms Li, Na, and K. We have in-
Salomonson and Ynnerman, are not included in the approxivestigated the low-order behavior of the perturbation expan-
mations used in this paper. Certain time orders of the diasion for these systems in order to identify important classes
gramsa, b, ¢, g andh in Fig. 15 and higher-order diagrams of contributions to the proper self-energy operator. We have
of these types were included in their calculation. For sodiumalso carried out all-order calculations of the valence-electron
these effects were found to contribute witt0.245 mhartree  binding energy using the proposed evaluation method. The
and for potassium—0.381 mhartree. If these effects are results are found to be in good agreement with experiment.
added to the correlation energy evaluated in this w@de The numerical results for the correlation energy for the dif-
Table V), we get —6.852 mhartree for sodium and ferent atoms are consistent with each other. Approximately
—11.879 mhartree for potassium. This corresponds t®6-97 % of the correlation energy is accounted for in all
100.4% of the correlation for sodium and 98.8% for potas-three atoms in this approach. This is in contrast to the results
sium. for the same binding energies obtained with the CCSD
method, which are somewhat mutually contradictory, as
shown by Salomonson and Ynnermai3,16.
It is reasonable to assume that the remaining correlation
IV. CONCLUSIONS energy can, to a large extent, be explained by higher-order
polarization effects and ladder effects, which were neglected
In this paper we have applied an alternative approach tin this work. This conclusion can be drawn when one takes
the atomic MBPT, the single-particle Green’'s-functioninto account that we get 100% of the correlation energy for
method, based on time-dependent perturbation theory argbdium and 99% for potassium if the contributions from the
the diagrammatic formulation of quantum field theory. Weclasses of three-particle effects, evaluated by Salomonson
have presented an all-order evaluation scheme for the propand Ynnerman, are added to our results.
self-energy operator which is based on the systematic use of
Dyson'’s integral equations for both the electron propagator
and the screened Coulomb interaction. The evaluated self-
energy operator is complete to third-order in perturbation We would like to thank Dr. A.-M. Pendrill, Dr. H. Pers-
theory and also includes a large amount of higher-order efson, and P. Sunnergren for many helpful discussions. The
fects. The proper self-energy operator contains importantvork has been supported by the Swedish Natural Science
classes of many-body effects beyond the pair-correlation agResearch Council and the Knut och Alice Wallenberg Foun-
proximation. dation.
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