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Green’s-function approach to atomic many-body calculations with application
to the ground state in alkali-metal atoms

Håkan Warston, Ingvar Lindgren, and Sten Salomonson
Department of Physics, Chalmers University of Technology and Go¨teborg University, S-412 96 Go¨teborg, Sweden

~Received 27 November 1996!

In this paper we apply the single-particle Green’s-function method to the atomic many-body perturbation
theory. We present an all-order evaluation scheme for the proper self-energy operator based on the systematic
use of Dyson’s integral equations. The method is complete to third order in perturbation theory and, in
addition, large classes of higher-order effects are included by solving the Dyson equations. Certain classes of
many-body correlation effects beyond the pair-correlation approximation are included. The proposed method is
tested by calculating the ground-state valence-electron binding energy for the alkali-metal atoms Li, Na, and K.
Agreement with experimental results corresponds to an error in the correlation energy contribution of 3–4%.
If certain three-particle effects, not evaluated in this work, are added, the agreement with experiments is, for
sodium and potassium, approximately within 1% of the correlation energy.@S1050-2947~97!08604-6#

PACS number~s!: 31.10.1z, 31.15.Ar, 31.15.Md, 31.25.Eb
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I. INTRODUCTION

During the last decades, several methods have been
veloped for performing accurate atomic and molecular str
ture calculations. In particular, the multiconfiguratio
Hartree-Fock method and the many-body perturbation the
~MBPT! have been used successfully to evaluate ato
properties, e.g., binding energies and hyperfine structu
The MBPT approach based on the works by Brueckner
Goldstone was first applied by Kelly to closed-shell ato
and other atomic systems being described with a sin
determinant wave function@1–4#. The approach was late
generalized to open-shell systems by Brandow, Sandars,
Lindgren @5, 6, and 7, respectively#. A comprehensive treat
ment of atomic MBPT can be found in Ref.@8#. Perturbative
procedures, however, become unmanageable beyond
order due to the exploding number of terms in the pertur
tion series. This has led to the development of various n
perturbative schemes of which the coupled-cluster~CC!
method, first developed by Coester and Ku¨mmel @9,10# in
nuclear physics and then introduced into quantum chemi
by Čı́žek @11,12#, is so far the most powerful and widel
used procedure. The CC method has been successfully
plied to atomic-structure calculations in the coupled-clus
singles and doubles~CCSD! approximation, where only the
one-electron and two-electron correlation effects are reta
@8,13–15#.

In the coupled-cluster approach, however, it has tur
out to be difficult to go beyond the pair-correlation appro
mation and include correlation between more than two e
trons in a systematic way. There are small but signific
discrepancies between the experimentally measured bin
energies and the ones calculated using the CCSD metho
is reasonable to assume that these discrepancies are la
due to many-body correlation effects beyond the pa
correlation approximation. Even for alkali atoms, with
single electron outside a closed core, these many-body
relation effects make significant contributions to the bind
energy. For the binding energy of the 3s electron in sodium,
551050-2947/97/55~4!/2757~14!/$10.00
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only 94% of the correlation energy can be explained as p
correlation. For 4s in potassium, the CCSD result for th
binding energy agrees well with experiment. This agreem
however, seems fortuitous, since certain classes of eff
beyond the CCSD approximation have been evaluated
Ynnerman@16# and found to decrease the correlation ene
with 6.5%. The correlation energy is therefore also under
timated in potassium. It is therefore of interest to find me
ods where classes of many-body effects beyond the p
correlation approximation can be included systematically
all orders in perturbation theory.

In this paper we apply an alternative approach to
atomic many-body theory, the single-particle Green
function method, which is based on the time-dependent
mulation of perturbation theory and the diagrammatic form
lation of quantum field theory by Feynman, Gell-Man
Dyson, and others@17–21#. The method is formulated in
terms of renormalized or dressed electron propagators
screened Coulomb interaction lines. The ideas behind
renormalization~inclusion of electron-correlation effects t
infinite order in perturbation theory! of the electron propaga
tor and the Coulomb interaction for many-body systems
well known and have been used frequently in solid-st
physics. See, for example, the textbooks by Fetter and W
lecka @22# and by Mattuck@23#. The electron correlation is
described, in this approach, by the so-calledself-energy op-
erator. In this method, correlation effects are included
higher orders in a straightforward manner by evaluating
effect to lowest order and then solving the appropriate Dy
equation for the effect.

There are several advantages with such a formulation
the atomic many-body theory. First of all, a formulation
terms of non-time-ordered Feynman diagrams is much m
compact than the ordinary diagrammatic formulation
MBPT in terms of time-ordered Goldstone diagrams. S
ond, all possible time orders of the interaction lines are
tomatically included in the evaluation of the Feynman d
gram. This is not the case, for example, in the CCSD, wh
time orders describing three-electron correlation effects
2757 © 1997 The American Physical Society
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2758 55WARSTON, LINDGREN, AND SALOMONSON
omitted and other time orders need to be explicitly includ
in order to include Hermitian conjugates of certain classe
effects. A third advantage is that the approach is Hermit
in contrast to, e.g., the coupled-cluster approach in inter
diate normalization@24#.

Single-particle Green’s-function methods have been u
extensively in quantum chemistry to calculate binding en
gies and electron affinities for molecules. Reviews on h
the Green’s-function methods are applied in quantum ch
istry are given by Linderberg and O¨ hrn @25,26#, by Ceder-
baum and Domcke@27#, by von Niessen, Schirmer, and Ce
erbaum @28#, and also by Oddershede@29#. Many of the
reported calculations in quantum chemistry where sing
electron Green’s-function methods are used are, howe
performed in the so-calledtwo-particle one-hole Tamm
Dancoff approximation~2ph TDA!, where the leading con
tributions to the ground-state correlation are only partly
counted for, yielding a relatively poor agreement betwe
the calculated binding energies and the experimental res
In theextended 2ph TDAmethod@30#, which is complete to
third order in perturbation theory, the leading contributio
to the ground-state correlation are included and the ag
ment between theory and experiment is significantly i
proved.

In 1983, Schirmer, Cederbaum, and Walter@31# intro-
duced theAlgebraic Diagrammatic Construction~ADC!
method, which can be used to devise systematic approx
tions for the Green’s function. In the ADC approach t
diagrammatic expansion of the proper self-energy operato
combined with an assumed algebraic form for the pro
self-energy operator. The algebraic equation is expanded
perturbation series and the terms in the series are then i
tified with the diagrams of the same order in the diagra
matic expansion. In this way, approximations of the fun
tions included in the algebraic equation can be genera
The approximations are then substituted back into the or
nal equation and the self-energy operator is calculated.
self-energy operator calculated in this way includes infin
partial summations of contributions. With this approach, s
tematic approximations can be devised by identifying
diagrams in the expansion to a certain order in perturba
theory. The ADC approach including all third-order effec
ADC~3!, was shown to yield the same results as the exten
2ph TDA approximation. A drawback of the ADC metho
however, seems to be that the identification of the high
order contributions, included in the self-energy beyond
diagrams used when devising the approximation, is n
trivial. The infinite class of correlation effects included in th
proper self-energy operator is therefore hard to identify.

The method of including electron correlation by evalu
ing the proper self-energy operator has also been used w
treating different types of scattering processes on ato
Amusia and Cherepkov have used therandom-phase-
approximation-with-exchange~RPAE! method in their calcu-
lations of photoionization cross sections and inelastic sca
ing of electrons on atoms@32#. Also Wendin and Ohno
@33,34# and others have used similar RPAE methods wh
investigating correlation effects for core holes induced
heavy atoms. A thorough discussion of both theoretical
experimental aspects of the photoionization process is g
in the review paper by Wendin@35#.
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The Green’s-function method has also been used
atomic MBPT calculations by Dzubaet al. @36–39# in their
calculations of the properties of cesium and negative al
ions. In these works they have, however, focused on
effect of screening of the Coulomb interaction and only
cluded a subset of the leading correlation contributions to
orders. The importance of a systematic inclusion of all lo
order correlation contributions was demonstrated by Bl
dell, Johnson, and Sapirstein@40# in their calculations of the
ground-state energies of cesium and thallium. In the pres
work, correlation effects are included systematically to
orders in perturbation theory. All effects that appear in s
ond and third order and also a large fraction of those app
ing in fourth order are included in the proper self-ener
operator. Furthermore, large classes of higher-order eff
are included by solving the Dyson equations.

It is the purpose of the present paper to test our proced
on the alkali atoms lithium, sodium, and potassium, wh
all have a single valence electron outside a closed core.
correlation energies and binding energies for the ground s
are compared with other calculations as well as with exp
mental data.

The plan of this paper is the following. In Sec. II a bri
review of the theoretical methods on which our work
based is given. Special attention is given to the proper s
energy operator and the proper polarization operator, wh
are fundamental cornerstones in the method. In Sec. I
schematic overview of the numerical procedure and the
sults are given. The results are discussed and special a
tion is given to the difference between the inclusion of on
the low-order contributions and a systematic inclusion of
effects to all orders using Dyson equations. The method
compared with similar results from calculations using t
CCSD approach. A short summary and some conclusions
given in Sec. IV.

II. THEORY

The formalism on which our computational procedure
based has been described in detail in the literature@8,22,23#,
but for the convenience of the reader a summary is gi
here as a basis for the following treatment. We are us
atomic units wheree5m5\54p«051.

A. Basic formalism

We consider aN-electron atomic system with a nonde
generate ground stateuC0&. The nonrelativistic atomic
Hamiltonian describing this system,

Ĥ52
1

2(n51

N

¹n
22 (

n51

N
Z

r n
1 (

m,n

N
1

rmn
, ~1!

is partitioned into an unperturbed Hamiltonian,

Ĥ05 (
n51

N S 2
1

2
¹n
22

Z

r n
1U~rn! D5 (

n51

N

ĥ0~rn! ~2!

and a perturbation
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Ĥ15Ĥ2Ĥ05 (
m,n

N
1

rmn
2 (

n51

N

U~rn!. ~3!

The model potential can be written as

U~r 2!w5E d3r 1@ul~r2 ,r1!1unl~r2 ,r1!#w~r1!. ~4!

At this stage no assumptions are made about the mode
tential. It is considered to be a general model potential c
taining both local (l ) and nonlocal (nl) parts, where the
former is given by

ul~r2 ,r1!5d~r22r1!Ul~r2!. ~5!

The single-particle equation

ĥ0uw i&5« i uw i& ~6!

defines a set of electron orbitals, which form the basis of
calculation. The Slater determinantsuFA& formed by these
orbitals are antisymmetrized eigenfunctions ofĤ0,

Ĥ0uFA&5E0
AuFA& ~7!

with the eigenvalue equal to the sum of the orbital eigenv
ues of the determinant

E0
A5(

i

occ

« i . ~8!

We are considering alkali atoms, which have a sin
electron outside a closed core. Such systems can be trea
MBPT as effective one-body systems. The propagation
the outer electron between two pointsr t and r 8t8 in space-
time, while interacting with the nucleus and all the electro
in the core, is described by theexactsingle-particle Green’s
functionG(r 8t8,r t), also known as theelectron propagator.
Evaluation of the exact electron propagator is of the sa
degree of complexity as solving the full Schro¨dinger equa-
tion for the atom. From the formal definition, which can
tio
th
ex

t-
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-

e
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e

found in the literature~see, for example, Refs.@22,23#!, it is
possible to show that the exact propagator can be writte
the interaction picture as a perturbation expansion as

iG~r 8t8,r t !5 (
m50

`
~2 i !m

m! E
2`

`

dt1 . . . E
2`

`

dtm

3^F0uT@Ĥ1~ t1! . . . Ĥ1~ tm!

3ĉ~r 8t8!ĉ†~r t !#uF0&connected. ~9!

Here, uF0& is the ground state for the unperturbed syst
described byĤ0. T@•••# denotes a time-ordered product th
implies that the operators should be reordered from righ
left with increasing time.Ĥ1(t) is the perturbation in second
quantized form for a single electron, i.e., the difference
tween the Coulomb interaction with the electrons in the c
and the model potentialu(r2 ,r1). ĉ(r 8t8) andĉ†(r t) are the
field operators in second quantization, given by

ĉ~r 8t8!5(
k

wk~r 8!e
2 i«kt8âk ,

ĉ†~r t !5(
k

wk
!~r !ei«ktâk

† , ~10!

where thewk(r ) are the one-electron eigenfunctions toĥ0
and «k the corresponding energy eigenvalues. The sum
tion runs over the complete set of one-particle states.
subscriptconnectedin Eq. ~9! means that only connecte
terms contribute, i.e., terms that do not factorize into seve
independent parts. Equation~9! is analogous to thelinked-
diagram theoremin MBPT, and was first proved by Gold
stone@2# to all orders in perturbation theory. The perturb
tion expansion of the exact electron propagator in Eq.~9!
forms the basis for the MBPT formalism employed in th
work.

The perturbationĤ1(t) in second quantized form is give
by
Ĥ1~ t1!5
1

2E E d3r 1d
3r 2E dt2H ĉ†~r1t1!ĉ

†~r2t2!
d~ t22t1!

r 21
ĉ~r2t2!ĉ~r1t1!J

2E E d3r 1d
3r 2E dt2$ĉ

†~r2t2!u~r2 ,r1!d~ t22t1!ĉ~r1t1!%, ~11!
ns
where the first term is the instantaneous Coulomb interac
between two electrons in the field and the second term is
interaction with the model potential. Due to the compl

structure ofĤ1, even the lowest-order terms in Eq.~9! will
have a very complicated form. Wick’s theorem@41#, how-
ever, provides a powerful tool for singling out the contribu
ing terms in the expansion. The theorem states that a ti
ordered product ofn operators can be written as the norm
n
e

e-

ordered product plus the sum of all possible contractio
within the normal-ordered product, i.e.,

T@ÂB̂Ĉ•••Û#5N@ÂB̂•••Û#1N@ÂB̂Ĉ•••Û#

1N@ÂB̂Ĉ•••Û#1•••

1N@ÂB̂ ĈD̂•••Û#1•••, ~12!
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2760 55WARSTON, LINDGREN, AND SALOMONSON
where ÂB̂ denotes that the operators are contracted. In
~9! the electron propagator is given as the unpertur
ground-state average^F0u•••uF0&. If the time-ordered prod-
ucts in Eq. ~9! are expanded using Wicks theorem, on
terms that are fully contracted will yield nonzero contrib
tions since the ground-state average of a normal-ordered
erator product is zero by definition. Furthermore, the o
contractions that are not zero are contractions betweenĉ and
ĉ†. Applying this to the first term in Eq.~9!, m50, the
zeroth-order electron propagatorG0(r 8t8,r t) can be directly
identified as the contraction

iG0~r 8t8,r t !5ĉ~r 8t8!ĉ†~r t !. ~13!

This means that the perturbation expansion of the exact e
tron propagator in Eq.~9! can be expressed more simply
terms of the zeroth-order electron propagatorG0, the instan-
taneous Coulomb interaction 1/r 21, and the interaction with
the model potential2u(r2 ,r1).

If the electron propagator is Fourier transformed with
spect tot2t8, it is possible to reformulate the expansion
G in a very compact form as

G~r 8,r ,v!5G0~r 8,r ,v!1E E d3r 2d
3r 1G0~r 8,r2 ,v!

3S!~r2 ,r1 ,v!G~r1 ,r ,v!. ~14!

The Fourier-transformed zeroth-order electron propag
G0(r 8,r ,v) is given by

G0~r 8,r ,v!5(
m

wm~r 8!wm
! ~r !

~v2«m1 ihm! H hm,0 core states

hm.0 virtual states.
~15!

hm is a small real number added when defining the Fou
transformation to ensure the convergence of the Fourier
tegrals, and the limith→0 should be taken after the calcu
lation is done.S!(r2 ,r1 ,v) in Eq. ~14! is theproper self-
energy operator accounting for the correlation effect
beyond the independent-particle model, described byĤ0.
Equation~14! is known as theDyson equationfor the elec-
tron propagator and plays a central role in our treatme
.From the Dyson equation it can be shown that the mot
of the outer electron in the presence of the closed-shell
tem can be described by aquasiparticle wave function
f(r ) satisfying the quasiparticle equation~QPE!

ĥ0f~r !1E S!~r ,r1 ,«!f~r1!d
3r 15«f~r !. ~16!

f(r ) describes the wave function for the electronin the pres-
ence of the other electrons in the atom. The effects due to the
relaxation of the core electrons in the atom are taken
account in this wave function andf(r ) is therefore usually
referred to as aquasiparticle orbital. Having calculated the
proper self-energy operatorS!(«) to some level of approxi-
mation, it is added toĥ0 and the QPE is solved in the sam
way as the zeroth-order equation. SinceS!(«) is energy de-
pendent, the equation has to be solved self-consistently
q.
d

p-
y

c-

-

or

r
n-

t.
n
s-

o

ith

respect to«. The resulting energy eigenvalue is equal to t
binding energy of the outer electron.

B. Graphical representation

A graphical representation of the exact electron propa
tor in Eq.~14! can now be formulated, using the zeroth-ord
electron propagatorG0, the instantaneous Coulomb intera
tion 1/r 21, and the interaction with the model potenti
2u(r2 ,r1) as building blocks. In diagrammatic form, th
zeroth-order electron propagator is represented by a ver
line; see Fig. 1. The Coulomb interaction is represented b
wavy line and the interaction with the model potential by
dotted line with a cross. The contributions to ordern in Eq.
~9! can then be constructed in the following way.

~i! Draw all topologically distinct connected diagram
containingn interaction lines and 2n11 electron propagato
lines.

~ii ! The contribution to the electron propagator from ea
diagram can be constructed following the rules given in F
2.

The diagrammatic expansion of the electron propagato
given to first order in Fig. 3. If the Hartree-Fock~HF! poten-
tial from the closed-shell core is used as the zeroth-or
model ĥ0, the sum of the three first order modifications
Fig. 3 is zero. The use of the HF model substantially redu

FIG. 1. Graphical representation of the Feynman diagram bu
ing blocks.

FIG. 2. Rules for evaluating the Feynman amplitudes from
diagram.
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55 2761GREEN’S-FUNCTION APPROACH TO ATOMIC MANY- . . .
the number of contributions to the electron propagator, si
all higher-order iterations of the sum of the first-order co
tributions also yield zero contributions. The first nonvanis
ing contributions, beyond zeroth order, to the electron pro
gator, using the HF approximation, are given by the t
second-order diagrams in Fig. 4.

The exact electron propagator consists of the unpertur
zeroth-order electron propagatorG0 plus all connected dia
grams with a zeroth-order electron propagator at each
This defines the self-energy operatorS diagrammatically as
a structure which is connected to the rest of the diagram w
only two zeroth-order electron lines. It is the self-energy o
erator that contains all the effects of the perturbationĤ1. The
proper self-energy operatorS! is defined as a structure tha
cannotbe divided into two lower-order self-energy operato
by cutting a single electron line. The self-energy opera
S is then given by the proper self-energy operatorS! plus
the sum of all successive iterations ofS!,

S5S!1S!G0S
!1S!G0S

!G0S
!1 . . . . ~17!

The diagrammatic expansion of the electron propagatorG in
terms of the proper self-energy operator is given in Fig.
which is the graphical equivalent of the Dyson equation~14!
in the preceding section. An all-order approximation of t
electron propagatorG(r 8,r,v) can therefore be calculated b
evaluating the proper self-energy operator to some leve
approximation and then solving the Dyson equation. This
referred to asrenormalizingor dressingthe electron propa-
gator.

FIG. 3. Graphical representation of the electron propagato
first order in perturbation theory.

FIG. 4. Second-order contributions to the electron propagato
using HF as the zeroth-order model, these are the first nonvanis
contributions beyond the zeroth-order approximationG0.
e
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Correlation also affects the interaction between the e
trons. This is described as screening of the Coulomb inte
tion. It is taken into account by evaluating theproper polar-
ization operatorP!(r2 ,r1 ,v)[P21

! (v). In analogy to the
definition of the self-energy operator, the polarization ope
tor P is defined as a structure connected to the rest of
diagram with only two Coulomb interactions. Theproper
polarization operatorP! is defined as a structure thatcannot
be divided into two lower-order polarization operators
cutting a single interaction line. The polarization opera
P is given by the proper polarization operatorP! plus the
sum of all successive iterations ofP!,

P5P!1P!V0P!1P!V0P!V0P!1 . . . , ~18!

where in our caseV051/r i j . The proper polarization of the
Coulomb interaction is therefore taken into account to
orders by solving the Dyson equation

V21~v!5V21
0 1E E d3r 3d

3r 4V24
0 P43

! ~v!V31~v!. ~19!

Equation~19! is given in diagrammatic form in Fig. 6. An
all-order approximation of the screened Coulomb interact
Vi j (v) can therefore be calculated by evaluating the pro
polarization to some level of approximation and then solv
the Dyson equation~19!.

The proper self-energy operator can be formulated
terms of so-calledskeleton diagrams. These are obtained b
taking a proper self-energy operator and removing all el
tron self-energy insertions and all polarization insertions
the interaction lines. The remainder is defined as a skele
diagram for the proper self-energy operator. The same ca
done for the proper polarization operator resulting in a se
polarization skeletons. In Fig. 7 the self-energy opera
skeletons including up to three interactions are given and
Fig. 8 the skeletons for the polarization including up to tw
interactions is given. The dressed electron propagators
the screened Coulomb interactions are evaluated from E
~14! and ~19! and are then used to calculate the proper s
energy operator and the proper polarization operator fr
these skeletons in Figs. 7 and 8. A large number of hi
order correlation effects are included automatically, usin
very limited number of skeleton diagrams. Which skeleto
should be included depends on which diagrammatic build
blocks are used. In this work we are using the dressed e
tron propagators and the screened interaction lines as b
ing blocks. If so-called vertex correction
G(r 1 ,r 2 ,r 3 ,v1 ,v2) modifying the vertices were also use
then the entire perturbation expansion could be very co

to

If
ing

FIG. 5. The diagrammatic formulation of the Dyson equati
for the electron propagatorG(r 8,r ,v).
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2762 55WARSTON, LINDGREN, AND SALOMONSON
pactly formulated in terms of only the two first skeletons,
and 2, in Fig. 7 and skeleton 1 in Fig. 8. This is, howeve
not possible today with the computing power we have ava
able, since a general evaluation procedure for vertex cor
tions would require a very large internal computer memo
For that reason, vertex modifications lead, in our procedu
to distinct skeletons, as illustrated in Figs. 7 and 8.

Finally, the all-order proper self-energy operator is us
in the quasiparticle equation~16!. The binding-energy of the
outer electron is then given by the energy eigenvalue of
quasiparticle equation.

III. NUMERICAL PROCEDURE AND RESULTS

A. Numerical procedure

By the use of dressed electron propagators and scree
Coulomb interactions, when evaluating the proper se
energy operator, a considerable amount of higher-order
fects are automatically included in the procedure. A gene
calculation procedure including all self-energy and polariz
tion effects given by Figs. 7 and 8 is, however, not possi
with the computational power available today. By the use
certain approximations, a large subset of effects in the th
retical procedure above can be included, though. In this s
tion our computational procedure and the approximatio
used will be discussed.

As the zeroth-order model of the single-electron Ham
tonian ĥ0 we have used the spherically symmetric Hartre
Fock model of the closed-shell positive alkali ion to defin
the zeroth-order approximation. This means that all electr
in the atom feel the direct and exchange interactions with
electrons described by the HF orbitals from the positive io
This model is commonly known as the HFVN21 model. The
basis functions used in our calculations are obtained us
the numerical finite basis set method as described in R

FIG. 6. The diagrammatic formulation of the Dyson equatio
for the screened Coulomb interactionVi j (v).

FIG. 7. Graphical expansion of the proper self-energy opera
in terms of skeletons. The all-order proper self-energy operato
evaluated from these skeletons using dressed propagators
screened interaction lines.
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@42#. Since a spherically symmetric model potential is used
only the radial electron propagatorG(r 8,r ,v), the radial
self-energy operatorS(r 2 ,r 1 ,v), and the radial polarization
P(r 2 ,r 1 ,v1) need to be evaluated for each angular-
momentum symmetry. The angular momentum integrals ar
handled using the graphical techniques developed in ordina
MBPT; see, for example, Ref.@8#.

As pointed out in the preceding section, by using the HF
model, the number of diagrams contributing to the self-
energy operator is significantly reduced. The first nonvanish
ing contributions beyond zeroth order are given by the two
self-energies in Fig. 4. In third order there are 14 contribut
ing diagrams. Of this number only 12 need to be explicitly
calculated, as the remaining two are Hermitian conjugates o
two other graphs. In fourth order we have found 122 contrib
uting Feynman diagrams, Hermitian conjugates included
and 34 of these have been evaluated in this work.

When evaluating the dressed electron propagators usin
the Dyson equation, Eq.~14!, we have chosen to truncate the
self-energy operator skeletons at the two-interaction-line
level; see Fig. 9. The effects included inS1 in Fig. 9 origi-
nate from skeleton 1 in Fig. 7. The leading-order diagram
from this skeleton is included in the HF potential and de-
scribes how the electron interacts with the average charg
density of the core electrons in the system. This diagram i
responsible for the main part of the screening of the interac
tion with the nucleus and the contribution to the binding
energy from this diagram is almost as large as the contribu
tion from the interaction with the nucleus, but with opposite
sign. The correlation effects given byS1 in Fig. 9 describe
modifications of the average charge density due to correla
tion effects in the core. Since the first-order contribution to
skeleton 1 is so large, it is reasonable to expect that fo
valence electrons penetrating the core modifications of th
skeleton also yields significant contributions to the self-
energy operator.

The correlation effects given byS2 in Fig. 9 describe the
attraction between the electron and the core due to the pola
ization of the core. The core polarization yields by far the
most important correlation contributions to the self-energy
operator, as will be seen in the results presented later.

Skeletons 3, 4, 5, 6, and 7 in Fig. 7 all describe compli-
cated correlation effects. Skeleton 3 contains only two inter
action lines while the others contain three interaction lines. I
is reasonable to assume that skeleton 3 yields significant
larger contributions than the other skeletons. Skeleton 3 i
therefore included, while skeletons 4, 5, 6, and 7 are ne
glected, in the self-energy operator which is used for evalu
ating dressed electron propagators.

For the proper polarization operatorP21
! (v1), skeletons 1,

2, and 3 in Fig. 8 have been included, using zeroth-orde

r
is
nd

FIG. 8. Graphical expansion of the proper polarization operato
in terms of skeletons.
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FIG. 9. Graphical representation of the prop
self-energy operatorS(r 8,r ,v) used for evaluat-
ing the dressed electron propagator. The th
lines are dressed using the Dyson equation.
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electron propagators and the ordinary Coulomb interact
The polarization can, in this approximation, be evaluated a
function of the energyv1, using ordinary calculus of resi
dues. If modified propagators and interaction lines are
cluded in the polarization, numerical integration metho
have to be used for the energy integrations included in
polarization. This is far more demanding computationa
and is not done in this work.

For the proper self-energy operatorS!(«), used when
solving the quasiparticle Eq.~16!, a larger set of skeletons i
included than for the self-energy operator used for dress
the electron propagator. The most computationally dema
ing diagrammatic structures in our approach are the so-ca
vertex correctionsG(r 1 ,r 2 ,r 3 ,v1 ,v2); see Fig. 10. The
ability to evaluate the different contributions to the vert
correction will limit how many of the skeletons in Figs.
and 8 can be included. In this work we have used the
proximation given in Fig. 11 for the vertex corrections, wh
modifying the vertices in skeleton 2 in Fig. 7. In this wa
skeletons 3, 4, and 5 in Fig. 7 are generated. This appr
mation for the vertex correction will lead to the self-ener
operator given in Fig. 12, used when solving the quasipa
cle Eq.~16!. In this approximation skeletons 6 and 7 in Fi
7 are not included. In order to make the self-energy oper
th
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complete to third order in perturbation theory, however,
lowest-order contributions to the skeletons, depicted in F
13 have been added to the self-energy operator.

The numerical procedure employed in this work is sch
matically divided into five different steps.

~1! A proper polarization operatorP!(r 2 ,r 1 ,v1) is first
evaluated in the approximation given above. The evalua
polarization is used when setting up the Dyson equation~19!
for the screened interactionVi j (v1). In this way a set of
screened interaction lines is generated.

~2! A proper self-energy operatorS!(r 2 ,r 1 ,v), which
should be used for evaluating the dressed electron prop
tors, is calculated. The calculation ofS!(r 2 ,r 1 ,v) is per-
formed in two steps. In the first step, the self-energy con
butions fromS2 andS3 in Fig. 9 are calculated using zeroth
order propagators and screened interaction lines, evalu
from the Dyson equation~19! with the approximation for the
polarization discussed above.S2 and S3 are used togethe
with the Dyson equation~14! in order to calculate a first se
of dressed electron propagators. In the second step, t
propagators are used in the evaluation of the self-energy
eratorS1 in Fig. 9.S1 is then added toS21S3. The proper
self-energy operator in Fig. 9 can be written as
iS!~r 2 ,r 1 ,v!522d~r 22r 1!E r 3
2dr3V

0~r 2 ,r 3!E dv1

2p
G̃~r 3 ,r 3 ,v1!22d~r 22r 1!E r 3

2dr3V
0~r 2 ,r 3!E E r 4

2r 5
2dr4dr5

3E dv1

2p
iG1~r 3 ,r 4 ,r 5,0,v1!G̃~r 5 ,r 4 ,v1!1E dv1

2p
G0~r 2 ,r 1 ,v2v1!Ṽ~r 2 ,r 1 ,v1!

1E dv1

2p E E r 3
2r 4

2dr3dr4G0~r 3 ,r 1 ,v2v1!iG1~r 4 ,r 3 ,r 2 ,v1 ,v2v1!V~r 4 ,r 1 ,v1!

1E dv1

2p E E r 3
2r 4

2dr3dr4Ṽ~r 2 ,r 3 ,v1!iG1~r 3 ,r 1 ,r 4 ,2v1 ,v!G0~r 2 ,r 4 ,v2v1! ~20!
a

-
.
sult

elf-
in
d in
u-
where the first two terms are represented byS1 in Fig. 9. The
third term is represented byS2 and the fourth and fifth terms
by S3. G̃ is the dressed electron propagator with the zero
order propagatorG0 subtracted.Ṽ is, analogously, the
dressed interactionV with the Coulomb interactionV0 sub-
tracted. In the first three terms these subtractions are don
order to avoid including any of the HF contributions. In th
fifth term, contributing toS3, Ṽ is used in order to avoid
double counting the symmetric second-order term, as in
cated in Fig. 9.iG1 is the first-order vertex correction give
by the first diagram in Fig. 11. The integrations over t
-

in

i-

energyv1 in all four terms is performed numerically, using
Wick rotation into the complexv1 plane.

~3! The Dyson equation~14! is set up using the self
energy operatorS!(r 2 ,r 1 ,v) evaluated in the previous step
The equation is solved, using matrix inversion, and the re
is a dressed-electron propagatorG(r 8,r ,v).

~4! The proper self-energy operatorS!(r 2 ,r 1 ,«), which
should be used in the QPE, is evaluated. The proper s
energy is evaluated here in the approximation indicated
Fig. 12, using the dressed electron propagators calculate
step ~3! together with the screened interaction lines calc
lated in step~1!.
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FIG. 10. Graphical representation of the ve
tex correctionG(r 1 ,r 2 ,r 3 ,v1 ,v2). Note that the
incoming interaction line inr 1 is not included in
the vertex correction, but is included in the figu
for reasons of clarity.
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~5! The self-energy operatorS!(r 2 ,r 1 ,«) is added to
ĥ0, and the quasiparticle equation is solved in the same
as the zeroth-order equation. The resulting energy eigenv
is the binding energy for the electron.

SinceS! is energy dependent, the process~1!–~5! should,
in principle, be repeated until self-consistency is reached
the energy«. The energy dependence ofS! is almost linear,
and two iterations together with a linear extrapolation is u
ally enough, if a good first choice of the energy is made.
the alkali atoms treated in this paper the change in« between
iterations one and two is so small, less than 0.4% of
correlation energy, that even the second iteration can
omitted. This depends, of course, on the numerical accu
that is wanted. In this paper, the second iteration was omi
after tests including the second- and third-order contributi
to the proper self-energyS!(«).

B. Results and discussion

1. Second- and third-order self-energy calculations

In order to test the numerical accuracy of our procedu
we have evaluated the low-order contributions to the grou
state binding energy for the valence electron. The correc
to the binding energy is first evaluated as the matrix elem
of the proper self-energy operator

W!5^w0uS!~«0!uw0&, ~21!

wherew0 is the zeroth-order orbital for the valence electr
and«0 is the corresponding energy eigenvalue.

The electron propagators and the screened interac
lines were expanded in partial waves, each associated w
function of the radial coordinates. The radial coordina
were discretized withr5ex/Z, whereZ denotes the nuclea
charge, and the grid points were equidistantly distributed
x from xmin528.0 to xmax56.0, corresponding to the bo
sizeRmax'130 a.u. for lithium,Rmax'37 a.u for sodium,
andRmax'21 a.u. for potassium. Two different grids with 4
and 61 points were used. The results from the two grids w
extrapolated to account for the finite number of grid poi
used. The summations over angular momenta were trunc
at l limits l max52, 3, 4 and 5. The results from the differe
l limits were then extrapolated in order to account for t
complete angular-momentum sum. Energy integrals w
evaluated using either calculus of residues or numerica
using Gaussian quadrature. In general, the proper pola
tion operator and the vertex correction were evaluated u
calculus of residues and the proper self-energy operator
Figs. 9 and 12, were evaluated numerically, using a W
rotation of the integration contour into the complexv plane
and Gaussian quadrature techniques. For the self-energ
erator used for dressing the electron propagator, 100 to
grid points in every integral were used. For the self-ene
operator used in the QPE, only 60 grid points were need
y
ue
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This yielded an accuracy of at least 1 part in 108 when com-
pared with the results for the same effects evaluated u
ordinary MBPT methods@8,15,43#.

The second-order and third-order contributions to
proper self-energy, evaluated in this work, are given grap
cally in boxes I and II in Fig. 14. The results for all secon
and third-order corrections to the valence electron bind
energy are given in Tables I and II.

We have also solved the QPE, using the proper s
energy operator including the second- and third-order con
butions. In this way, iterations of the proper self-energy o
erator are included to infinite order. The difference betwe
the QPE eigenvalue and the HF eigenvalue then gives
total correlation energy due to the effects included in
proper self-energy operator. This method has, in rec
years, been used in calculations of the valence-electron b
ing energies in negative alkaline-earth ions@38,39,44–47#
and also in calculations of the cesium ground state@37#.

The second-order corrections for the alkali metal ato
have also been evaluated by Johnson, Idrees, and Sapir
@48#. Our results are in good agreement with the values
tained in Ref.@48#.

For the alkali-metal atoms Li, Na, and K there are
previously published calculations of the third-order corre
tions to binding energy. A detailed analysis of the third-ord
corrections is, however, given for Cs and Tl by Blunde
Johnson, and Sapirstein in Ref.@40#. The third-order contri-
butions to the proper self-energy operator, given in box II
Fig. 14, are interesting because a number of different ty
of conceptually important correlation effects enters into
perturbation expansion for the first time. DiagramF1 in Fig.
14 represents an iteration of the polarization operator
cluded in the second-order diagramG1 in the same figure.
DiagramsG1 andF1 are the leading corrections included
the random-phase approximation. Often, diagramF1 is con-
sidered as direct process and the diagramF2 as its exchange
and together with diagramsG1 andG2 they contribute to the
random-phase approximation with exchange~RPAE!
@32,33#. DiagramsF11–F14 all contain electron propagator
which are modified due to the electron correlation. The
diagrams include the second-order electron propaga
given in Fig. 4.

The results of our calculations of the third-order se
energy corrections to the energy are given in Table II. Th

FIG. 11. The approximation of the vertex correctio
G(r 1 ,r 2 ,r 3 ,v1 ,v2) used in this work.
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FIG. 12. Graphical expansion of the prop
all-order self-energy operator used in this wo
when solving the quasiparticle equation. Th
thick lines denotes dressed electron propagat
and screened interaction lines.
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are several points to be made in connection with the th
order results. The first observation to make is that the do
nating corrections for all three atoms in third order are d
gramsF1 andF2. These diagrams are particularly large f
potassium. The energy correction fromF1 is 251% of the
total correlation energy for potassium andF2 gives a 40%
contribution to the correlation energy. Note also that ther
a substantial cancellation betweenF1 and F2 for all three
atoms.

For sodium and potassium the ladder diagramsF8 and
F9 also give large individual contributions. These diagra
can, however, be expected to cancel each other to a l
extent. This can be seen in the following way. DiagramF8
can be interpreted as the interaction between the excited
lence electron and the hole in the core, created when a
electron is virtually excited. DiagramF9 can in the same
way be interpreted as the interaction between the exc
valence electron and the excited core electron. If the vale
electron is far from the rest of the atom, it will see the co
bined field from the core hole and the electron excited ou
the core. At large distances, this field will be zero and the
fore diagramsF8 andF9 will cancel each other perfectly. O
course, the actual field from the electron and the core ho
seen by the valence electron, is not zero so the cancella
will be incomplete. For sodium the cancellation is very larg
The remaining energy correction fromF81F9 in sodium is
20.9% of the total correlation energy. For potassium, on
other hand, the cancellation is much less pronounced. In
caseF81F9 give a25.3% correction to the correlation en
ergy. It can be argued that the same type of cancella
between the ladder diagrams will also occur in higher ord
of perturbation theory and that the net contribution from
ladder diagrams will therefore be fairly small for these s
tems. If, however, the cancellation does not occur in hig
orders, it is possible that the higher-order ladder diagra
will yield significant contributions.

The third point to be noted is the large contribution fro
diagramsF3 andF4 for sodium. The diagrams represent
polarization modification of the second-order exchange d
gramG2. For both lithium and potassium the contributio
from F31F4 is much smaller than the contribution from
G2. For sodium, on the other hand,F31F4 is almost three
times larger thanG2. Also, for diagramsF11–F14, sodium
and potassium behave differently from each other. In
sodium case, bothF11 and F13 give large contributions to
correlation energy, while for potassiumF11 is negligible.

2. Fourth-order self-energy corrections

In our approach, a large fraction of the fourth-order co
tributions to the proper self-energy are included. As poin
-
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out before, we found 122 contributing Feynman diagram
Hermitian conjugates included, in fourth order if HF wa
used as the zeroth-order model. In our approach, 34 of th
diagrams are included and we have also evaluated them
plicitly here. All evaluated fourth-order diagrams are giv
in box III in Fig. 14 and the numerical results are given
Table III.

When analyzing the fourth-order results, it is more a
equate to investigate the contributions from the groups
diagrams originating from the different skeletons in Fig.
than the results for the individual diagrams. There are s
stantial cancellations within the groups and the total con
butions from several of the groups are significantly sma
than the individual diagrams.

The first group of fourth-order diagrams in Fig. 1
F152F26, contribute to partH2 of the proper self-energy
operator in Fig. 12. This part of the self-energy opera
originates from skeleton 2 in Fig. 7. All correlation modifi
cations of the skeleton are either self-energy insertions on
electron line or polarization insertions on the interaction lin
Diagrams F152F26 are divided into three subgroups
F152F18 contain higher-order modifications of the intera
tion line, while the electron propagator is given by th
zeroth-order approximationG0. DiagramsF192F24 contain
third-order self-energy modifications of the electron prop
gator but no modification of the interaction line. Finally, di
gramsF25 and F26 contain both second-order self-energ
insertions on the electron line and screening of the inter
tion line.

The first subgroup,F152F18, is of particular interest,
since, in general, these diagrams give the largest individ
contributions but also the largest cancellations between
diagrams. For lithium, the largest evaluated fourth-order d
gram isF18, which gives a 5.6% contribution to the corre
lation energy. The total contribution from the subgroup
however, only 1.8% of the total correlation energy. The si

FIG. 13. Third-order diagrams added to the proper self-ene
operator in order to make it complete to third order in perturbat
theory.
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2766 55WARSTON, LINDGREN, AND SALOMONSON
ation is similar for sodium.F18 gives a 4.8% contribution
while the total contribution from the subgroup is only 1.3%
For potassium, the cancellations within this subgroup
very large.F15 gives a 34.4% contribution to the correlatio
energy,F161F17 gives244.8%, andF18 gives 16.3%. The
total contribution from the subgroup to the correlation e
ergy is, however, only 5.9%. This demonstrates the imp
tance of a systematic inclusion of the low-order diagrams
the proper self-energy operator. If, for example, the prop
polarization is approximated with only skeleton 1 in Fig.

FIG. 14. Second-, third-, and fourth-order contributions to t
ground-state energy, evaluated for lithium, sodium, and potass
in this paper.
.
e

-
r-
n
r
,

diagramsF1 in third order andF15 in fourth order are in-
cluded, while diagramF2 in third order and diagrams
F162F18 in fourth order are omitted and the important ca
cellation does not occur.

The second subgroup, contributing toH2 in Fig. 12, is
given by diagramsF192F24. For both lithium and potas-

TABLE I. Second-order self-energy contributions to the cor
lation energy in millihartrees for Li 2s, Na 3s, and K 4s. G1 and
G2 refer to the second-order diagrams given in box I in Fig. 14. T
relativistic correction is defined as the difference between
Dirac-Fock and the Hartree-Fock energies.

Diagram Li 2s Na 3s K 4s

G1 -2.094 -6.099 -13.448
G2 0.445 0.247 1.142

Sum: -1.649 -5.852 -12.305

QPE: -197.967 -187.900 -160.551
Correlation: -1.663 -6.099 -13.597
Relativity: -0.016 -0.232 -0.536
QPE1relativity: -197.983 -188.132 -161.087

Experiment: -198.159 -188.859 -159.517
Hartree-Fock: -196.304 -181.801 -146.954

TABLE II. Third-order self-energy contributions to the correla
tion energy, in millihartree, for Li 2s, Na 3s, and K 4s. Fn refers to
the third-order diagrams given in box II in Fig. 14. The relativis
correction is defined as the difference between the Dirac-Fock
the Hartree-Fock energies.

Diagram Li 2s Na 3s K 4s

2nd order -1.649 -5.852 -12.305
QPE ~2nd! -197.967 -187.900 -160.551

F1 0.177 0.993 6.151
F2 -0.398 -1.303 -4.764
F3 0.061 0.337 -0.102
F4 0.061 0.337 -0.102
F5 0.016 -0.115 0.237
F6 0.016 -0.115 0.237
F7 -0.075 -0.178 -0.035
F8 -0.048 -0.446 -2.722
F9 0.054 0.505 3.352
F10 0.044 0.122 -0.421
F11 -0.060 -0.356 0.014
F12 0.030 0.094 -0.019
F13 0.003 -0.287 0.555
F14 -0.001 0.079 -0.161

Sum: -0.120 -0.333 2.220

Sum ~2nd13rd order!: -1.769 -6.185 -10.085
QPE: -198.089 -188.249 -157.791
Correlation: -1.785 -6.448 -10.836
QPE1Relativity: -198.105 -188.481 -158.327

m
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TABLE III. The fourth-order self-energy energy contribution
to the correlation energy in millihartrees, evaluated in this work,
Li 2s, Na 3s, and K 4s. Fn refers to the fourth-order diagram
given in box III in Fig. 14. The relativistic correction is defined
the difference between the Dirac-Fock and the Hartree-Fock e
gies.

Diagram Li 2s Na 3s K 4s

2nd13rd order -1.769 -6.185 -10.085
QPE ~2nd13rd! -198.089 -188.249 -157.791

F15 -0.022 -0.252 -4.139
F16 0.046 0.247 2.689
F17 0.046 0.247 2.689
F18 -0.102 -0.329 -1.964

F19 0.009 0.355 0.071
F20 -0.008 -0.192 -0.070
F21 -0.009 -0.114 -0.006
F22 -0.009 -0.114 -0.006
F23 0.002 0.017 -0.027
F24 -0.001 -0.003 0.018

F25 -0.016 -0.036 -0.181
F26 0.007 0.010 0.035

F27 -0.026 -0.252 0.090
F28 -0.026 -0.252 0.090
F29 0.034 0.149 -0.049
F30 0.034 0.149 -0.049
F31 -0.001 -0.076 -0.147
F32 0.008 0.010 0.103
F33 0.008 0.010 0.103
F34 -0.003 -0.007 -0.035
F35 -0.003 -0.007 -0.035

F36 0.034 0.148 0.095
F37 0.006 0.029 -0.028
F38 0.006 0.029 -0.028
F39 0.019 0.122 -0.055
F40 0.019 0.122 -0.055

F41 -0.003 0.082 -0.357
F42 0.002 -0.029 0.098
F43 -0.032 -0.275 -0.022
F44 0.020 0.463 -0.072
F45 -0.001 -0.097 0.171
F46 0.000 0.028 -0.050
F47 -0.012 -0.146 0.065
F48 -0.012 -0.146 0.065

Sum: 0.010 -0.112 -0.991

Sum ~2nd13rd14th!: -1.760 -6.297 -11.078
QPE: -198.077 -188.349 -159.024
Correlation: -1.773 -6.548 -12.070
QPE1Relativity: -198.093 -188.581 -159.560
sium, all diagrams in this subgroup are smaller than 1%
the correlation energy. The total contribution from this su
group is 0.9% for lithium and 0.4% for potassium. For s
dium the situation is somewhat different. Diagram
F192F22 are, in this case, fairly large.F19 is 25.2% of the
correlation energy,F20 is 2.8% andF211F22 gives a 3.4%
contribution. Still, the total contribution from the subgroup
only 0.7%.

The next group of fourth-order diagrams,F27–F35 in Fig.
14, contributes to partH31H38 of the self-energy operator in
Fig. 12. These diagrams originate from skeleton 3 in Fig
For lithium and sodium, the group is dominated by diagra
F271F28 and F291F30. In lithium, F271F28 contributes
with 2.8% and in sodium with 7.4%.F291F30, on the other
hand, gives23.6% for lithium and24.4% for sodium. The
total contribution to the correlation energy from this group
21.3% for lithium and 4.0% for sodium. In the potassiu
case, all diagrams in the group exceptF31 are smaller than
1% in size. The total contribution from this group for pota
sium is only20.6%.

DiagramsF362F40 contribute to partsH4 andH5 of the
self-energy operator in Fig. 12. For both lithium and sodiu
these diagrams yield large contributions. In lithium, the to
contribution from these diagrams is24.4% and in sodium it
is 26.6% of the correlation. For potassium the contributi
is only 0.6%.

The final group of fourth-order diagrams,F412F48, con-
tributes to partH1 of the self-energy operator in Fig. 12. Fo
lithium and sodium, the group is dominated by the diagra
F43, F44, andF471F48. For lithium, the largest diagram in
the group is F43, which gives a 1.7% contribution
F471F48 contribute 1.4% to the correlation energy andF44
21.1%. The total contribution from the group for lithium
2.1%. For sodium all diagrams in the group exceptF42 and
F46 are larger in size than 1% of the correlation energ
Large contributions come fromF43 and F471F48, which
together are as large as 8.2%. This is cancelled to a la
extent byF44 which is26.8%. The total contribution from
the group for sodium is only 1.8%. Finally, for potassiu
only F41 andF45 are larger than 1% in size. The total co
tribution from this group for potassium is 0.9%.

The contribution from all evaluated fourth-order diagram
is 20.6% of the correlation energy for lithium, 1.6% fo
sodium, and 8.2% for potassium. Thus, the proper s
energy including all second- and third-order effects and
class of fourth-order effects evaluated in this paper accou
in lithium for 95.7% of the correlation energy, in sodium fo
92.2%, and in potassium for 92.1%. The total correlat
energy accounted for with this approximation of the prop
self-energy operator is deduced as the difference between
QPE eigenvalue and the HF eigenvalue. For lithium, the
sult is21.773 mhartree, which corresponds to 96.4% of
correlation energy. For sodium, the result is26.548 mhar-
tree, which is equal to295.9% of the correlation energy
Finally, for potassium the calculated correlation energy
212.070 mhartree, which is 100.4% of the correlation.

It is clear from the low-order calculations, presented
this paper, that a large portion of the low-order effects ma
significant contributions to the correlation energy. In thi
order almost all diagrams are larger in size than 1% of
correlation and we have also in fourth-order identified s
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eral important effects. We have also found that there a
large cancellations between the leading effects. Thus, f
these atoms there seems to be no substitute for the m
complete possible calculation, with respect to the low orde
of perturbation theory. It must be emphasized that calcul
tion of the effectsF152F48, presented in this paper in no
sense represents a complete calculation of fourth order.
Fig. 15 a set of fourth-order Feynman diagrams, not include
in the calculations, are given, which we consider likely to
make significant contributions to the proper self-energy op
erator.

It is also clear that higher orders in perturbation theor
play a crucial role in accurate calculations of the bindin
energy in these atoms. We now turn to this subject and d
cuss the results from our all-order calculations.

3. All-order self-energy calculations

In the final calculations we evaluated the proper sel
energy operator in the approximation given in Fig. 12. Th
dressed electron propagators and interaction lines we
evaluated, as previously discussed, by solving the Dyso
equations~14! and~19!. The contributions to the proper self-
energy, W! in Eq. ~21!, from the dressed skeletons,
H12H5 in Fig. 12, were evaluated also in this case. Th
quasiparticle equation was solved, using this dressed prop
self-energy operator. The results from these calculations a
given in Table IV.

The first observation to make is that the proper sel
energy is dominated byH2. H2 gives for lithium 134% of the
correlation energy, for sodium 99.7%, and for potassium
103%. The large size ofH2 is mainly due to the fact that the
second-order diagramG1 is included here, but also higher-
order core polarization effects such asF1, F2, F15,
F161F17 andF18, in Fig. 14, are included.

For lithium, the large overestimation of the correlation by
H2 is compensated byH31H38 , which gives a232.7% con-
tribution. The contribution fromH1 is only 0.9%,H4 con-
tributes with 1.5% andH5 with 24.4%. In lithium, this
proper self-energy accounts for 96.0% of the correlation. Th
total correlation energy due to the effects
H11H21H31H381H41H5, included in the proper self-

FIG. 15. Fourth-order self energies likely to give large contri
butions to the proper self-energy operator.
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energy operator, is again deduced as the difference betw
the QPE eigenvalue and HF eigenvalue. For lithium, o
result is21.780 millihartree~mhartree!, which corresponds
to 96.8% of the total correlation energy in lithium.

For sodium and potassium,H1 andH31H38 are compa-
rable in size.H1 contributes with 5.0% andH31H38 with
210.3%. In potassium,H1 contributes with22.0% and
H31H38 with 27.5%. Furthermore,H41H5 gives a 1.1%
contribution in sodium and a23.5% contribution in potas-
sium. The evaluated proper self-energy for sodium accou
for 92.8% of the correlation energy and for potassium we
88.3%. In addition, we have the effects coming from ite
tions of the proper self-energy. As mentioned, these
taken into account by solving the quasiparticle equation le
ing to the total result26.607 mhartree, corresponding
96.8% of the correlation energy in sodium. For potassi
our total result is211.499 mhartree, which is 95.6% of th
correlation energy.

Finally, in Table V a comparison with some accura
CCSD calculations is presented. For both lithium and pot
sium, the CCSD results@14,16,43,40# agree very well with
the experimental results. For sodium, on the other hand,
agreement with experiment is relatively poor. In this ca
the CCSD method only manages to account for 94% of
correlation energy. Blundell, Johnson, and Sapirstein@49#
and Salomonson and Ynnerman@43,16# also evaluated the
the so-calledEextra

(3) terms, which can be considered as
Hermitian-conjugate correction to CCSD. For both lithiu
and sodium, theEextra

(3) correction was found to be ver
small. For lithium it was found to be 0.011 mhartree@49# and
for sodium20.030 mhartree@43#. However, for potassium
the correction was found to be huge. In this case theEextra

(3)

contributes with 1.396 mhartree@16#, which completely
spoils the agreement with experiment for potassiu
Salomonson and Ynnerman also evaluated, for sodium
potassium, a class of three-particle effects which are
pected to be important. When including these effects, v
good agreement with experiment for sodium was found

TABLE IV. Final results. Contributions to the correlation en
ergy, in millihartrees, calculated using dressed electron propaga
and screened interaction lines, for Li 2s, Na 3s and K 4s. The
notationHn refers to Fig. 12. The remaining third-order contrib
tions added is the sumF81F91F10. The relativistic correction is
defined as the difference between the Dirac-Fock and the Har
Fock energies.

Diagram Li 2s Na 3s K 4s

H1 -0.016 -0.340 0.244
H2 -2.456 -6.807 -12.383
H31H38 0.602 0.705 0.898
H4 -0.027 -0.029 -0.016
H5 0.081 -0.045 0.430
Remaining 3rd order 0.051 0.180 0.208

Sum: -1.766 -6.333 -10.619
QPE: -198.084 -188.408 -158.453
Correlation: -1.780 -6.607 -11.499
QPE1Relativity: -198.100 -188.640 -158.989
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TABLE V. Comparison with other calculations. Energies are given in millihartrees.

Li 2s Na 3s K 4s

This work Correlation -1.780 -6.607 -11.499
Binding energy -198.100 -188.640 -158.98

This work1three-particle Correlation -6.852 -11.880
effects in Refs.@43,16#

Binding energy -188.852 -159.369

CCSD Correlation -1.834a -6.428c -12.044d

Binding energy -198.154a -188.461c -159.534d

Relative CCSD1Eextra
(3) Correlation -1.841b

Binding energy -198.142b

CCSD1Eextra
(3) 1rel Correlation -6.840c -11.250d

1three-particle effects
Binding energy -188.873c -158.740d

Experiment -198.159 -188.859 -159.517

aI. Lindgren @14#.
bBlundell et al. @49#.
cS. Salomonson and A. Ynnerman@43#.
dA. Ynnerman@16#.
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only 93.5% of the correlation was accounted for in pot
sium.

A large subset of the three-particle effects, evaluated
Salomonson and Ynnerman, are not included in the appr
mations used in this paper. Certain time orders of the d
gramsa, b, c, g, andh in Fig. 15 and higher-order diagram
of these types were included in their calculation. For sodi
these effects were found to contribute with20.245 mhartree
and for potassium20.381 mhartree. If these effects a
added to the correlation energy evaluated in this work~see
Table V!, we get 26.852 mhartree for sodium an
211.879 mhartree for potassium. This corresponds
100.4% of the correlation for sodium and 98.8% for pot
sium.

IV. CONCLUSIONS

In this paper we have applied an alternative approach
the atomic MBPT, the single-particle Green’s-functio
method, based on time-dependent perturbation theory
the diagrammatic formulation of quantum field theory. W
have presented an all-order evaluation scheme for the pr
self-energy operator which is based on the systematic us
Dyson’s integral equations for both the electron propaga
and the screened Coulomb interaction. The evaluated
energy operator is complete to third-order in perturbat
theory and also includes a large amount of higher-order
fects. The proper self-energy operator contains impor
classes of many-body effects beyond the pair-correlation
proximation.
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In order to test our method, we have carried out extens
calculations on the ground-state valence-electron binding
ergy for the alkali-metal atoms Li, Na, and K. We have i
vestigated the low-order behavior of the perturbation exp
sion for these systems in order to identify important clas
of contributions to the proper self-energy operator. We ha
also carried out all-order calculations of the valence-elect
binding energy using the proposed evaluation method.
results are found to be in good agreement with experim
The numerical results for the correlation energy for the d
ferent atoms are consistent with each other. Approxima
96–97 % of the correlation energy is accounted for in
three atoms in this approach. This is in contrast to the res
for the same binding energies obtained with the CC
method, which are somewhat mutually contradictory,
shown by Salomonson and Ynnerman@43,16#.

It is reasonable to assume that the remaining correla
energy can, to a large extent, be explained by higher-o
polarization effects and ladder effects, which were neglec
in this work. This conclusion can be drawn when one tak
into account that we get 100% of the correlation energy
sodium and 99% for potassium if the contributions from t
classes of three-particle effects, evaluated by Salomon
and Ynnerman, are added to our results.
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