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QED effects in heavy, highly charged ions are reviewed, particularly the energy-level shift (Lamb shift) for one-, two-, and three-electron ions. The results of numerical calculations (to all orders in Z) are compared with those obtained by the Zexpansion as well as with recent experi​mental results. Also numerical calculations of the hyperfine structure and Zeeman effect in heavy hydrogenlike ions are discussed. These calculations can be performed also for low Z and compete in accuracy with those based on the Zexpansion.     

1
Introduction

Very accurate tests of QED have been performed on light atomic systems, and impres​sive agreement between theory and experiment has been obtained for a number of properties, particularly for the free-electron g-value, but also for the hyperfine structure and Lamb shift of positro​nium, muonium and neutral hydrogen. Impressively accurate calculations have for a long time been performed by Kinoshita et al. and more recently also by Eides, Grotch, Karshen​boim, Pachucki, and others [1]. Lately, considerable progress has been made - experimentally as well as theoretically - also in studying few-electron systems with high Z, which will make it possible, for the first time, to perform accurate tests of QED also at strong fields, where the effects are much more pronounced. The Lamb shift in the ground state of hydrogen-like uranium, for instance, has recently been measured at GSI by Beyer et al. [2] to be 470 eV (inclu​ding a nuclear-size effect of about 200 eV) with an experimental uncertainty of 16 eV. This could be compared to the corresponding shift in neutral hydrogen of 30 eV. If the experimental accuracy could be some​what improved, which is anticipated, the Lamb shift of heavy hydrogen-like ions will constitute important test objects for strong-field QED. Also systems with more than one electron can be used for this purpose. The splitting between the 

 and 2s states in Li-like uranium has been measured by Schweppe et al. [3] to be 280,59 eV with an uncer​tainty of only 0,09 eV, which has challenged several theoretical groups to improve their com​putational tech​niques. At Liver​more Marrs et al. [4] have measured the binding energies of some He-like ions, and by comparing with the corre​sponding data for H-like ions the two-electron contribution to the level shift can be extracted. These data can be used for direct test of the screening of the first-order Lamb shift.


Also other quantities than the level shift can be useful for testing the strong-field QED. The hyperfine structure can now be measured with high accuracy for heavy H-like ions [5] and experiments of the Zeeman effect (g-factor) of such ions are in progress [6]. Such data will serve as important complement to the level-shift data.


For light systems, the standard theoretical technique is to treat the nuclear field as a perturbation (

 expansion), starting from plane-wave solutions of the Schrödinger or the Dirac equation. For very heavy systems, on the other hand, where 

 approaches unity, such an expansion is no longer meaning​ful. Instead, the calculations have to be performed non-perturbatively, starting from elec​tronic states generated in the external field. This technique has been developed for Coulomb potentials particularly by Peter Mohr [7], following pio​neering work of Brown et al. [8] and Desiderio and Johnson [9]. In recent years, new tech​niques have been developed, which are applicable also for non-coulombic potentials [10-13].


In the present talk a review will be given of the application of QED to heavy ions with few electrons. We will begin by defining a many-body perturbation scheme (No-Virtual-Pair Approximation), which will form the starting point for the QED calculations. Then we shall discuss the evaluation of the Lamb shift for hydrogen-, helium- and lithium-like ions and make compari​son with experi​mental results. Finally, we shall analyze QED effects on the hyper​fine structure and the Zeeman effect and the possibilities of making significant comparison with the corresponding experimental data.

2
Relativistic Many-body Perturbation Theory

2.1
No-Virtual-Pair Approximation

Non-relativistic many-body perturbation theory (MBPT) is based upon the Hamiltonian





 ,
(2.1)

where 

 is the single-electron Schrödinger hamiltonian





 .
(2.2)

Relativistic MBPT has to be based on the Dirac equation, rather than the Schrödinger equation, and a reasonable starting point might then be a Hamiltonian of the type






 ,
(2.3)

where 

 is the single-electron Dirac hamiltonian






(2.4)

(

 and 

 being the Dirac operators) and 

 is the interelectronic interaction. This Hamiltonian, however, suffers from two serious problems. Firstly, the eigen​values have no lower bound, due to the existence of the negative-energy solutions to the Dirac equation (Brown-Ravenhall disease [14]), and secondly the interelectronic potential 

 is not uniquely determined (gauge dependent). 


The first problem can be remedied by introducing projection operators, 

, which eliminate the negative-energy states [15]





 .
(2.5)

This is the so-called No-Virtual-Pair Approximation (NVPA), which is a sound starting point for relativistic many-body calculations. One problem remains, though, namely to determine the interelectronic potential 

. For that purpose we have to analyse the interelectronic interaction by means of QED.

2.2
Bound-state QED








(a)
(b)

Figure 1. The Feynman diagram of single-photon exchange (a) is compared with that of potential scattering (b).

In QED the interaction between the electrons is represented by the exchange of virtual photons, as illustrated in Fig. 1(a). The second-order S-matrix for single-photon exchange is given by [16]





 .
(2.6)

(We use here relativistic units, 

. This implies that 

, 

 being the fine-structure constant, but for the time being we shall keep 

 in the equations.) In the S-matrix, T represents the Wick time-ordering operator, 

, 

 the field operators, 

 the electromagnetic field and 

 the Dirac operator in covariant form (related to the gamma matrices by 

). In bound-state QED we use the Furry interaction picture, where the field operators are composed of orbitals generated in the field, V, of the nucleus (and possibly the other electrons),





 ;   


(2.7)
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Here, 

 and 

 are creation and destruction operators, respectively. 


We find it here convenient to work in a mixed energy-space representation, obtained by integrating over time. This leads to the S-matrix element for the diagram shown in Fig. 1(a)



.     (2.9)
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 is here the photon propagator in the mixed representation and 

 the energy parameter. The delta factor indicates that energy is con​served at the interaction. The expression above can be compared with the S-matrix of potential scattering, represented by the Feynman diagram (b) in Fig. 1. This yields an effective interaction potential




.
(2.10)

This potential is energy-dependent and, in addition, gauge dependent, due to the appearance of the photon propagator.


In the Feynman gauge the photon propagator is





 ,
(2.11)

where 

 is a small positive quantity. This yields the effective interaction
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(2.12)

where 

. The corresponding effective interaction in the Coulomb gauge can be expressed by means of a double commutator,

        


.
(2.13)

The  dependence of the interactions represents the retardation, which is a relativistic effect. The unretarded (frequency independent) limits of these interactions are






(2.14a)





,
(2.14b)

respectively. Here, we recognize the (instantaneous) Coulomb interaction as the first part of these expressions and as the remaining parts the Gaunt (2.14a) and the Breit interactions (2.14b), respectively.


The potentials given above for the Feynman and Coulomb gauges give significantly different results when applied in iterative schemes, such as multi-configuration Dirac-Fock (MCDF) or MBPT [17, 18]. The question is then: Which is the best interaction to use in many-body calcula​tions? In order to answer that question it is necessary to analyse the two-photon interaction between the electrons (see Fig. 2).


In the single-photon interaction treated above energy is conserved, as indicated by Eq. (2.9). This implies that the interactions derived are strictly speaking valid only in first-order. In higher orders, energy is not conserved in the inter​mediate states. This is the reason for the gauge dependence when the effective single-photon interactions are used iteratively. 








    Ladder

Crossed-photon

Figure 2. The Feynman diagrams for two-photon exchange between the electrons, the ladder and the crossed-photon diagrams.


The reason for the relatively large gauge-dependence, when the single-photon inter​actions are used iteratively, can be understood by considering the retardation dependence of the two interactions. It is found that in the Feynman gauge (2.12) the leading Coulomb interaction is retarded ( dependent), while in the Coulomb gauge (2.13) only the much weaker second (magnetic) part is retar​ded. Since retardation is not described correctly in higher orders by these inter​actions, it follows that the error in the Feynman gauge is con​siderably larger (in fact of order 

 Hartree) than in the Coulomb gauge (of order 

 Hart​ree). In addition, the effect of negative-energy states (as well as all radiative effects) are left out in these schemes, but these contribute first in the order 

 Hartree. This explains the large gauge-dependence observed. It can be shown that the two gauges yield identical results to order 

 Hartree, when the two second-order diagrams in Fig. 2 are included [19, 20]. Recently, the two-photon contribution has been evaluated numerically (to all orders of 

) for the ground state of He-like systems by Blundell et al. [21] and by Lindgren et al. [22]. The results confirm that the two gauges give numerically identically results, when the two-photon contri​bution is included. 




The results of the analysis of the two-photon exchange shows that the Coulomb + Breit interaction, derived in the Coulomb gauge (in the limit of no retardation), leads to results correct to order 

 Hartree, when used iteratively. Therefore, this constitutes a good approxi​mation for relativistic MBPT. This is the NVPA based on the Dirac-Coulomb-Breit Hamiltonian





(2.15)

where



(2.16)

is the unretarded Breit interaction. 


Many-body calculations based on the Dirac-Coulomb-Breit Hamiltonian will form the starting point for our analysis. Effects beyond that approximation are defined as "QED-effects". These are of two kinds, radiative effects (self energy and vacuum polariza​tion), and non-radiative QED effects, due to retardation and negative-energy states in the non-radiative diagrams.

3
The Lamb shift

3.1
General






Figure 3. The Feynman diagrams for the first-order Lamb shift of a bound electronic state, a.  The first diagram represents the electron self energy and the second diagram the vacuum polarization.


The first-order Lamb shift is caused by the effects represented by the two diagrams in Fig. 3, the electron self energy and the vacuum polarization. We shall start with the self energy, which is somewhat more complicated to handle. The Feyn​man amplitude for the first-order self energy is in the mixed energy-space repre​sentation











(3.1)

Here, the electron propagator is 





,
(3.2)

and the photon propagator in the Feynman gauge is given by (2.11). This leads to the first-order bound-state self energy

            


. 
(3.3)

For the numerical treatment it is convenient to make an expansion in spherical waves (L),


.   (3.4)

Here, 

 is a spherical Bessel function and 

 is a spherical tensor operator, closely related to the spherical harmonics. 


For the numerical evaluation of an expression of the type (3.4), some kind of "complete" single-electron spectrum is required. This can be generated by solving the Dirac equation (2.8), using numerical basis set of spline [23] or space discretization type [24]. In the expression (3.4) the summation over the inter​mediate states t has to be performed over the entire spectrum, i.e. over positive-energy (particle) as well as negative-energy (hole) states. Each term in the partial-wave expansion is finite, but the L sum diverges, and the expression has to be renormal​ized.


For a free electron the self energy constitutes a part of the "physical" electron mass. This part is also present in the bound-state energy and has to be removed, before the physically significant effect can be extracted (the "mass counter term"). This is the mass renormalization. The mass counter term is the average of the free-electron self energy for the bound state considered, evaluated on the mass shell,





,    (3.5) 

as illustrated in Fig. 4. Here, p, p' and q are free-electron states. It should be noted that the energy parameter in the denominator is the free-electron energy (

) in contrast to that of the bound expression (3.4). 






Figure 4. Illustration of the first-order mass renormalization. The bound state is expressed in the momentum representation and the matrix elements of the free-electron self energy is evaluated "on the mass shell".

One possible renormalization procedure is to expand also the mass counter term in partial waves, and to perform the renormalization for each partial wave, the so-called partial-wave renormalization (PWR) [11, 12]. This works well in first order without any further regularization, but some precaution is needed in higher orders [25].


The approximate effect of the first-order vacuum polarization can be obtained in a simple way by means of the Uehling potential [26]. The remaining part, the so-called Wichmann-Kroll effect [27], can be evaluated numerically with high accu​racy, as shown by Mohr and Soff [28] and Persson et al. [29]. 

3.2
The Lamb shift of H-like uranium

The Lamb shift of hydrogen-like heavy ions can now be measured with good accuracy, and such systems therefore constitute a good testing ground for QED at strong fields. Numerical calculations of the first-order self energy on such systems were pioneered by Desiderio and Johnson [9], based on a procedure introduced by Brown, Langer and Schaefer [8]. Later the numerical technique has been developed to a high degree of sophistication, particularly by Peter Mohr [7]. The first-order Lamb shift for hydrogen-like systems can now be calculated with such an accuracy that the uncertainty is negligible for all practical purposes [30]. 


The Lamb shift of the 1s level of H-like uranium - compared to the Dirac value for a point nucleus - has recently been measured by Beyer et al. [2] to be 470±16 eV, and higher accuracy is anticipated. A major uncertainty in the corre​sponding theoretical evaluation is due to the partly unknown nuclear structure. As can be seen from the results in Table 1, the effect of the finite nucleus for H-like uranium is about 200 eV. The size and shape of the uranium nucleus is quite well known, how​ever, and the corresponding uncertainty can be reduced to a few tenths of an eV [25]. Therefore, there are good possibilities with this system to test also higher-order effects. 


Table 1. Lamb shift of 1s and 2s levels in H-like Uranium (in eV)



1s
2s

Finite nuclear size
198,68 (32)
37,77 (8)  [25]

First-order QED


Self energy
355,05
65,42  [7]


Vacuum polarization
-88,60
-15,64  [29]

Nucl size + first-order QED
465,13 (32)
87,55 (8)

Second-order QED


Second-order vacuum pol
-0,94
-0,16  [29, 25, 33] 


Comb self-energy-vac pol.
1,27
0,23  [25, 34]


Second-order self energy

NOT CALCULATED

Second-order QED (calculated so far)
0,33
0,07

Nuclear polarization
-0,18
-0,03    [31]

Nuclear recoil
0,51*
0,13*  [32]

TOTAL  THEORY
465,8 (4)
87,72

EXPERIMENTAL
470, (16)  [2]


* This includes the reduced-mass effect.



The effects of nuclear polarization and nuclear recoil, which appear on the level of a few tenths of an eV, have recently been evaluated with good accuracy by Plunien et al. [31] and Artemyev et al. [32], respectively. More uncertain for the moment is the second-order (two-photon) Lamb shift, represented by the dia​grams shown in Fig. 5. These are of three kinds, second-order vacuum polari​zation, second-order self energy and combined vacuum-polarization--self-energy. The effects of second-order vacuum polarization and the combined vacuum-polarization--self-energy, which are of the order of 1 eV, have recently been calculated by Soff et al. [33], Persson et al. [25, 29] and Lindgren et al. [34]. The second-order self-energy diagrams, on the other hand, which can be expected to be at least of the same order, have not yet been evaluated [35, 36]. 






Second-order vacuum polarization





Combined vacuum polarization and self energy






Second-order self energy

Figure 5. Feynman diagrams for the second-order Lamb shift for single-electron systems.

3.3
The Lamb shift of Li-like uranium

The energy separation between the 

 and 2s states of Li-like uranium was measured very accurately a few years ago at the Super-Highlac at Berkeley by Schweppe et al. [3]. Although this system has three electrons, it can mainly be treated as a single-electron system by starting from Dirac-Fock functions generated in the 1s2 core. The many-body effects (beyond Dirac-Fock), though, are significant but can be evaluated quite accurately. The remaining uncertainty indicated in Table 2 is mainly due to the nuclear-size effect [37]. The difference between the many-body results obtained by Lindgren et al. [11] and by Blundell [10] is mainly due to the fact that the former contains also some higher-order Breit interactions. The first-order Lamb shift given in the table includes also - in an approximate way - the effects of screening, due to the fact that the electron orbitals were generated in the potential of the nucleus and the core electrons. The nuclear polarization and nuclear recoil contributions have, as in the previous case, been obtained by Plunien et al. [31] and Artemyev et al. [32], respectively. Also some second-order QED effects (see Fig. 5) have, as in the single-electron case, been evaluated by Soff et al. [33], Persson et al. [25, 29] and Lindgren et al. [34]. The final agreement between theory and experiment is very good but might be fortuitous, since the screening of the first-order Lamb shift is included only in an approximate way and, furthermore, the second-order self energy [35, 36] is still missing. Regarding the very high experi​mental accuracy in this case (0,09 eV), as well as the small uncertainty due to the finite nuclear size, this system is a very good candidate for a serious test of second-order QED effects at strong nuclear field, once the remaining effects have been evaluated.


Table 2. The 2p1/2 - 2s1/2  transition in Li-like Uranium (in eV) 



Lindgren et al.
Blundell

Relativistic MBPT
322,33 (3)
322,41

First-order QED


Self energy
-54,32 (15)
-54,24


Vacuum polarization
12,55 (4)
12,56

First-order QED  Total
-41,77 (15)
-41,68

Second-order QED


Second-order vacuum pol
0,13


Combined self-energy-vac pol.
-0,19


Second-order self energy
NOT CALCULATED

Second-order QED  (calculated so far)
-0.08

Nuclear polarization
0,03
0,03

Nuclear recoil
-0,07
-0,07

TOTAL THEORY 
280,44 (20)
280,84 (10)

EXPERIMENTAL
280,59 (9)


3.4
Two-electron Lamb shift


Recently, the two-electron contribution to the binding energy of the ground state of some He-like ions has been measured at the Super-EBIT facility at Livermore by Marrs et al. [4]. In this experiment the binding energies of He- and H-like ions of the same element have been compared, which makes it possible to eliminate very accurately all single-particle effects and to extract the pure two-particle contribution. In this way, most of the nuclear effect as well as the single-electron Lamb shift is eliminated. The remaining two-electron effect in second order is represented by the diagrams in Fig. 6. The first two diagrams represent the MBPT effect as well as the non-radiative QED effects, discussed above, and the remaining ones the radiative effects, i.e. the screening of the first-order Lamb shift. A complete QED calculation of the two-electron contribution to second order has recently been performed by Persson et al. [38], and the results are com​pared with the corresponding experimental results in Table 3. The agreement between the theory and experiment is good, although the experimental accuracy is for the time being not sufficient for testing the QED contributions. However, only a moderate increase of the accuracy is needed for this purpose. The uncertainty due to the finite nuclear size is very small in this case, and therefore these systems constitute potentially good objects for testing second-order QED effects at strong fields. 













Figure 6. Feynman diagrams of the two-electron contribution in second order to the binding energy of He-like systems. The first two diagrams represent the many-body part and the non-radiative QED part, and the remaining ones the radiative contribution (screening of the first-order Lamb shift).


In Table 4 we have compared the results of various theoretical evaluations of the two-electron contribution to the binding energy of some He-like ions. The results of Drake [39] are obtained using very accurately correlated wave functions of Hylleraas type together with the QED results to order 

 Hartree, derived by Araki [40] and Sucher [41], and subtracting the hydrogenic binding energies of Johnson and Soff [30a]. The results of Plante et al. [42] are obtained in a similar way, using relativistic MBPT, while the results of Indelicato [43] are obtained with MCDF functions and some approximate scheme for evaluating the QED effects.


Table 3. Two-electron contribution to the ground-state energy of He-like ions


Comparison between theory and experiment (in eV)

Nuclear
M    B    P    T

Non-
Lamb
Total
Experimental

charge
First order
2nd 
3rd
radiative
shift
theory
Marrs et al.
32
567,61
-5,22
0,02
0,03
-0,42
562,02 (10)
562,6 
±1,6

54
1036,56
-7,04
0,03
0,16
-1,56
1028,15 (10)
1027,2
 ±3,5

66
1347,45 (1)
-8,59
0,03
0,36
-2,66
1336,59 (10)
1341,6 
±4,3

74
1586,93 (2)
-9,91
0,04
0,55
-3,68
1573,93 (10)
1568,9
±15,

83
1897,56 (4)
-11,77
0,04
0,86
-5,16
1881,5 (2)
1876, 
±14,

92
2265,87 (10)
-14,16
0,05
1,28
-7,12
2245,9 (2)



Table 4. Two-electron contribution to the ground-state energy of He-like ions



Comparison between different calculations.

Nuclear 
Drake 
Plante et al.
Indelicato
Persson et al. 

charge
Hylleraas
Rel. MBPT
MCHF
Rel. MBPT




  exp
 

  exp
Appr QED
Full QED, all order 


32
562,1
562,0
562,1
562,0 

54
1028,8
1028,4
1028,2
1028,2 

66
1338,2
1337,2
1336,5
1336,6 

74
1576,6
1574,8
1573,6
1573,9 

83
1886,3

1880,8
1881,5 

4
Hyperfine structure and Zeeman effect

4.1
The hyperfine structure

The hyperfine structure of the ground state of H-like bismuth has recently been measured with high accuracy at GSI by Klaft et al. [5]. The corresponding numerical calculations have been performed [44], and the results are compared in Table 5. Here, the effect of the nuclear charge distribution has been evaluated, using available experimental data [47], and the effect of the magnetic distri​bution (the Bohr-Weisskopf effect) has been taken from Tomaselli et al. [48]. An additional uncertainty in the theoretical evaluation is due to the experimental nuclear magnetic moment, which is based on an old nmr measurement [45], and thus possibly subject to a significant but largely unknown chemical shift [46]. 


Table 5.  Hyperfine structure in H-like Bi (in eV)

Point-nucleus value
5,8249 *

Finite nuclear size**


Charge distribution
-0,6335 (4)


Magnetic distribution 



(Bohr-Weisskopf)
-0,107 (7)

Non-QED value
5,0844 (8)

First-order QED corrections


Self energy
-0,0614

 
Vacuum polarization
0,0346

Sum QED corrections
-0,0268

TOTAL  THEORY
5,058 (7)


EXPERIMENTAL
5,084 (1)

* Based on magnetic moment of 4,1106 nuclear magnetons. Uncertainty not considered.

** Based on nuclear rms 5,519 fm.


Numerical calculations (to all orders of 

) can now be performed with high accuracy also for low Z, down to Z=1, which is demonstrated for the one-loop self energy by Persson et al. [44]. This makes it interesting to compare the numerical results with the corresponding results of the 

 expansion. 



Conventionally, the hyperfine splitting (for an infinitely heavy point nuc​leus) is expressed in the form





,

where 

 is the (non-relativistic) first-order splitting and 

 is a general function of 

. The coefficients for 

 and 

 for the one-loop self energy (including log

 terms) were calculated some time ago [1a], but recently a new value for the coefficient of the quadratic term, originally calculated by Sapirstein [49], have been obtained independently by Pachucki and Nio [50]. In addition, a significant term of the order 

 has recently been evaluated by Karshenboim [51]. The original value of Sapirstein leads for Z=1 to a contribution to 

 due to the first-order self energy of 0,43805, which with the new term of Karshenboim is reduced to 0,43800. The corresponding values obtained with the new value of Pachucki and Nio (which agree to the accuracy considered here) become 0,43816 and 0,43811, respectively. These values can be compared with the result of the numerical calculations of Persson et al. [44] of 0,4380 with an uncertainty of one unit in the last decimal place. 


This example demonstrates that the numerical calculations have now reached to such a degree of accuracy that they can well compete with the most accurate 

-expansion results also for low Z. This will provide an additional test of the complicated analytical calculations as well as a check of the significance of uncalculated terms. Evidently, this will be of great importance in future tests of QED and in the deter​mination of the fundamental constants [52].

4.2
The Zeeman effect


The Zeeman effect (g-factor) of singly charged ions has for some time been accurately studied in ion-trap experiments [53], and similar experiments on highly charged ions are now being prepared by the Mainz group [6]. To start with, experiments up to Z=20 are being planned, and the anticipated accuracy is 1:107. For a free electron the g-factor is accurately known to be 2x1,001.159.652.1884(43) , where the dominating deviation from the Dirac value of 2 is the Schwinger correction, 

. For a bound electron there are additional corrections, a relativistic correction, first evaluated by Breit [54], and addi​tional radiative and recoil corrections. The leading radiative correction beyond the Schwinger correction has been calculated by Grotch and Hegstrom to be 

 [55]. 




Figure 7. Radiative correction to the g-values of H-like ions. The analytic result is that of Grotch and Hegstrom [55], and the numerical result is obtained by Persson et al. [56].

Persson et al. [56] have recently calculated the radiative corrections numerically for a number of H-like ions to all orders of 

, and the results are displayed in Fig. 7 together with the analytical results of Grotch and Hegstrom. For low Z the numerical results agree well with the earlier predictions by Grotch and Hegstrom, but for high Z there is a substantial deviation. Furthermore, for high Z the calculations show that the uncertainty due to nuclear structure is small and thus strongly motivate the bound g-factor experiment in progress. 

5
Summary and Conclusions

In this review we have concentrated on a comparison between some recent experimental and theoretical results for few-electron, high-Z systems, which can be used for testing QED at strong nuclear fields. For such systems, the convent​ional 

 expansion is no longer applicable, and new all-order tech​niques have to be applied.


The binding energy in the ground state of H-like uranium, relative to the Dirac value for a point nucleus, has been measured to be 470±16 eV, and this can be well explained by considering the finite nuclear size and the first-order Lamb shift. With somewhat im​proved experimental accuracy also the second-order (two-photon) Lamb shift could be detected. These effects are not yet fully evalua​ted but expected to be of the order of a few eV. 


The energy separation between the 

 and 2s states of Li-like uranium has been measured very accurately, and good agreement between theory and experiment is obtained by considering relativistic many-body effects and the first-order Lamb shift. Here, the experimental accuracy is already sufficient for verifying the second-order effects, once they are fully evaluated. 


The binding energies of He-like ions have been compared experimentally with the corre​sponding H-like ions, yielding experimental values of the two-electron contribution to the binding energy of the He-like ions. Recent calculations give good agreement with experiments, although the experimen​tal accuracy is not yet sufficient for testing the QED contributions.


The hyperfine structure of H-like bismuth has recently been measured with high accuracy. Recent calculations including QED effects give good agreement with the experimental result. However, more accurate value for the nuclear magnetic moment is here needed, before the QED contributions can be tested. 


Very accurate measurements of the g-factor of highly charged H-like ions are now in preparation. Recent calculations show that the QED effects beyond leading order could be easily detected, also for quite low Z. The effect of the finite nuclear size is here extremely small, and therefore these systems may constitute very good objects for QED test of tightly bound electrons. 


The numerical calculations (to all orders of 

) have now reached such a degree of accuracy that they can compete favourably with the results of the 

 expansion also for low Z, particularly for the hyperfine structure and the Zeeman effect. This may have future implications for the determinations of the funda​mental constants.
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