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Abstract

The present status of QED tests for heavy, highly charged ions with one or a
few electrons is reviewed. The results of numerical calculations (to all orders
in Za) of the Lamb shift for hydrogen-, helium- and lithiumlike ions are com-
pared with recent experimental results. Also numerical calculations of the
hyperfine structure and Zeeman effect in heavy hydrogenlike ions are dis-
cussed.

1. Introduction

1.1. Early history of QED

Quantum electrodynamics (QED) is the theory of interaction
between particles—primarily electrons—and photons. The
theory was introduced already in the late 1920’s—shortly after
the advent of quantum mechanics—by Dirac, Heisenberg,
Pauli, Jordan and others [1]. The theory developed during
the 1930’s was quite successful in many respects, for instance
concerning the spontancous emission of radiation by atoms
and much of the electromagnetic interaction between charged
particles (scattering theory). Also the problem of vacuum
polarization, i.e. the spontaneous creation and annihilation
of electron-positron pairs in the vicinity of charged particles,
was largely solved by Uehling in 1935 [2]. Particularly one
problem remained unsolved during this decade, namely that
of the particle self energy or the emission and subsequent
reabsorption of photons by the same particle. The treatment
of that processes lead to severe singularities that could not
be handled. Many leading scientists at that time believed
the problem was unsolvable. This skepticism hampered the
development of QED for quite some time with the conse-
quence that the solution was not found until a decade later [1].

In L. I. Rabi’s atomic-beam laboratory at the Columbia uni-
versity in New York three important experiments were carried
out during the year of 1947 — experiments that turned out to be
of fundamental importance for the scientific development.
Nafe, Nelson and Rabi discovered a discrepancy between
theory and experiment in the hyperfine structure of the
hydrogen atom [3]. The observed discrepancy was much larger
than the expected uncertainty in the theoretical evaluation.
The experiment was reported at a famous conference on
the Shelter Island outside Boston in June 1947 [1]. Shortly after
the conference Gregory Breit suggested that the magnetic
moment of the free electron may not be exactly one Bohr
magneto—or that the g-factor was not exactly equal to 2,
as predicted by the Dirac theory [4]. Such an anomaly could
explain the Columbia experiment. This lead Polycarp Kusch
and Henry Foley at the Rabi laboratory to investigate the
g-factor of some simple atoms, where the valence electron
can be regarded as essentially free [5]. They found an anom-
alous g-factor of 2 x 1,00119 (5), and with this value for
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the free electron the hyperfine structure of hydrogen could
be perfectly explained. Early in 1948 Julian Schwinger [6]
was able to report on a calculation of the electronic g-factor,
using his newly developed relativistic QED. He found an
anomalous g-factor of 2 x (1 +a/2n) =2 x 1,0011614...,
in perfect agreement with the experimental result.

Also another very important experimental result was
reported at the Shelter Island conference. Lamb and
Retherford at the Columbia laboratory had determined the
shift between the 2s and 2p; ; levels in hydrogen, levels which
should be exactly degenerate according to Dirac’s theory [7].
This shift, now called the Lamb shift, was found to be about
1000 MHz. Directly after the conference Hans Bethe was able
to derive a theoretical result for the shift, in almost perfect
agreement with the experimental result, using non-relativistic
QED. Shortly afterwards Schwinger as well as Richard
Feynman and Sin-Itiro Tomanaga could arrive at essentially
the same numerical result by means of the more rigorous
covariant form of relativistic QED. In their work they showed
that QED was exactly renormalizable to first order. In 1949
Freeman Dyson extended this proof to all orders of per-
turbation theory. This can be regarded as the birth of modern

QED [1].

1.2. Present status of QED

In quantum electrodynamics the interaction with the electro-
magnetic field is treated perturbatively with the fine-structure
constant o as the expansion parameter. For light systems, the
standard theoretical technique is to treat also the nuclear field
as a perturbation—with Za as the expansion
parameter—starting from plane-wave solutions of the
Schrodinger or the Dirac equation. This technique is now well
tested for systems like the neutral hydrogen and helium atoms,
as well as for exotic systems like positronium and muonium.
Remarkable agreement between theory and experiments
has been achieved for the hyperfine structure and the Lamb
shift of such systems and, in particular, also for the electronic
and muonic g-factors. In some cases up to eighths order
of perturbation theory has been applied in these calculations.
Trusting that the theory is correct to that degree, the most
accurate values for the fine-structure constant o can now
be obtained by comparing experimental data of this kind with
corresponding QED results [8].

In recent years considerable progress has been
made—experimentally as well as theoretically—also in the
study of highly charged few-electron systems. For such
systems, where Zo approaches unity, it is no longer meaningful
to treat the nuclear field perturbatively. Instead, the calcu-
lations have to be performed non perturbatively, taking all
orders of Zo into account. This can be achieved by starting
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from electronic states generated in the field of the nucleus (and
possibly closed electronic shells), rather than free-electron
states. Here, comparison between experimental and theoreti-
cal results will make it possible, for the first time, to perform
accurate tests of QED independent of the Za expansion.
For such heavy systems the QED effects are much more pro-
nounced. The Lamb shift in the ground state of hydrogenlike
uranium, for instance [9], is about 470 ¢V (including a
nuclear-size effect of about 200 eV) with an experimental
uncertainty of about 13 €V. This could be compared to the cor-
responding shift in neutral hydrogen of 4 peV. If the
experimental accuracy could be somewhat improved, which
is anticipated, the Lamb shift of highly charged hydrogenlike
ions could constitute important test objects for strong-field
QED.

Also heavy ions with more than one electron can be import-
ant objects for testing the QED at strong fields. The splitting
between the 2p;,, and 2s states in Li-like uranium has been
measured by Schweppe et al. [10a] to be 280.59 ¢V with an
uncertainty of only 0.09 eV. To a large extent this experiment
formed the starting point for several theoretical groups to
develop computational techniques for dealing with QED
effects also in non-Coulombic potentials. Accurate
experimental data are now available also for the 2s — 2p3/»
transition in Li-like uranium as well as for the 2s —2p
transitions in other Li-like ions [10b, c].

At Livermore Marrs et al. [11] have measured the binding
energies of some He-like ions, and by comparing with the
corresponding data for H-like ions the two-electron contri-
bution to the level shift can be extracted. These data can
be used for direct test of the screening of the first-order Lamb
shift.

Also the hyperfine structure can now be measured with
high accuracy for heavy H-like ions [12], and experiments
of the Zeeman effect (g-factor) of such ions are in progress
[13]. Such data will serve as important complement to the
level-shift data for testing strong-field QED.

In the present talk the present status of QED calculations
on highly charged ions will be reviewed. Numerical results
will be given for different systems with one, two and three
electrons and comparisons made with experimental results,
when available. The possibility of making relevant tests of
QED in strong nuclear fields will be discussed.

2 QED of single-electron systems

2.1. First-order Lamb shift

The first-order Lamb shift is caused by the effects represented
by the two diagrams in Fig. 1, the electron self-energy and the
vacuum polarization. The first-order self energy can be
expressed by the second-order-S-matrix

S@ = —eZJJ dx A TP 4, P) (P4, %)), (2.1)

where T represents the Wick time-ordering operator, ¥, %'
the field operators, A4, the electromagnetic field and o the
Dirac operator in covariant form (related to the gamma
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Electron self energy Vacuum polarization

Fig. 1. The Feynman diagrams for the first-order Lamb shift of a bound elec-
tronic state. The first diagram represents the electron self energy and the
second diagram the vacuum polarization.

matrices by o = fy*). We use here the Furry interaction pic-
ture with the field operators expressed in terms of electron
orbitals, generated in the field, U, of the atomic nucleus,

Y= Z a;p and ¥' = Z Cljd)j-,

2.2)
hD¢,’ :Ci¢,'§ hp=a-p+pm+U.

alT and a; are creation and destruction operators, respectively.
(Throughout the paper we will use relativistic units,
h=m=c=¢ =1 and ¢* = 4na, « being the fine-structure
constant, but we will for clarity normally keep e in the
equations.) The external-field orbitals are in the Feynman dia-
grams represented by double lines.

Integration over the time coordinates yields the Feynman
amplitude in the mixed energy-space representation

M = JJ d*x dsxqujl(xz)ieocv / i—i} 1SF(x2, X1, &4 — W)

x ieo” @ (X )LD Fyu(x2 — X1, ).

(2.3)
The electron propagator is given by
¢,(x2)p] (x1)
S ) ’ = 1 N 2'4
F(x2, X1, @) Z o —a(l—in) 24

where the sum runs over the complete spectrum of
single-electron states, with positive as well as negative energy
(positron states). The photon propagator is in the Feynman
gauge

d3k eik-()Cz*X])
DFvu(x2 — X1, 0) = —8vu (27‘[)3 o — K2+ in . (2.5)
This leads to the first-order bound-state self energy
d3k eik~(xzf.¥|)
AEpy, = & 1(1—oy - . ta).
b =€ Z<a (1-e OCZ)/ Qn) €— —ksign(e)|

2.6)

For the numerical evaluation of an expression of the type (2.6),
an expansion in spherical waves is normally used together
with a “complete” spectrum of radial single-electron
functions, the latter generated by solving the Dirac equation,
using numerical basis set of spline [14] or space discretization
type [15]. The expression is infinite, and in order to extract the
physical result it has to be renormalized.
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Fig. 2. Mass-renormalization of the first-order bound-state self energy and
potential expansion of the bound-state propagator inside the self energy
operator. The unrenormalized self energy as well as the mass counter term
are infinite, but the infinities of the latter together with the zero- and
one-potential terms cancel.
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Fig. 3. Potential expansion of the first-order bound-state vacuum
polarization. The zero-potential term vanishes identically. The one-potential
term is infinite, but becomes finite after charge renormalization, leading
to the so-called Uehling term.

For a free electron the self energy constitutes a part of the
“physical” electron mass. This part is also present in the
bound-state energy and has to be removed (the “mass coun-
ter term”), before the physically significant effect can be
extracted. This is the mass renormalization. In order to
handle the infinities, it is convenient to expand the
external-field orbitals in terms of potential perturbations
on electron orbitals, as illustrated in Fig. 2. The infinities
of the zero- and one-potential terms together with the mass
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Second-order vacuum polarization
Combined vacuum polarization and self energy

Second-order self energy

Fig 4. Feynman diagrams for the second-order Lamb shift for one-electron
systems.

counter term cancel. These parts can be handled analytically
in the momentum representation. The last, many-potential
term is finite and is evaluated numerically in the coordinate
space.

Accurate non-perturbative calculations of the first-order
self energy for hydrogenlike systems were first obtained by
Peter Mohr and more recently by Mohr and Soff [16].

The first-order vacuum polarization can similarly be
expanded using potential interactions, as illustrated in Fig.
3. The zero-potential term vanishes. The one-potential term
is infinite but can after renormalization be expressed in a
simple fashion by means of the Uehling potential, derived
by Uehling already in 1935 [2]. The many-potential term,
representing the so-called Wickman-Kroll effect [17], is finite
and can be evaluated numerically with high accuracy, as
shown by Mohr and Soff [18] and Persson et al. [19].

2.2. Second-order Lamb shift

For highly charged ions there is a realistic possibility to
observe also effects beyond the first-order QED, i.e.
two-photon effects, and this would constitute an additional
important test of strong-field QED. For the Lamb shift the
second-order self energy and vacuum-polarization Feynman
diagrams are shown in Fig. 4.

The second-order vacuum polarization (first line) as well as
the combined vacuum-polarization-self energy contributions
(second line) have now been evaluated, including the
Wickman-Kroll contribution [20]. The second-order self
energy part (third line) has so far been only partially calcul-
ated [21].
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Table I Lamb shift of Is level in H-like Uranium (in eV).

Is Ref.

Finite nuclear size 198.68 (32)
First-order QED
(emm)Self energy 355.05 [16]

Vacuum polarization —88.60 [19]
Nucl size + first-order QED 465.27 (32)
Second-order QED

Second-order vacuum pol —0.94 (10) [20]

Comb self-energy-vac pol. 1.27 (10) [20]

Second-order self energy +2 only partly calculated [21]

Second-order QED 0.33 (2, 0)
(calculated so far)
Nuclear polarization —0.18 [22a]
Nuclear recoil 0.16* [22b]
TOTAL THEORY 465.5 (2.0)
EXPERIMENTAL 470 (16) [9a]
468 (13) [9b]

*A value 0.145 €V was presented at the Bensheim conference Sept. 1998 by
Yamanaka and Ichimura.

Table II. The 2,1, — 281> transition in Li-like Uranium
(in eV)

Lindgren et al. [24] Blundell [23].

Relativistic MBPT 322.33 (2) 322/41
First-order QED

Self energy —54.32(15) —54.24

Vacuum polarization 12.55 (4) 12.56
First-order QED Total —41.77 (15) —41.68
Second-order QED

Second-order vacuum pol 0.13

Combined self energy-vac pol. —0.21

Second-order self energy NOT CALCULATED
Second-order QED (calculated so far) —0.08
Nuclear polarization 0.03 0.03
Nuclear recoil —0.08 —0.08
TOTAL THEORY 280.43 (25) 280.68 (10)
EXPERIMENTAL 280.59 (9)

The 1s Lamb shift has been measured for some

hydrogenlike systems with good accuracy at SIS/ESR at
GSI [9]. This shift is normally defined as the difference
between the experimental binding energy and
thcorresponding Dirac value for a point nucleus. In Table
I we show the experimental and theoretical results for
hydrogenlike uranium (Z = 92). The agreement is quite
good, and the theoretical result falls well within the
experimental error limit of +13 eV. The second-order con-
tributions, which are not yet fully calculated, can be expected
to be of the order of one or a few eV. This means that the
experimental accuracy has to be improved one order of
magnitude before this part can be tested. It should also
be noted that the finite-nuclear-size effect, which is a part
of the experimentally determined Lamb shift, is of the order
200 eV or half the total effect. This part can be calculated
rather accurately, since the size and shape of the uranium
nucleus is well know. The nuclear uncertainty can probably
be further reduced by studying some nucleus with even better
known properties, like 2°®Pb. Nevertheless, the uncertainty in
the finite-size effect will most likely always limit the possi-
bilities of making accurate QED tests beyond first order
for this type of systems.
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2.3. Single-electron in non-Coulombic potential

An alkali atom, with a single electron outside closed electron
shells, can to a large extent be treated as a system with a single
electron, moving in the non-Coulombic field of the nucleus and
the closed electron shells. The Lamb shift of the n = 2 state, or
the 2pi,» —2s;» transition, of lithiumlike uranium was
measured very accurately a few years ago by Schweppe et
al. at the Bevalac at Berkeley [10]. This stimulated several
groups to develop numerical methods for accurate QED cal-
culations in the extended Furry interaction picture with
non-Coulombic orbitals [23-25]. In this picture the electronic
states are generated in the field of the nucleus and the closed
electron shells (2.2). In Table II we show the experimental
result compared with the theoretical results of Lindgren et
al. [24a] and Blundell [23]. In addition to the QED con-
tribution, it is here necessary to evaluate also the many-body
contribution quite accurately, using the method described
in the next section. The agreement between the experimental
and theoretical results is here extremely good, of the order
of a few tenths of a percent. This represents a good test of
the numerical method for calculating the first-order Lamb
shift in an arbitrary central field.

In the calculations of Lindgren et al. and Blundell, the effect
of the interelectronic interaction (screening) on the Lamb shift
is treated only approximately by modifying the single-electron
potential.

A more exact calculation of that effect has recently been
performed by Yerokhin et al. [24b]. The difference from
the values of Lindgren et al. is only of the order of 0.01 eV.

Recently the 2s1,, — 2p3» transition in Li-like bismuth has
been measured with very high accuracy, +0.039 ¢V, by
Beiersdorfer et al., using the Super-EBIT facility at Livermore
together with a crystal spectrometer [10b]. The agreement
with theoretical calculations is here as good as for the
2812 — 2p3,2 transition in uranium.

As for the H-like ions discussed above, the second-order
contributions are not fully calculated for the Li-like ions.
However, these effects might very well be quite significant
in the Li case, also with the present level of experimental
accuracy. Therefore, it would be of great interest to get access
to complete second-order results in this case in order to
see if the good agreement still remains or if it is only for-
tuitous.

3. QED of many-electron systems

3.1. Relativistic many-body perturbation

For relativistic many-body perturbation theory (RMBPT) it
might seem natural to start from the hamiltonian

H=Y o+ Y 7 G
where /p is the single-electron Dirac hamiltonian
2
VA
ho =o-p+pfm—2 3.1)
47y

o and f being the Dirac operators and V; is the interelectronic
interaction. (As before, we wuse relativistic units,
h=m=c=¢=1 and ¢ =4nx). Although this ham-
iltonian has been used in many calculations, it suffers from
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two serious problems. Firstly, the eigenvalues have no lower
bound, due to the existence of the negative-energy solutions
to the Dirac equation (Brown-Ravenhall disease [26]), and
secondly the interelectronic potential V}; is not uniquely deter-
mined (gauge dependent).

The first problem can be eliminated by introducing
projection operators, Ay [27]

H=A4, [Z hp(i) + ) V,-j]m,

i<j

(3.3)

eliminating the negative-energy states. This is the
No-Virtual-Pair Approximation (NVPA), which is a sound
starting point for RMBPT. It remains to determine the
interelectronic potential V7, which can be done by means
of QED.

3.2. The electron-electron interaction

In QED the interaction between the electrons is represented
by the exchange of virtual photons, as illustrated in Fig. 5(a).
The second-order S-matrix for the single-photon exchange
is after integration over the time given by

(cd|SP|ab)y = —27id(e, + €» — €0 — €4)

5 (3.4)
x (cd|ofobe” Dpyu(xa — X1, Wqc)|ab).
Dpyu(x2 — X1, wge) 1s as before the photon propagator and
W4 = €, — €. the energy parameter. The delta factor
demonstrates that energy is conserved at the interaction.
The expression above can be compared with the S-matrix
of potential scattering, represented by the Feynman diagram
(b) in Fig. 5. This yields an effective interaction potential
Veff(w) = O‘/fo‘;ezDFvu(xz — X1, 0)) (35)
This potential is energy-dependent as well as gauge dependent,
due to the appearance of the photon propagator.
In the Feynman and Coulomb gauges the interaction
becomes in the unretarded (frequency independent) limit

2
V(o= 0) =

(1 — o] - OCz) (36&)

47'5}’12

Vii(w = 0) =

2 1 . .
e <1 LI (o1 - r12)(o2 r12)>’

47'5}"12 2 27’%2
(3.6b)

respectively. Here, the first part represents the (instantaneous)
Coulomb interaction and the remaining parts the Gaunt (3.6a)
and the Breit interactions (3.6b), respectively.

The one-photon potentials obtained with the Feynman and
Coulomb gauges give significantly different results when
applied in iterative schemes, such as multi-configuration
Dirac-Fock (MCDF) or RMBPT, but it can be shown that
the Coulomb gauge yields the most accurate results (at least
for light and medium-heavy atoms) [28]. This holds also when
the unretarded interaction is used, and therefore this consti-
tutes a good approximation for RMBPT. This leads to the
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a b a b

Fig. 5. The Feynman diagram for single-photon exchange (a) is compared
with that of potential scattering (b).

No-Virtual-Pair Approximation with the Dirac-Coulomb-Breit
hamiltonian

&2
o= S b+ (o + 83) 4, (3.72)
ij
where
b
g (m (o1 - r12)(02 - 712) b
12 4n ( 2r12 + 21’%2 (3.70)

is the unretarded Breit interaction. Many-body calculations
based on the Dirac-Coulomb-Breit Hamiltonian will form
the starting point for our analysis of systems with more than
one electron. Effects beyond that approximation are defined
as “Many-Body QED-effects” These are of two kinds,
non-radiative effects (due to retardation and negative-energy
states) and radiative effects (self energy and vacuum
polarization). The radiative effects lead as for single-electron
systems to the Lamb shift.

3.3. QED of two-electron systems

Recently, the two-electron contribution to the binding energy
of the ground state of some He-like ions has been measured
at the Super-EBIT facility at Livermore by Marrs ef al. [11].
In this experiment the binding energies of He- and H-like
ions of the same element have been compared, which makes
it possible to eliminate very accurately all single-particle
effects and to extract the pure two-particle contribution. In
this way, most of the nuclear effect as well as the
single-electron Lamb shift is eliminated. The remaining
two-electron effect in second order is represented by the dia-
grams in Fig. 6. The first line represents the non-radiative
QED effects, discussed above and calculated by Blundell et
al. [29b] as well as by Lindgren et al. [29a]. The second
and third lines represent he radiative effects (Lamb shift),
and the first complete QED calculation to second order
was first performed by Persson et al. [29a]. The results are
compared with the corresponding experimental results in
Table III. More recently, a numerically more accurate
calculation of the two-electron Lamb-shift diagrams (lines
2 and 3 in Fig. 6) has been performed by Yerokhin ez al. [29¢].
The corresponding total results are also given in Table 111, and
the agreement between the two theoretical calculations is
found to be extremely good.

The agreement between the theory and experiment is also
quite good in this case, although the experimental accuracy
is not yet sufficient for testing the many-body QED con-
tributions. However, only a moderate increase of the accuracy
is needed for this purpose. The uncertainty due to the finite
nuclear size is very small in this case, and therefore these sys-
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Table II1 Tiwo-electron contribution to the ground-state energy of He-like ions. Comparison between theory and experiment (in eV’

M B P T

Total theory

Nuclear Non- Lamb Experimental
charge First order 2nd 3rd radiative shift [29a] [29b] Marrs et al. [11]
32 567.61 —522 0.02 0.03 —0.42 562.02 (10) 562.02 (1) 56222+ 1.6

54 1036.56 —7.04 0.03 0.16 —1.56 1028.15 (10) 1028.15 (10) 1027.2£3.5

66 134745 (1) —8.59 0.03 0.36 —2.66 1336.59 (10) 1336.58 (4) 1341 +£423

74 1586.93 (2) —9.91 0.04 0.55 —3.68 1573.93 (10) 1573.92 (6) 1568.9 £ 15

83 1897.56 (4) —11.77 0.04 0.86 —.5.16 1881.1 (2) 1881.50 (7) 1876 + 14

92 2265.87 (10) —14.16 0.05 1.28 —7.12 22459 (2) 224592 (9)

Non-radiative part:

S

Parts not included in MBPT
Radiative part:

°1] Lo

Vacuum polarization

b

Self energy

Fig. 6. Feynman diagrams for the second order contribution to the
two-electron part of the binding energy of He-like systems. The first line rep-
resents the many-body part as well as the non-radiative QED part, not present
in relativistic MBPT. The remaining lines represent the radiative contribution
(screening of the Lamb shift).

tems might constitute very good objects for testing
second-order QED effects at strong fields.

There exist also very accurate experimental data of the
separations between excited states of He-like ions, particularly
in the light and medium-heavy region. Calculations of the
two-electron QED effects are now under way at several places.
When these results become available, more extensive tests of
the two-electron QED effects can be performed.

4. Hyperfine structure and Zeeman effect

4.1. The hyperfine structure

The hyperfine structure of the ground state of several highly
charged H-like ions has now been measured with high
accuracy. Here, we shall in particular consider the bismuth
ion for which experimental result is obtained at GSI by Klaft
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Table IV Hyperfine structure in H-like Bi (in eV) [30].

Point-nucleus value 5.825%
Finite nuclear size**

Charge distribution —0.634 (1

Magnetic distribution

(Bohr-Weisskopf) —0.061 (18)

Non-QED value 5130 (18)
First-order QED corrections

Self energy —0.059

Vacuum polarization 0.030
Sum QED corrections —0,030
TOTAL THEORY 5100 (20)
EXPERIMENTAL 5084 (1) [12]

*Based on magnetic moment of 4,1106 nuclear magnetons. Uncertainty not
considered.
**Based on nuclear rms 5.519 fm.

et al. [12]. A corresponding numerical calculation has been
performed by Persson et al. [30] and more recently by
Blundell et al. [31]. The results obtained by Persson et al.
are compared with the experimental result in Table IV. (The
theoretical result of Blundell et al. is about 1% larger than
those of Persson et al.). The main uncertainty of the theoretical
evaluation is due to the experimental nuclear magnetic
moment, which is based on an old nmr measurement, and
thus subject to a significant and largely unknown chemical
shift. Another large uncertainty is associated with the effect
of the magnetic distribution inside the nucleus (the
Bohr-Weisskopf effect). This is here taken from a recent esti-
mate by Shabaev et al. [32]. The uncertainty due to the nuclear
charge distribution is considerably smaller.

For lighter elements the QED effect on the hyperfine struc-
ture can be expressed as a power expansion in a and Za. For
single-photon processes, the result is conventionally
expressed in the form

AEMS = AE<1>(1 +%+ . ) - AE(”(I +% F(Zoc)).

where 4EW is the first-order splitting and F(Za) is a general
function of Zu, representing the radiative effects. The
coeflicients for the quadratic and cubic terms of F(Z«) have
recently been obtained by Pachucki [33] and Karshenboim
[34]. In Fig. 7 these approximations are compared with the
all-order numerical result. There it can be seen that the
quadratic form can be used with reasonable accuracy up
to Z = 15 a 20 and the cubic form to Z = 30 a 40. For much
higher Z values it is obvious that the convergence of the
Zo expansion will be very slow.
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Fig. 7. Comparison between the results of the Zo expansion—to second and
third order—with the all-order numerical result for the QED correction
to the hyperfine structure of hydrogenlike systems.
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Fig. 8. Comparison between the results of the Zo expansion to second order
and the all-order numerical results for the bound correction to the atomic
g-factor for hydrogenlike systems.

4.2. The Zeeman effect

The Zeeman effect (g-factor) of singly charged ions has for
some time been accurately studied in ion- trap experiments,
and similar experiments on highly charged ions are now being
prepared with an anticipated relative accuracy of 1:107. The
first experimental results have recently been reported for
C*° with an accuracy of 1:10 [13].

For a free electron the g-factor is accurately known to be
2 x 1.0011596..., where the dominating deviation from
the Dirac value of 2 is the Schwinger correction, «/n. For
a bound eclectron there are additional corrections,

2 2
a2, a<2a>+_..>_

8bound :2(1+27T 3 + -+ 121

© Physica Scripta 1999

QED Effects in Strong Nuclear Fields 139
Here, the third term is the leading relativistic correction, first
evaluated by Breit [35], and the last term the leading radiative
correction, calculated by Grotch and Hegstrom [36]. The rad-
iative corrections have recently been calculated numerically
to all orders in Za by Blundell et al. [37] (self energy part)
and Persson et al. [38] (self energy and vacuum polarization).
The results of Persson ef al. are displayed in Fig. 8 together
with the analytical result of Grotch and Hegstrom. There it
can be seen that the deviation between the analytical and
numerical results become appreciable already for Z > 20.

5. Summary and Conclusions

In this review we have concentrated on a comparison between
some recent experimental and theoretical results for heavy
one- and few-electron systems, which can be used for testing
QED at strong nuclear fields. For such systems, the conven-
tional Zo expansion is no longer applicable, and numerical
non-perturbative (all-order) techniques has to be employed.

The Is binding energy of a number of heavy H-like ions have
been measured with high accuracy, which makes it possible to
extract the Is Lamb shift. Good agreement is obtained with
first-order QED calculations. The experimental accuracy is
not yet good enough to test higher-order contributions, which,
in addition, is expected to be largely masked by uncertainty in
the nuclear effects.

Very accurate experimental data exist now for the 2s-2p
transitions in several Li-like ions. Here the second-order
Lamb-shift contributions, which are not yet fully calculated,
are expected to be quite significant. Comparison between
theoretical and experimental data might here constitute an
important test of strong-field QED beyond the first order.

The binding energies of He-like ions in the groundstate
have been compared experimentally with the corresponding
H-like ions, yielding experimental values of the two-electron
contribution to the binding energy of the He-like ions. Recent
calculations give good agreement with experiments, although
the experimental accuracy is not yet sufficient for testing
the two-electron QED contributions. Accurate experimental
data exist also for the separations between excited states of
light and medium-heavy He-like ions. When more complete
theoretical data will become available, interesting tests of
strong-field QED can here be performed.

The hyperfine structure some heavy H-like ions has
recently been measured with high accuracy. Recent calcu-
lations including QED effects give good agreement with
the experimental result. However, the uncertainty of the
nuclear magnetic moment as well as of the Bohr-Weisskopf
often limits the value of the test. Very accurate measurements
of the g-factor of highly charged H-like ions are now in
preparation. The QED effects are here quite significant,
and effects beyond leading order might be detected, also
for quite relatively light or medium-heavy ions. The effect
of the finite nuclear size is here extremely small, which makes
these kind of experiments extremely interesting for QED test
of tightly bound electrons.
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