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We describe a Bessel pendulum for use in the teaching laboratory, and measurements of the local
acceleration of gravity made with it to an accuracy of better than one part in 104. The Bessel
pendulum is a reversible pendulum that eliminates atmospheric corrections that apply to the more
familiar Kater pendulum. The physical principles underlying the Kater pendulum as well as Bessel’s
refinement are reviewed, and construction details are given for a realization of the pendulum.
© 2001 American Association of Physics Teachers.
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I. INTRODUCTION

Most undergraduate physics students learn about
physical pendulum~a rigid body pivoted about an arbitrar
axis!, and a few undergraduate mechanics texts treat
Kater pendulum.1,2 This is a physical pendulum built so tha
it can be pivoted about two different parallel axes on
body. When the pendulum is adjusted so that the frequen
of small oscillations about the two pivots are equal, the
lationship between the angular frequencyv0 and the distance
Dx between the pivots is

v0
25g/Dx. ~1!

This superficially resembles the equation for the freque
of a simple pendulum~point mass and string!, and enables
determination of the acceleration of gravityg without know-
ing the moment of inertia or center-of-mass location of
pendulum. As discussed below, Eq.~1! is generally only true
when the center of mass of the pendulum is between the
pivots and closer to one of them. The principle expressed
this equation was discussed by Huygens as early as 1
Based on this principle, de Prony proposed an invertible p
dulum for the measurement ofg in 1800, and a similar pro-
posal was published by Bohnenberger in 1811. However
Prony’s and Bohnenberger’s ideas were not accepted a
time and it was left to Henry Kater to design, implement, a
popularize the invertible pendulum for gravity measu
ments, starting in 1817.3

A clever improvement to the Kater pendulum devised
Bessel in 18264 is apparently much less familiar to presen
date physicists. The frequency of a Kater pendulum devia
from Eq. ~1! due to several effects that result from the s
rounding atmosphere, namely the buoyancy of the pendu
and mass of air that is dragged along with the pendulu
Bessel showed that these two effects of the atmosphere
ish if the pendulum is made with a symmetricshape, despite
its necessarily asymmetricmass distribution. Bessel also
showed how effects of rounding of the knife-edge pivo
could be made to cancel out, as discussed briefly in App
dix B below.

We will call a symmetrically shaped reversible pendulu
a Bessel pendulum.5 One hundred years ago, carefully co
structed Bessel pendulums were the most accurate in
ments available for absolute measurements of the acce
tion of gravity.6 Since that time, several advances have m
this technology obsolete. The availability of good vacuu
pumps has obviated the need to correct for atmospheric
fects, and more recently laser-interferometric measurem
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of the trajectory of a freely falling object has supplanted t
pendulum altogether in absolute measurements ofg.7

Inspired by the pedagogical virtues reported for ear
simple-pendulum,8 Kater-pendulum,9 and conical-
pendulum10 experiments, we have constructed a Bessel p
dulum for use in the teaching laboratory. The principles b
hind its operation include instructive lessons in mechan
and fluid mechanics, and it is not much more difficult
construct than an ordinary Kater pendulum. The plan of t
paper is as follows. Sections II and III treat the basic phys
behind the Kater pendulum and Bessel’s improvement to
respectively. Section IV describes the Bessel pendulum
we have constructed and operated.

II. THE KATER PENDULUM WITHOUT AIR
CORRECTIONS

The following derivation for the operation of the Kate
pendulum makes it clear why the center of mass general
not midway between the two pivot points. We start with t
expression for the angular frequencyv for small oscillations
of a physical pendulum,

v25gml/I , ~2!

wherem is the mass of the pendulum,l is the distance be-
tween the pivot axis and the center of mass, andI is the
moment of inertia about the pivot.1,2 Consider a physica
pendulum that can be pivoted about any of a series of a
that intersect a chosen line through the center of mass.
pivot axes are all parallel to one another, and perpendic
to the line. Letx denote the position of the pivot axis alon
the line, relative to an arbitrary origin on the pendulum. L
the center of mass be atx5xc , where we takexc>0 without
loss of generality. For convenience we define the funct
F(x)5v2/g. By Eq. ~2! this function satisfies

F~x!5
mux2xcu

I
5

mux2xcu
I 01m~x2xc!

2 . ~3!

Here the parallel-axis theorem has been used to expres
moment of inertiaI about the pivot point in terms of the
moment of inertiaI 0 about the center of mass. The absolu
value in Eq.~3! is needed for a reversible pendulum, as t
pivot point x can be on either side of the center-of-ma
locationxc .

The shape of the curveF(x) can be deduced by inspectio
of Eq. ~3!: It is symmetric about the pointx5xc , and goes to
zero both atx5xc and forx→6` ~Fig. 1!. To find graphi-
714jp/ © 2001 American Association of Physics Teachers
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cally the set of pivot pointsx about which the pendulum
oscillates at a given frequencyv0 , we find the intersection
of the curveF(x) with the horizontal lineF0[v0

2/g. In
general there arefour such points~or none!, so there are four
different pivot points along the pendulum with the same
cillation frequency. Due to the symmetry ofF(x), the four
pivots for a specified oscillation frequency are symmetrica
located about the center of mass, even if the pendulum it
has no symmetry~Fig. 2!. Obviously the Kater relation, Eq
~1!, between frequency and distance between pivot po
can only be true for some of the six possible distances
tween these four points!

To find which pivot points satisfy the Kater relation, d
fine y5x2xc and set F(y)5muyu/(I 01my2)5F0 . This
yields a quadratic equation iny with roots

y56
1

2F0
6A 1

4F0
22

I 0

m
. ~4!

The two indeterminate signs in this equation may be cho
independently, giving the four possible pivot points for fr
quencyv0 . The first sign determines which side of the ce
ter of mass the pivots are on, while the second sign furt
distinguishes between the locations of the pivots on that s
If we pick the pivot closer to the center of mass on one s
and the pivot further away from the center of mass on
other side, then the radical in Eq.~4! cancels when the dis
tance between pivots is calculated, giving

Dx5Dy51/F05g/v0
2. ~5!

This is the Kater condition, Eq.~1!. Conversely, if we pick
two points from Eq.~4! symmetric about the center of ma
or two points on the same side of the center of mass,
radical does not cancel. For these choices we are left wi
complicated expression forDx that involves the moment o

Fig. 1. The functionF(x)5v2/g relating the frequencyv of a physical
pendulum without air corrections to the pivot axis locationx. The frequency
vanishes when the pendulum is pivoted at the center-of-mass locationxc . In
general there are four pivot axis locationsx for which the pendulum oscil-
lates at a given frequencyv0 , shown by the intersections with the horizon
tal line F5v0

2/g. Of the six possible interpivot distances, onlyDx1 andDx2

satisfy the Kater condition, and onlyDx1 is possible for a Bessel pendulum
with pivots symmetric aboutx50. For this schematic plot we have sup
pressed units and chosenm5I 051, xc5), v0

2/g51/4.
715 Am. J. Phys., Vol. 69, No. 6, June 2001
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inertia I 0 . Thus only two of the six possible interpivot dis
tances satisfy the Kater condition, and the center of mas
generallynot centered between the pivots for either of the
two choices~Dx1 andDx2 in Fig. 1!.

III. AIR CORRECTIONS AND BESSEL’S
REVERSIBLE PENDULUM

As shown above, the mass distribution of a Kater pen
lum is necessarily asymmetric with respect to the piv
points. Bessel showed that if thevolumedistribution of the
pendulum is nevertheless made symmetric about the p
midway between the pivots, two important air correctio
disappear allowing the simple Kater condition to be appli
These are the corrections for buoyancy of the pendulum
air and for the inertia due to air dragged by the pendulum
it oscillates.11

For the following discussion, assume the volume distrib
tion ~i.e., the shape! of the pendulum to be symmetric abo
the pointx50. The center of mass is atx5xc.0, as above.
The effect of buoyancy is to reduce the effective weight
the pendulum by the weight of the air it displaces,mbg. That
is to say, thegravitational mass of the pendulum is effec
tively reduced bymb , while the inertial mass is unaffected
This leads to a decrease in the numerator of Eq.~3!, which is
proportional to the gravitational torque on the pendulum:

mux2xcu→mux2xcu2mbuxu. ~6!

The shape symmetry of the Bessel pendulum has been
here to set the center of mass of the displaced massmb at

Fig. 2. ~Left! Sketch of an arbitrarily shaped body with an arbitrarily chos
line passing through the center of mass~circle!. The crosses show four pivo
axes that have the same oscillation frequency, determined as in Fig. 1
four axes are symmetrically located about the center of mass, even i
body has no symmetry. Here one of four pivot axes lies outside the b
~one should imagine a rigid, massless support connecting the pivot to
body!. PivotsA andB are suitable for use of the body as a Kater pendulu
without air corrections.~Right! Here the body has been rotated to emphas
that any line of pivots through the center of mass can be used. The osc
tion frequency about the crosses is the same as for the left-hand side
suming all pivot axes are perpendicular to the page. The oscillation
quency is the same for pivots anywhere on the two circles shown cent
on the center of mass.
715Candelaet al.
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b is
x50. Buoyancydecreasesthe oscillation frequency relative
to the frequency in vacuum.

The effect of dragged air is to increase the moment
inertia of the pendulum about its pivot by some amountI d .
Therefore dragged air alsodecreasesthe oscillation fre-
quency relative to that in vacuum. Computation ofI d is a
subtle problem in fluid dynamics, as discussed briefly in A
pendix A. Bessel realized thatI d is the same for the two
pivots, provided the shape of the pendulum is symmetric
the frequency and amplitude of the swing are also the sa
As the shape and motion of the pendulum are identical
the two pivot locations, the motion of the air and hence
force it exerts on the pendulum must also be identical.

With both air corrections Eq.~3! becomes

F8~x![
v8~x!2

g
5

mux2xcu2mbuxu
I 01m~x2xc!

21I d
. ~7!

Primes are used here and below to signify quantities
include air corrections. Due to the correction terms inmb and
I d , the functionF8(x) deviates slightly fromF(x) and all
four pivot locations for a given oscillation frequency in a
v08 are displaced. As we now show, the distanceDx between
two of the pivots nevertheless does satisfy the simple K
condition provided the pivots are symmetrically locat
about the center of volume.

A Bessel pendulum must be adjusted to have equal
quencies for two such pivots, say atx56x0 . Assume that
this adjustment has been carried out, soF8(x0)5F8(2x0)
5(v08)

2/g[F08 . Just as for the Kater pendulum without a
corrections, sety5x2xc and solveF8(y)5(my2mbx0)/
(I 01my21I d)5F08 for y, leading to a quadratic equatio
with roots

y56
1

2F08
2A 1

~2F08!22
I 01I d1mbx0 /F08

m
. ~8!

This is like Eq.~4! above, but includes the two air correctio
terms. In addition, the pivot locations appropriate for
Bessel pendulum~Dx1 in Fig. 1! have been selected b
choosing the minus sign in front of the radical in Eq.~8!.

All of the complications in this equation due to buoyan
and dragged air are in the radical. Just as for the Kater p
dulum without air corrections, the radical cancels when
interpivot distance is computed, giving

Dx5Dy51/F085g/~v08!2. ~9!

This is just the Kater condition@Eq. ~1!# with the air-
corrected frequencyv08 . This proves that buoyant an
dragged-air corrections vanish for a volumetrically symm
ric reversible pendulum. Without this symmetry, the radi
in Eq. ~8! would take on different values for the two pivo
locations and the necessary cancellation would not occu

IV. CONSTRUCTION AND OPERATION OF A
BESSEL PENDULUM

In this section we describe a Bessel pendulum that
have successfully used as part of a laboratory course
junior-level physics majors. The pendulum consists of t
large cylindrical bobs and two small trimming collars affixe
to a central rod by setscrews~Fig. 3!. To achieve the neces
sary mass asymmetry while maintaining shape symme
716 Am. J. Phys., Vol. 69, No. 6, June 2001
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one of the bobs is aluminum and the other bob is steel.
trimming collars are aluminum, and the central rod is ste
Two sets of glass bearing plates, cut from standard mic
scope slides, are fastened to the bobs using cyanoacr
cement~‘‘superglue’’!. These plates are readily replaceab
which proves necessary in routine teaching-lab use. The p
dulum swings on a pair of hardened steel knife edges wh
are mounted to a 1.3-cm-thick steel plate with a cutout
the pendulum shaft. After mounting on the plate, the kn
edges were ground simultaneously to a 90° included an
This ensures that the two knife edges are perfectly in l
with one another. The plate is bolted to an aluminum brac
that is firmly fastened to a concrete column in the laborat
room. The knife edges are leveled to within 1023 rad by
temporarily attaching a fine thread and small weight on
side of the pendulum as a plumb bob.

Lack of rigidity of the support can be a major source
error for pendulum-based measurements ofg.3,6 We initially
mounted our knife edges so that the pendulum swung pa
lel to the concrete column face. With this arrangement
value ofg we measured was about 250 ppm less than in
pendentg data which are detailed below. We subsequen
rotated the steel plate by 90° so the pendulum swings
pendicularly to the column face. As the column face
rough, small copper shims were inserted between the alu
num bracket and the column directly behind each knife ed
Together these changes result in short, direct mechan
connections between the knife edges and the column. W
the new mounting arrangement, our measuredg value is
about 200 ppm larger and agrees better with the indepen
data. Despite the relatively massive dimensions of the s

Fig. 3. Side view of the Bessel pendulum~not to scale!. The pendulum
swings in the plane of the figure, and can be inverted so the steel bo
uppermost. See the text and Table I for further details.
716Candelaet al.
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mounting plate, the flexibility of the original arrangeme
~particularly for the knife edge further from the column! ap-
parently caused a significant systematic error. Both the s
and approximate magnitude of this error can be underst
from a simple model discussed in Appendix B.

Table I gives the dimensions for the central rod, bobs,
trimming collars. Our pendulum is perhaps larger and m
massive than is necessary for successful operation. Its de
resulted when the bobs and trimming collars were added
precision physical pendulum made from the central
alone, to convert it to a Bessel pendulum. The central ro
a standard precision machine shaft, which was chosen a
inexpensive, massive object with precise dimensions. F
Bessel pendulum, it is not necessary to know the pre
dimensions of the parts and a less massive central rod c
be used, allowing the bobs to be smaller. With the dim
sions shown in Table I the period is approximately 1.76
and the distance between bearing surfaces is approxim
77 cm when the pendulum is adjusted correctly.

The swinging of the pendulum is detected optically by
integrated photogate~Omron EE-SG3M!, which generates a
logic signal controlled by the presence or absence of
opaque object in a 4-mm-wide gap. To activate the pho
gate, small flags made of shim stock or cardboard are affi
to the ends of the central rod with tape or glue. The pho
gate is mounted to an adjustable stand on the labora
floor, and is manually positioned near one end of the pen
lum swing so it is activated only once per oscillation perio
The photogate output is timed by an electronic freque
counter. We have successfully used Hewlett-Packard mo
5385A and 34401A for this purpose. For the data sho
below, the counter was set to display the average of 20
cessive period measurements.

In general the periods of a Kater or Bessel pendulum
be trimmed by adjusting the pivot positions, the mass dis
bution, or both. In our design, moving the bobs changes b
the pivot positions and mass distribution, while moving t
collars changes only the latter. The pendulum is operate
follows. The bobs and trimming collars are always moved
pairs to maintain the overall shape symmetry of the pen
lum. DefineDt as the period of the pendulum when the st
bob is down, minus the period when the aluminum bob
down. First, the bobs are positioned so thatDt changes sign
when the trimming collars are moved from one extreme
sition ~at the ends of the central rod! to the other~against the
bobs!. Then, leaving the bob positions fixed the two perio
are carefully measured for a series of positions of the tr
ming collars. Curves are fit through these data to determ
the periodt52p/v08 that would be observed if the collar
were adjusted soDt50. Figure 4 shows data taken in th
manner. Note that it is not necessary to actually adjust
collars for exact equality of the two periods.12

Although the dominant air corrections are canceled by
construction of the Bessel pendulum, other types of corr
tion remain. Among these are corrections for the finite a

Table I. Dimensions of the principal parts of the pendulum.

Part Length Outside diameter

Central rod 121.92 cm~48 in.! 3.81 cm~1.5 in.!
Bobs 7.62 cm~3 in.! 11.43 cm~4.5 in.!
Trimming collars 3.175 cm~1.25 in.! 5.08 cm~2 in.!
717 Am. J. Phys., Vol. 69, No. 6, June 2001
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plitude of swing of the pendulum, and for the damping sh
of the frequency. Both corrections are thoroughly discus
in Ref. 8. For our pendulum, the damping shift is genera
negligible while the finite-amplitude correction must som
times be included.13 Our students are required to calcula
both corrections quantitatively, and either include them
prove them to be negligible. They must also devise ways
measure the amplitude and damping. As these are small
rections, simple measurement schemes generally suffice

A possible source of error is misplacement of the pen
lum on the knife edges. By measuring the effect of purpos
misplacing the pendulum by a known amount, students
quantify and control this error. A mechanical device to r
producibly and gently lower the pendulum onto the kn
edges could be devised to eliminate this error. Other e
sources that could be considered include bending of the k
edges and stretching and bending of the pendulum itself
well as interactions between the pendulum and the Ear
magnetic field. Some of these are readily computed, w
others are complex and poorly understood.6,8

To reduce the measured period to a value forg, it is nec-
essary to measure the distanceDx between the glass bearin
plates on the pendulum as accurately as possible. This t
cally proves to be a significant source of uncertainty in
careful measurement ofg with our pendulum, suggesting tha
a better measurement method forDx than the two we have
devised would be desirable. For the first method, we fa
cated a metal gauge rod about 1 cm shorter than the typ
trimmed distance between the bearing plates, and meas
its length to within 25mm ~0.001 in.!, at a specified tempera
ture. The students use this gauge rod along with a dig
caliper or a feeler gauge to measureDx. For the second
method, we used the setscrews to lock the bobs in place
then had our shop personnel measure the distance bet
bearing plates using their most accurate instrument, whic
our case was a 76.2-cm~30 in.! inside micrometer. To main-
tain the precision of this measurement the temperature of
pendulum must be noted both when it is measured and w

Fig. 4. Period of the pendulum measured with the aluminum bob do
~closed squares! and with the steel bob down~open circles! as a function of
the position of the trimming collars. The collar position was measured as
distance between the outer end of the collar and the end of the centra
These data were taken with angular oscillation amplitudeu054
31023 rad. The curves show cubic fits to the data. From the intersectio
the 95% confidence bands for these two fits, the trimmed period of
pendulum is determined to be 1.761 536~54! s with 90% confidence.
717Candelaet al.
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it is used, and the change in length due to thermal expan
must be calculated. The second method achieves some
greater accuracy, but does not allow the students to exp
the effects of moving the bobs on the central shaft.

To determine whether the experiment actually measu
the local value ofg with the expected accuracy, it is impor
tant to have a reliable independent value. The customary
for tabulations ofg is Gal5cm/s2. An internet-accessible da
tabase of absolute values ofg at many reference stations o
the surface of the Earth is maintained by the Bure
Gravimétrique International~BGI!.14 Alternatively, the ‘‘In-
ternational Gravity Formula 1980’’ may be used to appro
mateg at mean sea levelas a function of latitudef.15 Omit-
ting terms smaller than 1 mGal, this formula reads

g5~978.0327 Gal!~115.279 041 431023 sin2 f

12.327 1831025 sin4 f!. ~10!

Deviations from the formula due to local density variatio
are typically on the order of tens of mGal, while tempor
variations ofg at a position fixed on the Earth~due mostly to
tides! are about 0.3 mGal.15 In all cases a correction must b
applied for the difference in height between the pendul
and the independentg datum.16

Using the period data shown in Fig. 4 along with a me
sured interpivot distanceDx577.051 00(76) cm, we findg
5980.291(62) Gal at the location of our Bessel pendul
~latitude 42.3914°, longitude272.5258°, ground height 70
m above sea level plus additional free-air height 5 m!. Our
stated uncertainties are 90% confidence intervals~approxi-
mately 62s!. At the BGI reference station nearest to o
pendulum~3.95 km distant and 24 m lower in height! the
tabulatedg5980.363 45(20) Gal. Corrected to the heig

Fig. 5. Calculated periods for our pendulum with and without air corre
tions. The solid curves show periods calculated including both buoya
and dragged air. The dashed curves omit buoyancy while the dotted cu
omit both buoyancy and dragged air, as would occur if the pendulum w
operated in vacuum. For each pair of curves, the steeper curve is fo
aluminum bob down and the shallower curve is for the steel bob do
Local gravityg and the interpivot distanceDx were set equal to the value
measured for our pendulum, hence the trimmed period is also the sam
measured. As the horizontal line shows, the trimmed period is indepen
of air corrections. These curves were calculated using the nominal dim
sions of the pendulum and typical densities for steel and aluminum, with
adjustable parameters. The collar position at which the periods are e
could be adjusted to agree with the data~Fig. 4! by adjusting the material
densities by about 1%, well within our uncertainty.
718 Am. J. Phys., Vol. 69, No. 6, June 2001
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and latitude of our pendulum this givesg5980.361 Gal,
while the International Gravity Formula givesg
5980.369 Gal. Thus our measurement is 68 ppm sma
than the value inferred from BGI data, which may be co
pared with our stated uncertainty of 63 ppm.

How big are the atmospheric effects for which Besse
pendulum corrects? To address this question we have
the equation for the frequency of a physical pendulum,
~2!, to directly compute the expected periods for our pen
lum both with and without buoyancy and dragged-air corr
tions ~Fig. 5!. For these calculations, the positions of t
bobs and pivots were assumed to be fixed and only the co
positions were varied. As can be seen from the vertical se
ration of the various curves in Fig. 5, the shifts in period d
to buoyancy and dragged air are a few parts in 1024. This
could be anticipated from the relative densities of air a
steel. It also can be seen that both buoyancy and dragge
increase the period at fixed collar position, and that the t
corrections are similar in magnitude.

The period at which the curves intersect is independen
which air corrections are included in the calculation~hori-
zontal line in Fig. 5!. Thus, the measured value ofg is the
same for a Bessel pendulum swinging in air or swinging
vacuum. This would not be true for an asymmetrica
shaped pendulum, and graphically demonstrates that Bes
improvement to the Kater pendulum really works.

ACKNOWLEDGMENT

This work was supported by the NSF Instrumentation a
Laboratory Improvement program under Grant No. DU
9751231.

APPENDIX A: INERTIA DUE TO DRAGGED AIR

For measurements ofg with a Bessel pendulum, the mo
ment of inertiaI d added by dragged air need not be know
as it cancels in going from Eq.~8! to Eq.~9!. Nevertheless, it
may be interesting to know the origin and approximate va
of I d . The existence of an effective added mass due to m
tion of the air was noted by Du Buat in 1786, and indepe
dently by Bessel in 1828.8 Analytical expressions for the
inertial and damping forces on oscillating bodies immers
in viscous fluids were derived by Stokes in 1851.17 For a
more detailed discussion of the dragged air mass tha
given here, see Ref. 8.

When a solid body undergoes oscillatory motion in a v
cous fluid such as air, the flow is rotational in a layer
characteristic thicknessd and irrotational outside this layer
The distanced is called the viscous penetration depth, giv
by

d5~2n/v!1/2, ~A1!

where v is the angular oscillation frequency andn is the
kinematic viscosity ~n50.15 cm2/s for air in standard
conditions!.18 When d is much less than the dimensions
the oscillating body, fluid motion outside the thin rotation
layer is the same as for an inviscid liquid and the added m
can be computed from the corresponding inviscid flow pro
lem. For example, the added mass is one-half the mass o
displaced fluid for a spherical body, and equal to the mas
the displaced fluid for an infinitely long cylindrical body.18

Although there is no simple expression for a body of ar
trary shape, it can be seen that the total added massmd due
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to dragged air is comparable to the displaced air massmb for
small penetration depthd.

If d is made similar to or larger than the dimensions of
body ~for example, by reducing the frequency of oscillation!,
the rotational layer extends further into the fluid and t
added mass increases. With the effect of air on pendulum
mind, Stokes derived the force on an infinitely long oscill
ing cylinder for any value ofd relative to the cylinder
radius—his solution is expressed in terms of Bes
functions!17 Stokes’ solution is only valid for small oscilla
tion amplitude~much less than the cylinder radius, in th
small-d limit !. For larger oscillation amplitude, the nonline
term in the Navier–Stokes equation becomes important
the force due to dragged air is more difficult to calculate.8,18

We may picture the dragged air as extra massmd distrib-
uted along the length of the pendulum. The mass distribu
depends upon oscillation frequency throughd, but it is inde-
pendent of oscillation amplitude for sufficiently small amp
tudes. Therefore, the mass distribution for a Bessel pen
lum is symmetric about the center of volumex50. The
parallel axis theorem can be used to express the added
ment of inertia about the pivot,

I d5I d01mdx2, ~A2!

whereI d0 is the moment of inertia of the added mass dis
bution aboutx50. The pendulum described in this paper h
a period of 1.8 s, givingd53 mm. Thus, it is in the small-d
limit and md'mb . For a more quantitative estimate ofmd

and I d0 , this pendulum could be roughly modeled as a lo
cylinder ~the central rod! plus two spheres~the bobs!. This
approximation was used for the calculations shown in Fig

APPENDIX B: ROUNDING OF THE KNIFE EDGES
AND FLEXING OF THE SUPPORT

The knife edges used to support the pendulum canno
perfectly sharp, and it is natural to suppose that this w
introduce an error in the determination ofg with a Kater or
Bessel pendulum. Bessel showed that rounding of the k
edges has no effect to first order on the measured valueg,
provided that the knife-edge radius is unchanged when
pendulum is inverted.4 This is automatically the case whe
the knife edges are stationary and the flat bearing plates
on the pendulum, as in our design. In this Appendix
outline a proof, leaving a few details for the reader to wo
out. We also discuss the effect on the measured value ofg of
flexing in the knife-edge support.

Assume that the contact area of the knife edge is cylin
cal with radiusr, and that the bearing plate rolls on the kni
edge without slipping~both assumptions could be question
for an actual pendulum!. When the pendulum swings throug
an angleu, the line on the bearing plate that contacted
knife edge atu50 rises by an amountDh and moves to the
side by an amountDs ~Fig. 6!. Elementary trigonometry
shows

Dh/r 5cosu1u sinu215u2/21O~u4!,
~B1!Ds/r 5sinu2u cosu5O~u3!.

These vertical and horizontal movements of the pendu
are in addition to the ordinary rotational movement. The s
plest way to deduce their effect on the oscillation frequen
is to consider the pendulum’s kinetic and potential energ19

For small oscillations the kinetic energy of the pendulum
719 Am. J. Phys., Vol. 69, No. 6, June 2001
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due to horizontal velocities of the various parts. For perfec
sharp knife edges, these velocities are proportional tou̇. The
additional horizontal velocity due to knife-edge rounding
Ḋs;u2u̇, and so has no effect on the frequency foru→0.

The vertical movementDh is of the same order inu as the
rise in the center of mass for a zero-radius knife edge,lu2/2.
ThereforeDh changes thepotentialenergy as if the distance
between the pivot and the center of mass were increase
r. This adds a termmr to the numerator of Eq.~3! or ~7!. The
added term is the same for both positions of the pendul
so it cancels when the interpivot distance is computed,
like the buoyancy correction.

Another potential source of error associated with t
knife-edge pivots is flexibility that allows them to move a
the pendulum swings. Unfortunately, flexibility in the knife
edge support results in horizontal motion of orderu, and so
gives a first-order error in theg measurement. The only hori
zontal force on the pendulum is transmitted through the p
ots. We model the support as a horizontal spring with spr
constantk. Computing the force exerted by this spring as t
massm of the pendulum times the horizontal acceleration
the center of mass, the horizontal motion of the pivot is

Ds5~mv2/k!lu[e lu, ~B2!

where l is the distance between pivot and center of mas20

As the movement of the pivot should be much smaller th
the movement of the pendulum center of mass, we can
sumee!1.

The total kinetic energy of the pendulum is the sum
energies for rotation about the center of mass and transla
of the center of mass,

Ek5I 0u̇2/21m~ l u̇1Ḋs!2/25@ I 01ml~11e!2#u̇2/2

'@ I 01ml2~112e!#u̇2/2. ~B3!

Therefore, the term inm in the denominators of Eqs.~3! and
~7! is modified as

m~x2xc!
2→m~112e!~x2xc!

2. ~B4!

Fig. 6. Diagram used to compute the riseDh and horizontal shiftDs of the
pendulum due to the finite radius of the knife edge. The circular arc re
sents the knife edge. The dashed line represents the bearing plate whe
pendulum is vertical, while the solid line represents the bearing plate w
the pendulum is at an angleuÞ0. When the pendulum swings away from
vertical, the line on the bearing plate that is initially in contact with the kn
edge moves from the position of the open circle to the position of the clo
circle, assuming rolling contact between the knife edge and bearing pla
719Candelaet al.
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With this substitution it is easily verified that the Kater co
dition, Eq. ~1!, is changed to

v0
25g/@Dx~112e!#. ~B5!

Thus, the apparent value ofg is fractionally less than the tru
value of g by 2e52mv2/k. Our pendulum hasm
518.5 kg,v52p/(1.76 s). To achieve an error due to su
port flex 2e<1025, we requirek>4.73107 N/m. We may
imagine a support consisting of horizontal rods of lengthL
and total cross-sectional areaA connecting the pendulum
pivots to an infinitely massive wall. If the Young’s modulu
of the support rods isE, their effective spring constant isk
5AE/L. If we use aluminum support rods 10 cm long f
our pendulum (E5731010N/m2), their total cross-sectiona
area must be at least 0.7 cm2 to achieve 2e<1025. For less
favorable geometries, like our initial arrangement with t
pendulum swinging parallel to the wall, corresponding
more massive support is required.

It is also interesting to calculate the actual support fl
under operating conditions, using Eq.~B2!. For our pendu-
lum the meanl 539 cm and we typically use swing ampl
tudeu0'431023 rad. Therefore, if the pivot support is sti
enough to give 2e<1025, the amplitudeDs0 of the pivot
movement must be no more than 8 nm. This is about o
seventieth of a wavelength of visible light. In the era
precision pendulum measurements of gravity, optical in
ferometers were used to measure this small pivot movem
and sometimes two matched pendulums were swung ou
phase from the same support in an effort to minimize it.3

a!Electronic mail: candela@physics.umass.edu
b!Present address: Physics Department, Amherst College, Amh
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