Bessel's improved Kater pendulum in the teaching lab
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We describe a Bessel pendulum for use in the teaching laboratory, and measurements of the local
acceleration of gravity made with it to an accuracy of better than one partinTiee Bessel
pendulum is a reversible pendulum that eliminates atmospheric corrections that apply to the more
familiar Kater pendulum. The physical principles underlying the Kater pendulum as well as Bessel's
refinement are reviewed, and construction details are given for a realization of the pendulum.
© 2001 American Association of Physics Teachers.
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[. INTRODUCTION of the trajectory of a freely falling object has sup;alanted the
] pendulum altogether in absolute measuremen ‘of

Most undergraduate physics students learn about the |nspired by the pedagogical virtues reported for earlier
physical pendulunta rigid body pivoted about an arbitrary simple-pendulunfi, ~ Kater-pendulunf, and  conical-
axis), and a few undergraduate mechanics texts treat thgendulunt® experiments, we have constructed a Bessel pen-
Kater pendulunt:® This is a physical pendulum built so that gulum for use in the teaching laboratory. The principles be-
it can be pivoted about two different parallel axes on thehind its operation include instructive lessons in mechanics
body. When the pendulum is adjusted so that the frequenciegnd fluid mechanics, and it is not much more difficult to
of small oscillations about the two pivots are equal, the regonstruct than an ordinary Kater pendulum. The plan of this
lationship between the angular frequengyand the distance paper is as follows. Sections Il and IIl treat the basic physics
AX between the pivots is behind the Kater pendulum and Bessel's improvement to it,

2 respectively. Section IV describes the Bessel pendulum that
wo=9g/Ax. (1) we have constructed and operated.

This superficially resembles the equation for the frequency
of a simple pendulunipoint mass and stringand enables || THE KATER PENDULUM WITHOUT AIR
determination of the acceleration of gravgywithout know-  ~cORRECTIONS
ing the moment of inertia or center-of-mass location of the
pendulum. As discussed below, Ed) is generally only true The following derivation for the operation of the Kater
when the center of mass of the pendulum is between the twpendulum makes it clear why the center of mass generally is
pivots and closer to one of them. The principle expressed byiot midway between the two pivot points. We start with the
this equation was discussed by Huygens as early as 1678xpression for the angular frequeneyfor small oscillations
Based on this principle, de Prony proposed an invertible penef a physical pendulum,
dulum for the measurement gfin 1800, and a similar pro- 2
posal was published by Bohnenberger in 1811. However, de =gmi/t, )
Prony’s and Bohnenberger's ideas were not accepted at theherem is the mass of the pendulurhjs the distance be-
time and it was left to Henry Kater to design, implement, andtween the pivot axis and the center of mass, ard the
popularize the invertible pendulum for gravity measure-moment of inertia about the pivof Consider a physical
ments, starting in 181%. pendulum that can be pivoted about any of a series of axes

A clever improvement to the Kater pendulum devised bythat intersect a chosen line through the center of mass. The
Bessel in 1826is apparently much less familiar to present- pivot axes are all parallel to one another, and perpendicular
date physicists. The frequency of a Kater pendulum deviatet® the line. Letx denote the position of the pivot axis along
from Eg. (1) due to several effects that result from the sur-the line, relative to an arbitrary origin on the pendulum. Let
rounding atmosphere, namely the buoyancy of the pendulunthe center of mass be &t x., where we take.=0 without
and mass of air that is dragged along with the pendulumioss of generality. For convenience we define the function
Bessel showed that these two effects of the atmosphere vap{(x) = w?/g. By Eq. (2) this function satisfies
ish if the pendulum is made with a symmetsicape despite
its necessarily asymmetrimass distribution Bessel also
showed how effects of rounding of the knife-edge pivots
could be made to cancel out, as discussed briefly in Appe
dix B below.

We will call a symmetrically shaped reversible pendulum

m[X—X¢| m[X—X|
I lgtm(x—xg)?

F(x)= ()
Tiere the parallel-axis theorem has been used to express the
moment of inertial about the pivot point in terms of the

a Bessel pendulurhOne hundred years ago, carefully con- moment of inertid , about the center of mass. The absolute
structed Bessel pendulums were the most accurate instr§@/U€ in EQ.(3) is needed for a reversible pendulum, as the
ments available for absolute measurements of the accelerBIVOt Point x can be on either side of the center-of-mass
tion of gravity® Since that time, several advances have madécationxc. . _
this technology obsolete. The availability of good vacuum The shape of the curvé(x) can be deduced by inspection
pumps has obviated the need to correct for atmospheric ebf Eq.(3): It is symmetric about the point=Xx., and goes to
fects, and more recently laser-interferometric measuremerero both ax=x, and forx— = (Fig. 1). To find graphi-
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Fig. 2. (Left) Sketch of an arbitrarily shaped body with an arbitrarily chosen
line passing through the center of mésiscle). The crosses show four pivot
axes that have the same oscillation frequency, determined as in Fig. 1. The
four axes are symmetrically located about the center of mass, even if the
body has no symmetry. Here one of four pivot axes lies outside the body
(one should imagine a rigid, massless support connecting the pivot to the
body). PivotsA andB are suitable for use of the body as a Kater pendulum
. . : - without air corrections(Right) Here the body has been rotated to emphasize
Sa.mey. the Kater con_dmon, and onlyx, |S_p05$|ble fo_r a Bessel pendulum thatany line of pivots through the center of mass can be used. The oscilla-
with plvots‘symmetrlc aboux=0. For this szchematlc plot we have sup- tion frequency about the crosses is the same as for the left-hand side, as-
pressed units and chosem=1,=1, x.=Vv3, wy/g=1/4. suming all pivot axes are perpendicular to the page. The oscillation fre-
guency is the same for pivots anywhere on the two circles shown centered
on the center of mass.

Fig. 1. The functionF(x)=w?/g relating the frequency» of a physical
pendulum without air corrections to the pivot axis locatiohe frequency
vanishes when the pendulum is pivoted at the center-of-mass loeatidn
general there are four pivot axis locatioxngor which the pendulum oscil-
lates at a given frequenay,, shown by the intersections with the horizon-
tal line F= w?/g. Of the six possible interpivot distances, oy, andAx,

cally the set of pivot pointx about which the pendulum
oscillates at a given frequenay,, we find the intersection
of the curveF(x) with the horizontal lineFy= a)S/g. In inertialy. Thus only two of the six possible interpivot dis-
general there arfour such pointgor nong, so there are four tances satisfy the Kater condition, and the center of mass is
different pivot points along the pendulum with the same os-generallynot centered between the pivots for either of these
cillation frequency. Due to the symmetry Bf(x), the four  two choices(Ax; andAx, in Fig. 1).
pivots for a specified oscillation frequency are symmetrically
located about the center of mass, even if the pendulum itself
has no symmetryFig. 2). Obviously the Kater relation, Eq. ,
(1), betwﬁen fre%]ugnczl and distgnce between pivot pgintgl' AIR CORRECTIONS AND BESSEL'S
can only be true for some of the six possible distances beéREVERSIBLE PENDULUM
tween these four points!

To find which pivot points satisfy the Kater relation, de-
fine y=x—x. and setF(y)=m|y|/(I,+my?)=F,. This
yields a quadratic equation ynwith roots

As shown above, the mass distribution of a Kater pendu-
lum is necessarily asymmetric with respect to the pivot
points. Bessel showed that if th@lumedistribution of the
pendulum is nevertheless made symmetric about the point
midway between the pivots, two important air corrections

_ /1 o 2 disappear allowing the simple Kater condition to be applied.
T 2Fy 4|:S m’ ( These are the corrections for buoyancy of the pendulum in
] ] ) o ) air and for the inertia due to air dragged by the pendulum as
The two indeterminate signs in this equation may be chosep gscillates!!
independently, giving the four possible pivot points for fre-  For the following discussion, assume the volume distribu-
guencyw,. The first sign determines which side of the cen-tion (i.e., the shapeof the pendulum to be symmetric about
ter of mass the pivots are on, while the second sign furthefhe pointx=0. The center of mass is at=x.>0, as above.
distinguishes between the locations of the pivots on that siderne effect of buoyancy is to reduce the effective weight of
If we pick the pivot closer to the center of mass on one sidgne pendulum by the weight of the air it displacesg. That
and the pivot further away from the center of mass on th&g {5 say, thegravitational mass of the pendulum is effec-
other side, then the radical in EG) cancels when the dis- a1y reduced bym,, while theinertial mass is unaffected.
tance between pivots is calculated, giving This leads to a decrease in the numerator of(Bg.which is
proportional to the gravitational torque on the pendulum:
Ax=Ay=1/F,=glw}. (5)

This is the Kater condition, Eq1). Conversely, if we pick
two points from Eq.(4) symmetric about the center of mass
or two points on the same side of the center of mass, the
radical does not cancel. For these choices we are left with @he shape symmetry of the Bessel pendulum has been used
complicated expression fakx that involves the moment of here to set the center of mass of the displaced masat

M|X = Xe| = M[X—Xc| = Mp|x]. ©)
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x=0. Buoyancydecreaseshe oscillation frequency relative Flag
to the frequency in vacuum. _—

The effect of dragged air is to increase the moment of /" Trimming Collar
inertia of the pendulum about its pivot by some amolynt
Therefore dragged air alsdecreasesthe oscillation fre- .
quency relative to that in vacuum. Computationlgfis a ,/~Aluminum Bob
subtle problem in fluid dynamics, as discussed briefly in Ap-
pendix A. Bessel realized that is the same for the two o=

pivots, provided the shape of the pendulum is symmetric and Knife Edge

the frequency and amplitude of the swing are also the same.
As the shape and motion of the pendulum are identical for
the two pivot locations, the motion of the air and hence the
force it exerts on the pendulum must also be identical. /Centra| Rod
With both air corrections Eq.3) becomes

W (97 mixx - mylx
g ot mM(X—Xo) 2+ 14

F'(x)

()

Primes are used here and below to signify quantities that —Glass Plate
include air corrections. Due to the correction termsinand =
l4, the functionF’(x) deviates slightly fromF(x) and all
four pivot locations for a given oscillation frequency in air AN
o), are displaced. As we now show, the distaocebetween
two of the pivots nevertheless does satisfy the simple Kater
condition provided the pivots are symmetrically located
about the center of volume.

A Bessel pendulum must be adjusted to have equal fre- N
quencies for two such pivots, say st +Xx,. Assume that Photogate
this adjustment has been carried out,FSgxo) =F'(—xo) Fig. 3. Side view of the Bessel pendulufot to scalg The pendulum
= (w(’))2/gz F(’), Just as for the Kater pendulum without air swings in the plane of the figure, and can be inverted so the steel bob is
corrections, sely=x—Xx, and solveF’(y)=(my—myXo)/ uppermost. See the text and Table | for further details.
(lo+my*+14)=F for y, leading to a quadratic equation

Steel Bob

with roots . . .
one of the bobs is aluminum and the other bob is steel. The
1 1 Lo+ g+ myXe/Fg trimming collars are aluminum, and the central rod is steel.
y= “—”f— (2F’)2_ m . (8)  Two sets of glass bearing plates, cut from standard micro-
0 0

scope slides, are fastened to the bobs using cyanoacrylate
This is like Eqg.(4) above, but includes the two air correction cement(“superglue”). These plates are readily replaceable,
terms. In addition, the pivot locations appropriate for awhich proves necessary in routine teaching-lab use. The pen-
Bessel pendulun{Ax; in Fig. 1) have been selected by dulum swings on a pair of hardened steel knife edges which
choosing the minus sign in front of the radical in E§). are mounted to a 1.3-cm-thick steel plate with a cutout for
All of the complications in this equation due to buoyancythe pendulum shaft. After mounting on the plate, the knife
and dragged air are in the radical. Just as for the Kater peredges were ground simultaneously to a 90° included angle.
dulum without air corrections, the radical cancels when theThis ensures that the two knife edges are perfectly in line
interpivot distance is computed, giving with one another. The plate is bolted to an aluminum bracket
U 2 that is firmly fastened to a concrete column in the laboratory
Ax=Ay=1/F;=0/(wo)". © " room. The knife edges are leveled to within £0ad by
This is just the Kater conditiofEq. (1)] with the air- temporarily attaching a fine thread and small weight on the
corrected frequencyw;. This proves that buoyant and side of the pendulum as a plumb bob. _
dragged-air corrections vanish for a volumetrically symmet- Lack of rigidity of the support can be a major source of
ric reversible pendulum. Without this symmetry, the radical€ror for pendulum-based measurements.bf We initially
in Eq. (8) would take on different values for the two pivot mounted our knife edges so that the pendulum swung paral-

locations and the necessary cancellation would not occur. '€l to the concrete column face. With this arrangement the
value ofg we measured was about 250 ppm less than inde-

pendentg data which are detailed below. We subsequently
IV. CONSTRUCTION AND OPERATION OF A rotated the steel plate by 90° so the pendulum swings per-
BESSEL PENDULUM pendicularly to the column face. As the column face is
rough, small copper shims were inserted between the alumi-
In this section we describe a Bessel pendulum that we&um bracket and the column directly behind each knife edge.
have successfully used as part of a laboratory course foFogether these changes result in short, direct mechanical
junior-level physics majors. The pendulum consists of twoconnections between the knife edges and the column. With
large cylindrical bobs and two small trimming collars affixed the new mounting arrangement, our measugetialue is
to a central rod by setscrewBig. 3). To achieve the neces- about 200 ppm larger and agrees better with the independent
sary mass asymmetry while maintaining shape symmetrydata. Despite the relatively massive dimensions of the steel
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Table I. Dimensions of the principal parts of the pendulum.

Part Length Outside diameter 1.7635_.
Central rod 121.92 cn¥8 in) 3.81 cm(1.5 in) 17630 o
Bobs 7.62 cm3in.) 11.43 cm(4.5 in)

Trimming collars 3.175 cnil.25 in) 5.08 cm(2 in.) 1.7625
o 1
£ 17620 4
T
e
5 1.7615
o

mounting plate, the flexibility of the original arrangement 17610

(particularly for the knife edge further from the colujrap-

parently caused a significant systematic error. Both the sign  1-7605+

and approximate magnitude of this error can be understood

from a simple model discussed in Appendix B. — _—
Table | gives the dimensions for the central rod, bobs, and 0 2 4 6 8 10 12

trimming collars. Our pendulum is perhaps larger and more Collar Position {(cm)

massive than is necessary for successful operation. Its desic%n

1.7600

resulted when the bobs and trimming collars were added to ig. 4. Period of the pendulum measured with the aluminum bob down
L . closed squaresand with the steel bob dowpen circlegas a function of
precision physical pendulum made from the central ro_ he position of the trimming collars. The collar position was measured as the

alone, to convert it to a Bessel pendulum. The central rod igistance between the outer end of the collar and the end of the central rod.
a standard precision machine shaft, which was chosen as &Rese data were taken with angular oscillation amplitudg=4
inexpensive, massive object with precise dimensions. For &10 3rad. The curves show cubic fits to the data. From the intersection of
Bessel pendulum, it is not necessary to know the precisthe 95% confidence bands for these two fits, the trimmed period of the
dimensions of the parts and a less massive central rod couRgndulum is determined to be 1.761 &3 s with 90% confidence.
be used, allowing the bobs to be smaller. With the dimen-
sions shown in Table | the period is approximately 1.76 s
and the distance between bearing surfaces is approximatefyitude of swing of the pendulum, and for the damping shift
77 cm when the pendulum is adjusted correctly. of the frequency. Both corrections are thoroughly discussed
The swinging of the pendulum is detected optically by anjn Ref. 8. For our pendulum, the damping shift is generally
integrated photogat€Omron EE-SG3M, which generates a negligible while the finite-amplitude correction must some-
logic signal controlled by the presence or absence of afimes be included® Our students are required to calculate
opague object in a 4-mm-wide gap. To activate the photohoth corrections quantitatively, and either include them or
gate, small flags made of shim stock or cardboard are affixegrove them to be negligible. They must also devise ways to
to the ends of the central rod with tape or glue. The photomeasure the amplitude and damping. As these are small cor-
gate is mounted to an adjustable stand on the laboratonéctions, simple measurement schemes generally suffice.
floor, and is manually positioned near one end of the pendu- A possible source of error is misplacement of the pendu-
lum swing so it is activated only once per oscillation period.jum on the knife edges. By measuring the effect of purposely
The photogate output is timed by an electronic frequencynisplacing the pendulum by a known amount, students can
counter. We have successfully used Hewlett-Packard modelsiantify and control this error. A mechanical device to re-
5385A and 34401A for this purpose. For the data showrproducibly and gently lower the pendulum onto the knife
below, the counter was set to display the average of 20 suedges could be devised to eliminate this error. Other error
cessive period measurements. sources that could be considered include bending of the knife
In general the periods of a Kater or Bessel pendulum cagdges and stretching and bending of the pendulum itself, as
be trimmed by adjusting the pivot positions, the mass distriwell as interactions between the pendulum and the Earth’s
bution, or both. In our design, moving the bobs changes botiagnetic field. Some of these are readily computed, while
the inOt pOSitiOﬂS and mass distribution, while moving theothers are Comp|ex and p00r|y understééd_
collars changes only the latter. The pendulum is operated as To reduce the measured period to a valuedoit is nec-
f0||_0WS. The bO_bS and tl’lmmlng collars are aIWayS moved inessary to measure the distante between the g|aSS bearing
pairs to maintain the overall shape symmetry of the pendup|ates on the pendulum as accurately as possible. This typi-
lum. DefineAt as the period of the pendulum when the steelcally proves to be a significant source of uncertainty in a
bob is down, minus the period when the aluminum bob iscareful measurement gfwith our pendulum, suggesting that
down. First, the bobs are positioned so thatchanges sign  a better measurement method fox than the two we have
when the trimming collars are moved from one extreme podevised would be desirable. For the first method, we fabri-
sition (at the ends of the central rptb the other(against the  cated a metal gauge rod about 1 cm shorter than the typical
bobs. Then, leaving the bob positions fixed the two periodstrimmed distance between the bearing plates, and measured
are carefully measured for a series of positions of the trimits length to within 25um (0.001 in), at a specified tempera-
ming collars. Curves are fit through these data to determingre. The students use this gauge rod along with a digital
the periodt=27r/a)5 that would be observed if the collars caliper or a feeler gauge to measuke. For the second
were adjusted sat=0. Figure 4 shows data taken in this method, we used the setscrews to lock the bobs in place and
manner. Note that it is not necessary to actually adjust théhen had our shop personnel measure the distance between
collars for exact equality of the two periot. bearing plates using their most accurate instrument, which in
Although the dominant air corrections are canceled by theur case was a 76.2-c(80 in) inside micrometer. To main-
construction of the Bessel pendulum, other types of correctain the precision of this measurement the temperature of the
tion remain. Among these are corrections for the finite ampendulum must be noted both when it is measured and when
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1.7620 1 and latitude of our pendulum this gives=980.361 Gal,

while the International Gravity Formula givesg
=980.369 Gal. Thus our measurement is 68 ppm smaller
than the value inferred from BGI data, which may be com-
pared with our stated uncertainty of 63 ppm.

How big are the atmospheric effects for which Bessel's
pendulum corrects? To address this question we have used
the equation for the frequency of a physical pendulum, Eq.
(2), to directly compute the expected periods for our pendu-
lum both with and without buoyancy and dragged-air correc-
tions (Fig. 5. For these calculations, the positions of the
bobs and pivots were assumed to be fixed and only the collar
positions were varied. As can be seen from the vertical sepa-
A 50 ss o ration of the various curves in Fig. 5, the shifts in period due

Collar Position (cm) to buoyancy and dragged air are a few parts in“0This

could be anticipated from the relative densities of air and

Fig. 5. Calculated periods for our pendulum with and without air correc—?tem' It also Can_be seen that both bUQYa”Cy and dragged air
tions. The solid curves show periods calculated including both buoyancyncrease the period at fixed collar position, and that the two
and dragged air. The dashed curves omit buoyancy while the dotted curvedorrections are similar in magnitude.
omit both buoyancy and dragged air, as would occur if the pendulum were  The period at which the curves intersect is independent of
opergted in vacuum. For each pair of curves, t_he steeper curve is for thg/hich air corrections are included in the calculatigrori-
aluminum bob down and the shallower curve is for the steel bob downzoma| line in Fig. 5. Thus, the measured value gfis the

Local gravityg and the interpivot distanc&x were set equal to the values Lo . . .. .
measured for our pendulum, hence the trimmed period is also the same Fame for a Bessel pendulum swinging in air or swinging in

measured. As the horizontal line shows, the trimmed period is independetf@cuum. This would not be true for an asymmetrically
of air corrections. These curves were calculated using the nominal dimershaped pendulum, and graphically demonstrates that Bessel's
sions of the pendulum and typical densities for steel and aluminum, with namprovement to the Kater pendulum really works.

adjustable parameters. The collar position at which the periods are equal

could be adjusted to agree with the défég. 4) by adjusting the material
densities by about 1%, well within our uncertainty. ACKNOWLEDGMENT
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Period (s)
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it is used, and the change in length due to thermal expansion/21231.

must be calculated. The second method achieves somewhat

greater accuracy, but does not allow the students to explol@PPENDIX A: INERTIA DUE TO DRAGGED AIR

the effects of moving the bobs on the central shaft. .
To determine whether the experiment actually measures ~O' measurements @ with a Bessel pendulum, the mo-

the local value ofy with the expected accuracy, it is impor- Ment of inertialy added by dragged air need not be known,

tant to have a reliable independent value. The customary unfs it cancels in going from E¢g) to Eq.(9). Nevertheless, it

for tabulations of is Gal=cm/<. An internet-accessible da- May be interesting to know the origin and approximate value

tabase of absolute values gfat many reference stations on ©f la- The existence of an effective added mass due to mo-

the surface of the Earth is maintained by the Bureadion of the air was noted by Du Buat in 1786, and indepen-

Gravimdrique InternationalBGI).1* Alternatively, the “In-  dently by Bessel in 1828.Analytical expressions for the

ternational Gravity Formula 1980” may be used to approXi_lnertlal and damping forces on oscillating bodies immersed

mateg at mean sea leveds a function of latitudes.'> Omit-  in viscous fluids were derived by Stokes in 185For a
ting terms smaller than 1 mGal, this formula reads more detailed discussion of the dragged air mass than is
4 given here, see Ref. 8.
g=(978.0327 Gal1+5.279 041 & 10" > sir* ¢ When a solid body undergoes oscillatory motion in a vis-
+2.32718<10 5 sint ¢). (10) cous fluid such as air, the flow is rotational in a layer of

characteristic thicknesg and irrotational outside this layer.
Deviations from the formula due to local density variationsThe distances is called the viscous penetration depth, given
are typically on the order of tens of mGal, while temporal by
variations ofg at a position fixed on the Eartdue mostly to
tides are about 0.3 mGaP In all cases a correction must be o= (2vlw)*?, (A1)
applied for the difference in height between the pendulunwhere w is the angular oscillation frequency andis the
and the independegt datum:® . kinematic viscosity (v=0.15cnf/s for air in standard
Using the period data shown in Fig. 4 along with a mea-conditions.*® When & is much less than the dimensions of
sured interpivot distancAx=77.05100(76) cm, we find  the oscillating body, fluid motion outside the thin rotational
=980.291(62) Gal at the location of our Bessel pendulumayer is the same as for an inviscid liquid and the added mass
(latitude 42.3914°, longitude-72.5258°, ground height 70 can be computed from the corresponding inviscid flow prob-
m above sea level plus additional free-air height b ®@ur  lem. For example, the added mass is one-half the mass of the
stated uncertainties are 90% confidence intervajgproxi-  displaced fluid for a spherical body, and equal to the mass of
mately +20). At the BGI reference station nearest to ourthe displaced fluid for an infinitely long cylindrical bodS.
pendulum(3.95 km distant and 24 m lower in heigithe  Although there is no simple expression for a body of arbi-
tabulated g=980.363 45(20) Gal. Corrected to the heighttrary shape, it can be seen that the total added mgssue
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to dragged air is comparable to the displaced air masor
small penetration depth.

If §is made similar to or larger than the dimensions of the
body (for example, by reducing the frequency of oscillajion
the rotational layer extends further into the fluid and the
added mass increases. With the effect of air on pendulums in
mind, Stokes derived the force on an infinitely long oscillat-
ing cylinder for any value ofé relative to the cylinder
radius—his solution is expressed in terms of Bessel — — — — S —rO—"—_T_"—" — — —
functionst’ Stokes’ solution is only valid for small oscilla-
tion amplitude(much less than the cylinder radius, in the
small-é limit). For larger oscillation amplitude, the nonlinear
term in the Navier—Stokes equation becomes important and
the force due to dragged air is more difficult to calcufat®.

We may picture the dragged air as extra magsdistrib- ig. 6. Diagram used to compute the risb and horizontal shifi\s of the
uted along the Iength qf the pendU|um' The mass.dl.‘c’mbunorﬁegndulum gue to the finite rart)iius of the knife edge. The circular arc repre-
depends upon _osc_lllatlon fr_equency thl’(_)L_@I‘but it is inde- . sents the knife edge. The dashed line represents the bearing plate when the
pendent of oscillation amplitude for sufficiently small ampli- pendulum is vertical, while the solid line represents the bearing plate when
tudes. Therefore, the mass distribution for a Bessel penduhe pendulum is at an angi#0. When the pendulum swings away from
lum is symmetric about the center of volunxe=0. The  vertical, the line on the bearing plate that is initially in contact with the knife

paraIIeI axis theorem can be used to express the added m@)d_ge moves from the position of the open circle to the position of the closed
ment of inertia about the pivot circle, assuming rolling contact between the knife edge and bearing plate.

4= 4o+ MgX?, (A2)

wherel 4o is the moment of inertia of the added mass distri-g e o horizontal velocities of the various parts. For perfectly
bution about=0. The pendulum described in this paper has‘shar knife edges, these velocities are proportional t6he
a period of 1.8 s, givingg=3 mm. Thus, it is in the smal- b ges. prop

. o . additional horizontal velocity due to knife-edge rounding is
limit and my=m, . For a more quantitative estimate ot

i 5
andl 4o, this pendulum could be roughly modeled as a IongAS~ 070, a_nd so has no eff_ect on the frequency bor- 0.
cylinder (the central roll plus two spheregthe bobs. This _ The vertical movemenih is of the sam_e ord_er ifd as the
approximation was used for the calculations shown in Fig. 57iS€ in the center of mass for a zero-radius knife edige2.
ThereforeAh changes th@otentialenergy as if the distance
. between the pivot and the center of mass were increased by
QEIF[))EIL\ILEI);))((I5GR(()JFU'II\'ISIIENSGU?3';5HR$ KNIFE EDGES r. This adds a terrmr to the numerator_c_)f Ed3) or (7). The
added term is the same for both positions of the pendulum,
The knife edges used to support the pendu|um cannot b@) it cancels when the in_terpivot distance is computed, just
perfectly sharp, and it is natural to suppose that this willlike the buoyancy correction. _ .
introduce an error in the determination @fwith a Kater or Another potential source of error associated with the
Bessel pendulum. Bessel showed that rounding of the knif&nife-edge pivots is flexibility that allows them to move as
edges has no effect to first order on the measured valge of the pendulum swings. Unfortunately, flexibility in the knife-
provided that the knife-edge radius is unchanged when thedge support results in horizontal motion of orderand so
pendulum is inverted.This is automatically the case when gives a first-order error in thg measurement. The only hori-
the knife edges are stationary and the flat bearing plates ar@ntal force on the pendulum is transmitted through the piv-
on the pendulum, as in our design. In this Appendix weoOts. We model the support as a horizontal spring with spring
outline a proof, leaving a few details for the reader to workconstank. Computing the force exerted by this spring as the
out. We also discuss the effect on the measured valgeotf Mmassm of the pendulum times the horizontal acceleration of
flexing in the knife-edge support. the center of mass, the horizontal motion of the pivot is
Assume that the contact area of the knife edge is cylindri- _ 2 —
cal with radiusr, and that the bearing plate rolls on the knife As=(ma /i)l 6=¢l o, (B2)
edge without slippingboth assumptions could be questionedwherel is the distance between pivot and center of nss.
for an actual pendulumWhen the pendulum swings through As the movement of the pivot should be much smaller than
an angleé, the line on the bearing plate that contacted thethe movement of the pendulum center of mass, we can as-
knife edge at?=0 rises by an amounth and moves to the sumee<1.
side by an amountAs (Fig. 6). Elementary trigonometry The total kinetic energy of the pendulum is the sum of
shows energies for rotation about the center of mass and translation

of the center of mass,
Ah/r=cosf+ 6sinf—1= 6%/2+0(6%),
As/r=sinf— 0 cosf=0(6°%).

These vertical and horizontal movements of the pendulum ~[lo+ml*(1+2€)]6%2. (B3
are in addition to the ordinary rotational movement. The SimTherefore the term im
plest way to deduce their effect on the oscillation frequencym is mod1ified as
is to consider the pendulum’s kinetic and potential enéfgy.

For small oscillations the kinetic energy of the pendulum is ~ m(x—xX¢)2—m(1+2€)(x—X,)>. (B4)

(Bl)  Ex=100%2+m(l16+As)%2=[1o+ml(1+€)?] 6?12

in the denominators of Eq$3) and
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With this substitution it is easily verified that the Kater con- Bessel pendulum is often called the Repsold—Bessel or Bessel-Repsold

dition, Eq. (1), is changed to
wi=gl[Ax(1+2€)]. (B5)

Thus, the apparent value gfis fractionally less than the true
value of g by 2e=2me?k. Our pendulum hasm
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%The pendulum is a simple harmonic oscillator with potential endtgy
=A#%2 and kinetic energ)Ek=892/2. Using energy conservatio'Ep
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