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Abstract. A mathematical model of the well known chaotic
behaviour of a dripping tap is presented. The purpose of the
model is to give a good insight into the dynamics of the
system, whereas the usual experimental measurements can
only give us its discrete states. Such a combined approach
should be of special importance for the introduction of
chaotic systems in school. For this purpose we constructed
such a model which is simple enough to be understandable
by pupils in secondary school, whereby all the main
processes of the real system are included. This is confirmed
by good agreement of the model’s predictions with the
experimental measurements.

Zusammenfassung. Im folgenden soll ein mathematisches
Modell des bekannten chaotischen Verhaltens eines
tropfenden Wasserhahnes präsentiert werden. Das Modell soll
einen guten Einblick in das dynamische Verhalten des
Systems ermöglichen, da experimentelle Messungen lediglich
die diskreten Zustände beschreiben. Solch ein kombinierter
Ansatz ist von besonderer Bedeutung für die Einführung
chaotischer Systeme in der Schule. Es wurde ein Modell
konstruiert, das einfach genug ist, von Schülern der Oberstufe
verstanden zu werden und dabei alle grundlegenden Prozesse
des realen Systems beinhaltet. Dies wird durch die große
Übereinstimmung der Ergebnisse des Modells mit den
experimentellen Messungen bestätigt.

1. Introduction

Recently, many experiments have been carried out
on the chaotic behaviour of nonlinear systems. A
well known example of such a system is the dripping
water tap studied by many authors. The pioneering
work in the field were the experiments carried out by
Shaw [1] which were analysed in detail by Sternemann
[2]. Subsequently the system was used by many other
authors to consider its role in school [3]. These studies
have shown that the dripping tap, considered to be a
simple discrete chaotic system, can function as a very
suitable introduction to nonlinear physics.
Usually, nonlinear physics deals with dynamical

systems; based on positive experiences with the dripping
tap experiment we show that it can be used as
an introduction to dynamic chaotic systems as well.
Indeed, a simple mathematical model has been found
which represents a dynamical description of the dripping
water. It enables us to observe the complete time course
of the dripping water, as well as to make a comparison
with the discrete system characteristics obtained by the
experiments.
In the present paper, the development of the mathe-

matical model compared with the known experimental
data is presented. To show how well the experiment
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is reproducible and how easily it can be used in school,
the experimental treatment in our laboratory is discussed
briefly in section 2. The mathematical modelling of the
system follows in section 3. The model predictions,
presented and compared with the experimental data in
section 4, are discussed in section 5.

2. Real experiment

These experiments are based on suggestions of
Sternemann [2] and other works [3, 4]. The simple
construction and straightforward measurements with
good reproducibility make the experimental work
appropriate for secondary school students. The
experiment consists simply of a tap connected to a water
container from which water flows out continuously
(figure 1). In particular, we use an open plastic bottle
as a water container. The tap is made of glass and has
a drain pipe of length 40 mm and a diameter of 8 mm.
The end of the pipe is cut straight.
In the experiment, the dripping behaviour of the tap is

studied. This behaviour is evaluated by measuring the
dependence of time intervals between two successive
drips Ti on the water afflux from the container. Note
that the afflux changes continuously with time t over
which the experiment was carried out. The functional
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Figure 1. Experiment used in our laboratory.

Figure 2. Typical measurement obtained in our
laboratory.

dependence between the afflux and the time is given by
an exponential function (see the appendix). It enables
us to measure the real time simply. So, our results
represent measurements of time intervals between two
successive drips Ti against real time t . A typical
measurement is shown in figure 2. It shows the
characteristic behaviour of water dripping, where areas
with stable dripping behaviour alternate with areas of
chaotic behaviour. It should be pointed out that results
are well reproducible and structurally independent of the
equipment.

Table 1. The model parameters for which all results are
calculated unless otherwise stated.

Parameter Value (arbitrary units)

Geometrical parameters
k 1.00× 10−2

β1 3.00× 10−4

β2 1.00× 10−1

α 2.86× 10−2

x0 3.00× 10−2

# 3.50× 10−5

First initial conditions
x |τ0 2.00× 10−2

m|τ0 1.00× 10−6

Figure 3. Schematic presentation of the model system.

Figure 4. Schematic presentation of the water drop
disconnection.

3. Mathematical model

In the following, the experimental observations and
results are be described by a mathematical formalism.
Note that the experimental observations are strictly
discrete and now the idea is to describe the whole
dynamical behaviour of the system. It requires the
construction of a model system on the basis of which
an appropriate mathematical model can be constructed.
The purpose of this work is to develop such a model
which is simple enough to be understandable by
secondary school pupils, and at the same time the model
has to be a good description of all the main processes
in the real system.



Figure 5. Water dripping with a well defined frequency at a water afflux of # = 3.5× 10−5 (for other parameters see
table 1). Plots represent (a) the drop position versus time, (b) the phase plane drop position versus its velocity and
(c) the return map of time intervals between successive drips.

An idea for a model system has been given by Shaw
[1], but to our knowledge it has never been developed
in the sense of a mathematical model which would be
able to reproduce the experimental results. However,
following this idea the water dripping system can be
seen as a simple mechanical model considered as an
increasing mass attached to a spring. This increasing
mass is related to the growing drop on the tap, whereas
the surface tension of the drop is modelled by the spring
(figure 3).
The mathematical model describing the model system

presented above is quite simple and straightforward. It
consists of the following two equations:

mẍ = mg − kx − βẋ, where β = β1 + β2#, (1)

ṁ = #, (2)
where x is the displacement of the oscillator, m is the
mass of the oscillating water, k is the spring constant,
# is the influx of water and β is the damping constant.
Note that the damping of the oscillation is caused by
the movement of the water in the drop (β1) as well as
by the influx of water (β2).
Additionally, the model has two constraints. They

determine the time τi at which the drop falls and also
the mass of this drop. The following two conditions are
taken in our model:

x = x0 = constant, (3)

%m = ẋ

α + ẋ
m, (4)



Figure 6. Water dripping with two frequencies at a water afflux of # = 2.0× 10−5 (for other parameters see table 1).
Plots represent (a) the drop position versus time, (b) the phase plane drop position versus its velocity and (c) the
return map of time intervals between successive drips.

where x0 is the displacement at which the surface tension
of the drop can no longer hold the form of the drop;
it represents the displacement at which the drop falls
(figure 4). The mass of the falling drop is denoted
by %m. It depends on the drop velocity ẋ at position
x = x0. This determination of %m with respect to
ẋ takes into account the inertia of the water in the
drop. Namely, for small velocities small values for %m
are expected, whereas for larger ẋ the values for %m
become closer to its limiting value m.
The initial conditions of the model system equations

at every time τi are determined by the following set of
equations:

x|τi
= x0 (5)

ẋ|τi
= 0 (6)

m|τi
= m − %m. (7)

The model equations with their constraints and
for initially determined conditions are integrated
numerically by a Runge–Kutta method. The results of
some calculations are presented in the next section.

4. Results

With the mathematical model a mathematical descrip-
tion of the real system is given. To show the time-
dependent behaviour of the system the model equations



Figure 7. Chaotic behaviour of the system at a water afflux of # = 4.6× 10−5 (for other parameters see table 1).
Plots represent (a) the drop position versus time, (b) the phase plane drop position versus its velocity and (c) the
return map of time intervals between successive drips.

should be integrated. In our case, all results are ob-
tained by a numerical integration of equations (1) and
(2) for a given set of model parameters. Note that all
results are calculated for parameters listed in table 1
unless otherwise stated.
In the first case, a model prediction for a rather

large water afflux # = 3.5× 10−5 is given. With
this afflux only one water dripping frequency is found
(figure 5(a)). It can be seen more clearly in the phase
plane (figure 5(b)) or in a return map (figure 5(c)).
In our context, the return map represents a simplified
analysis of a dynamical system in the sense of its
discrete states. For our model it is of particular interest

to show how Tn predicts Tn+1. This idea of mapping
was introduced by Lorentz (1963) and the map is also
known as the ‘Lorentz map’ (cf [5]).
Let us note that water dripping with only one well

defined frequency can also be observed in the real
experiment. This has been proved in our laboratory
using a microphone and in a more precise way using a
stroboscope.
In figure 6 the system behaviour for a smaller water

afflux of # = 2.0 × 10−5 is presented, where two
different frequencies of water dripping are obtained.
Such a behaviour of the system can also be found in
the real experiment. Also in this case the frequency



Figure 8. Feigenbaum diagram obtained by varying the water afflux and thus the time from 0 to 1000. Three cases
are labelled: water dripping with one frequency (1), with two frequencies (2) and chaotic behaviour (3).

determination has been done by the use of a microphone
and a stroboscope.
In general, different frequencies of water dripping can

be obtained at different affluxes. In particular, we have
parameter ranges where the system shows its chaotic
behaviour (see figure 7).
Here for a better presentation of the whole behaviour

of the system the Feigenbaum diagram is used.
Generally, it represents all possible discrete states
observed in a given system versus one of its parameters.
The intervals between two drops Ti versus the afflux
# and thereby the total time (see the appendix) are
presented by the Feigenbaum diagram in figure 8. For a
better understanding of the system the three sections
of the above described solutions are labelled 1 for
system behaviour represented in figure 5, 2 for system
behaviour represented in figure 6 and 3 for system
behaviour represented in figure 7.
In this way, figure 8 enables us to make a

qualitative comparison with the experimentally obtained
Feigenbaum diagram (see figure 2). The main point
of this comparison is the structure of both diagrams,
which clearly confirms the good agreement of the model
predictions with the experimental results.

5. Conclusion

In this paper we have established a mathematical model
of the well known dripping water tap experiments. In
this way this system together with the experiment and
its mathematical description can be used as a complete
introductory example of chaotic systems in school. It
enables us to make not only a discrete observation and
description of the system but of its whole dynamics as
well.
Note that the dripping water tap is well suited as an

introductory experiment to the theory of discrete chaotic
systems. The experimental arrangements can easily be
carried out in the class and the results provide sufficient

material for discussion. In addition, our mathematical
model enables us to use this system as an introduction
to dynamic chaotic systems. The necessary knowledge
about typical methods and commonly used diagrams in
nonlinear physics can be gained with the help of this
model.
Although our model represents only a very simple

simulation of the real dripping behaviour, typical
situations such as stable or chaotic dropping can be
described with the help of it. The structure of the
model’s Feigenbaum diagram is in good agreement with
the experimental data. Comparing the results of our
work with those of Shaw [1], a great correspondence
can be seen especially with the comparison of the phase
plane diagrams. Furthermore, the return maps show
typical structures for such systems.
With regard to the suitability in schools, our model

has been designed to be very simple. The model needs
extension if the experiment is to be described in a more
specific way. To start with, the vibration of the water-
chute above the drop should also be examined. Also the
disconnection of the water drop could be described more
precisely. In our opinion though, such an extension
would not lead to any important new findings, but rather
render more difficulties for the use in school.
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Appendix

Here the relation between the afflux from the container
and the real time is presented in greater detail. In our



case, in which a cylindrical water container is assumed,
the following equations are valid:

# = dm
dt

= −ρA dh
dt

, (A1)

and
# = c%p = cρgh, (A2)

where A is the cross sectional area of the water
container, h the height of the water over the drain pipe,
ρ is the density of the water and c is a constant of
proportionality between the afflux and the appropriate
water pressure. Equations (A1) and (A2) give a
simple differential equation system and by separation
of variables and integration one gets

h = h0e−λt , (A3)
where λ is the geometric parameter of the system. After
inserting into equation (A2) the result is

# = #0e−λt . (A4)
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