Thesis for the Degree of Master of Science (20p)

Tuning Intel x86 Executables

Hakan T. Johansson

Supervisor: Hakan Sundell

CHALMERS | GOTEBORG UNIVERSITY

Department of Computing Science
Chalmers University of Technology and Goéteborg University
SE-412 96 Goteborg, Sweden

Goteborg, December 2002

A dissertation for the Master Degree in Engineering Physics at
Goteborg University and Chalmers University of Technology

Department of Computing Science
Chalmers University of Technology and Goéteborg University
SE-412 96 Goteborg, Sweden

Goteborg, Sweden, 2002

Abstract

This thesis describes an approach to do post-compile tuning on computer
programs in an attempt to increase their execution speed, directed at 32-bit
executables for the Intel x86 platform running GNU/Linux or Windows. The
planis to first read the executable file, disassemble the instructions and analyse
them to recover the information that was lost after compilation but is needed
to later modify and recreate the program. Then various transformations of the
program’s instructions are attempted. Finally a new executable file is written.

This work consists of two parts. Firstly to identify the problems involved,
particularly with the code analyser, which is the complicated part of the sys-
tem. Secondly to implement a system performing the described procedure.

The results are that no problems preventing a successful analysis has been
found, provided the original program is reasonably well behaved. The imple-
mentation has been completed so far that a few very simple programs can be
modified. The reason for not having completed the actual system is the limited
time available for a master’s thesis.

Sammanfattning

Denna rapport beskriver ett sdtt att utfora modifikationer pé ett fardigkom-
pilerat datorprogram, med malet att 6ka programmets exekveringshastighet,
riktat mot 32-bitars program for Intels x86-plattform kérande GNU/Linux eller
Windows. Planen ar att forst ldsa in programfilen, disassemblera instruktioner-
na och analysera dem. Detta for att berdkna den information som gick férlorad
efter kompileringen men som behovs for att sedan kunna dndra i och dterskapa
programmet. Dérefter utfors olika transformationer av koden. Slutligen skapas
en ny exekverbar fil.

Detta arbete bestdr av tva delar. Dels att identifiera vilka problem som dr
forknippade med den beskrivna proceduren, sérskilt de som rér kod-analys-
atorn, vilken dr den komplicerade delen i systemet. Dels att implementera ett
system som utfor den beskrivna proceduren.

Resultaten dr att inga problem som omdjliggér analys har hittats, under
forutsdttning att originalprogrammet uppfor sig tillrdckligt val. Implementa-
tionen &r sd pass fardig att den kan hantera ett fatal valdigt enkla program.
Anledningen till att implementationen inte dr fardig dr den begridnsade tiden
for ett examensarbete.

Contents

1 Introduction 1
1.1 Background and motivation 0L 1
1.1.1 Acceptable input programs 2

1.2 Thex86 processor family 2
121 Datastorage 2

1.2.2 Instructions -assembler 4

123 TheCPUgenerations. 5

2 Strategy 6
2.1 Readingtheexecutable 6
2.1.1 Contents of an executablefile 7

2.2 Disassembling the instructions 8
221 Decoding one instruction 10

222 Disassemblyloop L 10

23 Dataflowanalysis. 11
231 Analysisloop 13

2.3.2 Analysing one instruction 13

23.3 Circulardependencies 15

234 Pointers o o 16

23,5 Datastructures 16

23.6 Thealiasproblem. 17

2.4 Writinganew executable. L. 18
241 Reassembly of instructions 18

3 Tuning 19
31 Imlining 19
32 Streamlining L o oo 20
33 Avoidingjumps 20
34 Reordering 21
3.5 Rearranging datastructures, 21
3.6 Goingtheotherway 22

4 Implementation 23
41 Storageclasses 23
42 Workingclasses 26

5 Results
5.1 Implementation

5.2 Reading and writing executables
5.3 Changinganexecutable

6 Finale
6.1 Conclusions . .
6.2 Future work . .
6.2.1 Todo ..

6.2.2 Userfeedback
623 Otheruses v i i

6.3 Thesource . . .
Acknowledgements

A Motivator

Short introduction to x86 assembly

B
C Execution stack at work
D

PE and ELF files

D.1 PE file (executable for Windows)
D.2 ELF file (executable for GNU/Linux)

D.3 Similarities . . .

E Data flow analysis example

E.1 Partial registers
F Tuned examples
Bibliography

Glossary

ii

27
27
27
27

28
28
28
28
29
29
30

31

32

33

37

39
39
40
41

42
42

44

46

47

Chapter 1

Introduction

The aim of this project is to construct a tuner - a program capable of reading
an executable program, decipher its low level construction, make adjustments
to it and write an equivalent executable program. The goal is that the output
program should run faster than the original. With equivalent is meant that the
generated program should behave exactly as the original, except for execution
speed and perhaps used memory.

A glossary of words written in italics is at the very end of the thesis.

1.1 Background and motivation

Normally, computer programs in machine readable form are created by a num-
ber of source files being translated (compiled) by a compiler into object files
which are then merged into an executable file by a linker.

Compilers can make many optimisations! of the generated code, based on
all the information in each source file. But linkers usually collect the code and
create a program without any attempts to improve the final code, e.g. by sim-
plifying function calls or removing unnecessary register-stack operations to re-
tain variables during calls to subroutines, not to mention doing any inlining.
Linkers cannot do these things simply because the information necessary was
lost after the source was translated into object files. Appendix A demonstrate
this problem.

The appropriate and best solution to this problem (the blind linkers) would
be to perform whole-program optimising compilation, where the code gener-
ation is moved from the compile to the link stage, so advantage can be taken
of the information about the entire program when creating it. This work is an
attempt to tackle the problem from another direction, a somewhat backwards
direction, since the plan is to adjust the final, compiled program without access
to the source and the information therein that was lost. Most of the informa-
tion lost must therefore be recovered by analysis of the program. The most
important loss, i.e. hardest to rectify, is the lost information about individual
data structure sizes, see Section 2.3.5.

!Not really optimisations, but improvements, because optimum is to be the best. However,
optimisation is the word in general use for this.

1.1.1 Acceptable input programs

The tuner is meant to be able to handle most well-behaved, compiled C pro-
grams. A program is well-behaved when it does not do any strange modifica-
tions to the execution path. The C functions setimp and longjmp does this
and self-modifying code is another untreatable construction. This means that
only normal jumps and function calls are allowed, including function pointers
and indexed jumps. A program with inline assembler may be well-behaved,
provided the execution path is not modified strangely. Actually, the tuner does
not assume that the input program was written in any specific language, so C
is not a requirement, just an example.

This project will deal with programs compiled for the x86 family of pro-
cessors, simply because I have such hardware available, and would therefore
also benefit from a completed system. As the problems involved stem from
the executable code itself, and not the packaging, both 32-bit Windows and
GNU/Linux executables will be treated.

1.2 The x86 processor family

This project is aimed at the Intel x86 processor family, with the first mem-
bers produced over 20 years ago. Compatible processors are also produced
by AMD, VIA and Transmeta.

Before describing the idea of the thesis, an introduction to the most impoz-
tant concepts is in order. A computer program operate on data according to its
instructions. The instructions are stored in memory and executed sequentially,
one after another. At the low (machine code) level this work is at, data is only
integer and floating point values. High level constructs like structures (which
are compounds of the low level data types), do not have special instructions
but are handled by more or less complicated combinations of the instructions
available for manipulating the simple data types. So there is no need to deal
with the complexities of different programming languages, as everything is en-
coded with the x86 instruction set anyway, and that is the only thing that has
to be understood.

1.2.1 Data storage

Variables (data) are stored in memory during execution of a program. There
are three major places to store variables depending on their lifespan and usage:
Main memory

The memory is located outside the processor and organised as a long list of
bytes. When the program want to read or write something it references the
location with an integer as the address, an offset into the list. Data in main
memory can be kept during the entire execution time of a program.

Registers

Variables that are accessed frequently (e.g. partial results during the evalua-
tion of an expression, like a + 5 - (b+ ¢), which must be calculated using several

instructions) are stored in registers, which is memory inside the processor. Reg-
isters can be referenced easily, because there are special encodings for each reg-
ister for most instructions, while for memory there is only a few encodings for
accessing memory, and then extra information is needed to know what address
is desired. Registers are also accessed very quickly because they are inside the
processor, but they are few. So while executing, the at the moment most impor-
tant stuff is kept in registers, and when a particular piece of data is no longer
needed, any result that is to be remembered is stored in memory (perhaps on
the stack), so that other data can be kept in that register.

Compared to other architectures (like Sparc and Alpha processors), the x86
family has relatively few registers (only 8 general purpose: eax ebx ecx
edx esi edi ebp esp),butcan on the other hand operate directly on mem-
ory (add and subtract etc.), so not everything has to go into a register before
being used. See Appendix B or [1, 2] for more details.

Execution stack

One part of the main memory is used as a stack during execution. The stack
follows execution in the respect that as the program gets deeper into function
calls, the used stack space grows, and when the functions return, the stack
shrinks.

The stack is a scratch-pad during execution of a function for storing local
variables, because they are normally more than the available number of reg-
isters (which can happen even for a processor with many registers). The exe-
cution stack is normal memory, however especially allocated by the program
for use as scratch space. The amount of stack space used is tightly connected
to what function and instruction in the program that is currently running be-
cause its use is hard coded in the program, as opposed to other memory which
is dynamically allocated to hold user data and whose size may vary between
runs. One of the general purpose registers always point to the top of the stack,
the stack pointer, esp 2.

Data stored on the stack can be accessed as any other memory via pointers
with the address of the data. This address is normally relative to the top of the
stack, esp. The push instruction increase the stack space and store one value
at the top of the stack. The opposite is done by pop, which copy the value at
the top of the stack, and then decrease the stack space. Both these instructions
use and modify esp, without the need to specify it as the memory address.

The stack is also used to store the return address when a function is called.
That is, the call instruction (used by the caller) pushes the address of the in-
struction following the call (where execution should continue when the called
function is finished) before jumping to the called function. At the end of the
called function, a ret instruction is executed, which reads and pop the top-
most entry on the stack and uses it as a jump target. This of course require the
function to increase and decrease (push and pop) the stack in equal amounts,
so that it is the return address that is on top when ret is issued. Programs not
doing this, or in other ways modifying the return address are not well-behaved,
as specified in Section 1.1.1.

2It can be used for other calculations as well, but an interrupt handler could then easily make
the program crash, if it assumes that esp hold a valid stack pointer.

As the execution stack is important for this work, Appendix C has a clari-
fying example.

1.2.2 Instructions - assembler

After introducing some stack-modifying instructions in the previous Section,
it is also in order to present some other common x86 instruction types and
examples of them?:

e Copy: mov
Copy a variable from one storage location to another, e.g. from memory
to a register or the opposite.

e Arithmetics: add, sub, cmp, inc
Perform elementary mathematical operations, like add, subtract, multi-
ply and divide. cmp does a subtraction without storing the result, only
the status flags are affected. This is used for comparisons. inc is a short
form to add 1 to a register or memory location.

e Jump: jmp
Unconditionally jump and continue executing instructions at another lo-
cation.

e Flow control: jl, jnl

Do a conditional jump, based on some selected status flags in the proces-
sor. The status flags in turn were set based on the outcome of the most
recent arithmetic calculation. So one can for example calculate the differ-
ence between two values by subtraction and make a jump depending on
if the result (the difference) was less than zero, which is the same as the
first value being less than the second. So the cmp, jl pair implements
a < comparison.

e Procedure: call and ret

The call instruction unconditionally jump to the specified target, but also
make a note in the stack of were the next instruction after the call is.
When a return instruction is executed, the top of stack is popped and
execution continued at that address, which (if not messed with) is the
instruction directly following the call . This way the same code can be
used from several locations. It is a function. It may for example be capa-
ble of counting the words in a sentence, make the speaker beep, or open
a file.

A short description of the instructions used in this thesis can be found in
Appendix B.

3This even if this report try to avoid both the gory details of direct processors programming
(assembler) and the inner workings of the implemented tuner itself, for which the reader is referred
to any available documentation (e.g. [3, 4, 5]) and the source (see Section 6.3), respectively.

1.2.3 The CPU generations

For our purposes the description may start from the middle of the history with
the 386 chips, the first 32-bit capable ones. This chip usually need several clock
cycles to perform any one instruction.

Then came the 486 chip with a better pipeline, which is capable of a through-
put of one instruction per clock for the simplest (and most used) ones.

After this the 586 (Pentium) arrived, with a dual pipeline, in principle a dual
486, with the capability of executing two simple instructions simultaneously,
provided they do not depend on each other.

The x86 assembler is called a CISC architecture, because its instructions
are capable of operating directly on memory operands (and not only registers)
and there are a lot of special instructions. The more complex instructions can
usually be replaced by a sequence of several simple instruction. Another ap-
proach to processor design is deployed by RISC architectures, who use a more
limited instruction set. Their instructions cannot operate directly on memory
operands, so all needed data has to be loaded to a register before being used.
They usually have more registers making it easier to avoid close dependencies
of instructions, and the smaller instruction set simplifies chip design.

The CISC plethora of different instructions and operations require a lot of
hardware for decoding and execution. With the 686 (Pentium Pro, II), transla-
tion of the instructions into a smaller set of simpler ones (uops, basically a RISC
set of instructions) inside the processor is used to simplify the calculation core
of the processor. It is also capable of out-of-order execution of these simpler
instructions.

Out-of-order execution sounds magical, but it really only is to put the pops
into a queue of instructions to be executed, and because they are simple, it
is easier to determine any dependencies. Then the execution units fetch in-
structions from this queue beginning at the top. But sometimes (when the top
instructions are waiting for dependencies), instructions further down the list
that do not depend on any other not yet executed instruction can be executed.
Then there is of course some extra circuitry to make sure that the result is the
same as if the instructions were executed in order. This is important should
something happen which has to stop execution after a specific instruction and
then do something unanticipated (e.g. taking an unforeseen branch). Then all
instructions up to that one have to be performed, and no pops enqueued after
it may affect the state of the processor.

Chapter 2

Strategy

The firstidea was to do some small changes to the executable code of a program
(i.e. peep-hole transformations). However, it is quickly realised that this cannot
be done to an executable, because even very simply transformations that in-
crease code size or move instructions the slightest may affect pointers to that
code, making changes throughout the entire file necessary. So even if in some
cases some small changes can be made without breaking an executable, in or-
der to make any significant changes a full-scale understanding of the possible
execution paths is needed, so that they can be preserved.

So to be able to do any modifications at all, a basic administrative system
is required: reading, disassembling, analysing and writing executables. The
different stages are shown in Figure 2.1. The difficult part is the analysis, the
other operations are straightforward as they deal with strictly specified file and
instruction formats.

To have a chance of successfully altering a program without destroying it,
two things are required:

e A list of the instructions in the program along with information of how
they can follow each other due to jumps, calls and returns. This is explic-
itly present in the executable file. It just have to be transformed into a
more useful (changeable) representation.

e A good description of the low level data structures used. This informa-
tion is implicitly specified by the instructions, and must be extracted with
much more pain. Without this information only very limited changes can
be made to the program, because no memory accesses can be modified.

This knowledge is gained by disassembling and analysing the program.

2.1 Reading the executable

An executable is a file which is read and setup into memory by the operating
system loader when executed by the user. With some minor adjustments the
image is copied as is into memory. The adjustments are mainly the binding of

Executable file
(File reader (PE / ELF))
Raw machine code

Disassembler

Abstract flow graph

Analyser
Abstract flow graph with info

Y Y
(Code generator)

Abstract flow graph with info iC—Iike source code
Raw machine code

(_ File writer (PE / ELF))

Modified executable file

Figure 2.1: Flow of an executable through the tuning system. The auxiliary
output on the right (which is not part of this work) is to show that the output
from the analyser could be fed into a decompiler output stage, see Section 6.2.3.

import libraries to the executable image. Import libraries may provide runtime
functions such as printf !, gui functions or routines for manipulating images.

2.1.1 Contents of an executable file

As previously mentioned, an executable file is basically a copy of the program
image in memory on start, along with information on how to setup this image
enclosed in some packaging.

The parts of the executable file of most interest to this project is the actual
code and any initialised data. Of importance is also information on imported
and exported functions and variables. All this information is treated by the
disassembler/analyser to extract the execution behaviour of the file.

Any other stuff in the executable is simply read and stored so it can be writ-
ten to the new executable. As this program do not know how to handle such
information, i.e. how it is formatted, this will work only if that information is
not destroyed by being relocated. One trick would be to never move unknown
sections, possibly by splitting any sections that would cause this (i.e. sections
before them that have grown) into one part using the old space, and another
part located after the possibly immobile section.

IThe beauty of C.

For a more elaborate description of the executable file formats used, see
Appendix D and [6, 7].

2.2 Disassembling the instructions

Before changes can be made to the input program, the instructions must be
lifted from the rigid structure in the executable image to a more flexible rep-
resentation, which of course will use much more memory, but be editable. As
shown in Figure 2.2, the representation is a graph, with nodes representing

JCC
13
CALL
15

CALL
18
—{IMP
20
JMP
22

K

24 <—

RET
27

RET

Figure 2.2: Instructions in the rigid structure of an executable to the left, and
as the internal graph representation to the right. Each solid rectangle is a trace.
Traces end with an instruction affecting execution flow, or because the next
instruction is a jump/call target (since a trace can only be entered at the top).
Two functions (enclosed in dashed rectangles) have been identified. The larger
one call the smaller one and itself recursively.

instructions and edges representing possible execution paths. The operands
of the instruction objects, are also objects, so they easily can be created, in-
serted and deleted into the structure with small or no effects on the surround-
ing. Specifically, the intermediate format is not dependent on the address the
instructions occupy like the raw machine-readable format in the executable
image (e.g. relative jumps).

7

Push entry point’s and L
e es

xported functions’ addres (P . T
ush newly foun

L target addresses

-

|

\

’A
K

More addresses No

b :

VYes
Pop an addres 2a. 4.
"y Found more~_)'€s
(Disassemble one instruc@)n addresses?

No

Generate report -

Is flow—contro
instruction?

Analysis
complete? Abort

2b. (successful)” No

Flow can
cont. with next Yes
instruction? Yes
(Push next addregs
|
2c. [Tune’
Is relative Yes ‘

jump/call?

(Push target addre}s
|

—
-

Figure 2.3: Flow chart of the disassembly loop (see next page). If the analysis is
successful, i.e. everything needed to be known has been found out, it is possible
to continue with tuning the disassembled code.

2.2.1 Decoding one instruction

The disassembly of the x86 machine instructions is performed with a table
driven decoder, i.e. each instruction byte is used as an index into a table, which
then tell what instruction it is and how it is encoded. This design make the dis-
assembler easy to adjust (e.g. to add new instructions). Due to the complexity
of the x86 instruction set, with variable sized instructions, and many special
instructions, there are several layers of decoding tables and some special cases.
The approach with the bulk of information in tables (i.e. data instead of code)
also simplifies the reassembler considerably, see Section 2.4.1.

2.2.2 Disassembly loop
Recipe for executable code collection, also see Figure 2.3:

1. The program’s main entry point is found by reading the executable’s
headers, and any externally visible functions are found by reading the
export tables, if present. The entry-points” addresses are pushed onto a
stack of addresses to be disassembled.

2. While the decoding address stack has elements:

(a) Popping one address of the stack at a time, small portions of code are
disassembled (traces). Disassembly of a trace is ended when a flow
control instruction is found: (un)conditional jump, call or return.
This way, disassembly follows the normal execution path.

(b) If the execution may continue after the last instruction (call or con-
ditional jump), the continuation address is pushed onto the stack.

(c) If it is a relative jump or call, the target address is easily calculated
and pushed onto the stack. Otherwise, calculation of the target is
deferred until later analysis.

However, if the jump or call target is inside an already disassembled
trace, the old trace is split at the target. If the target inside the trace
is not at the first byte of an instruction (which could happen as we
have variable length instructions), we call it a crazy jump, an error?,

see Figure 2.4.

JMP -8

\

Figure 2.4: Two sane jumps and one crazy jump targeting the middle of an
instruction. The target byte then has multiple instruction interpretations.

Crazy jump

3. Now the data flow of the disassembled code is analysed, see Section 2.3.
We may find some information affecting the execution of the code:

%It is not an error for a program to be constructed this way, but it is highly unusual and not
supported by this system, as it would give instruction bytes dual interpretations.

10

o Target addresses encoded using absolute addressing (which always
uses a pointer to memory or a register holding the actual address).
This may come from switch statements, or be function pointers.

e Unreachable code that was disassembled anyway. An example is the
code following two conditional jumps, jumping on opposite condi-
tions (e.g. je and jne), and without the second jump being a branch
target, see Figure 2.5. The disassembled but unreachable code is dis-
carded.

JE5 JNE -9 | Unfeachable

=

Figure 2.5: Unreachable code after two conditional jumps. The code cannot
be reached as the conditions exhaust all possibilities, and there is no path that
only try the second condition.

4. If any new targets in the executable were found, they are pushed onto the
stack and disassembly is resumed, starting at step 2 again.

5. Optionally, a detailed report of the executable is generated to give a view
of what is going on. It is generated as several HTML pages and include
the executable file’s headers, code disassembly and data structures used
in the program.

6. The disassembled code is checked so that there are no “crazy jumps” and
that all dynamic jumps and calls have all their possible targets disassem-
bled. If not, treatment of the program is aborted with an error message
after generating the report, because no tuning can be performed on a pro-
gram only partially understood.

Face: Well, that concludes this part of the fact finding mission.
Hannibal: But don’t be sad, we saved the best part for last.

2.3 Data flow analysis

Hannibal: Phase one of the operation is a success.
Face: Well, phase one is always the easiest.
The bad guys never know it when you’re doing phase one.
Hannibal: Haha
Face: Phase two, that’s when the soup sticks to the spoon.
the A-team, episode: Pure-Dee Poison

Phase two of interpreting the executable is data flow analysis. The primary
goal of this is to find and trace all information affecting the execution path and
memory reads and writes, i.e. tracking all pointers and their use and knowing
how, when and where the stack grows and shrinks.

A secondary objective is to find out as much other static information about
the variables (global and local (stack and registers)) as possible. With static

11

information is meant knowledge about the possible values of variables during
execution. For example a boolean (true/false) variable should be known to
only be able to get the values 0 and 1 during execution, even when it is stored
in a place that can represent a larger range. Static information can be used to
make more clever transformations to the code in the later tuning steps, perhaps
even remove unused parts of the code. Much of the static information also
come for “free”, because it is anyway needed to be able to reach the primary
goal of tracking the pointers.

The term variable is used in a broader sense than normal, because also lo-
cations holding a partial result for calculating a larger expression is considered
a variable, and treated in the same way as any other data in memory, on the
stack or in a register. Three kinds of information is collected about variables in
the program:

e Actual content, i.e. possible values. This keep track of constants, sets
of constants, ranges (with a minimum and maximum value), patterns
(where some bits are known to be either 0 or 1, the other unknown) and
of course unknowns (when it has not been possible to infer any informa-
tion on the contents of the variable from the operations that led to it). If,
for example, an unknown value is taken and® a constant, any bits being
0 in the constant will also be zero in the result, while the rest still are un-
known, yielding a pattern. When possible, for any instruction operating
on some known (or unknown) value, it is attempted to create a known
value as output so as to reduce the uncertainty of the variable’s contents.
Knowing the possible values of a variable, is the same as also knowing
what values a variable not can have, which for some tunings may be use-
ful.

o Abstract, semantic content. Even if the actual value of a variable is not
known, it may represent something important affecting execution. This
includes pointers to data or functions and a pointer to the execution stack.
Usually, the actual value of a stack pointer is unknown, but it is known as
an offset into the stack, relative to the location of the stack top at function
entry.

e Origin. Every variable in a function has an origin, either being a func-
tion argument, coming from a memory read, being set from a constant or
as a result of a calculation. By creating a record of how data is flowing
through the program it is possible to find the sources of variables. This
is important for pointers, because sometimes it is first when a variable is
used as a pointer it becomes apparent that it is a pointer. One can then
trace it backwards through the program to locate the instructions setting
its value(s) (e.g. constants), so they can be safely and properly relocated.

When a variable is the result of a calculation, it is recorded as depending
on the calculation (e.g. addition) which in turn depend on the source vari-
ables. This way, one can also reconstruct larger mathematical expressions
that have been broken down into their constituents.

As yet, no changes can be made to the code based on our new knowl-
edge (e.g. constant propagation or changing unnecessary conditional jumps

3Bitwise and: each bit in the result becomes 1 iff both source bits are 1, otherwise 0.

12

to unconditional), because the analysis may be followed by more disassembly
passes (if more code was found via jump /call targets),

One preliminary change is however necessary: unreachable code removal.
This is done by inserting a dead code marker so the disassembler won't try
to decode it again. Code can be unreachable because of conditional jumps
as explained in Figure 2.5, and because of function or system calls that never
return. For example, on Linux, the software interruptint 80 with system call
number 1 in register eax will terminate the current process and any following
instruction will never be executed.

Removal is necessary both because bytes following the last reachable in-
struction never were intended as machine code and therefore most probably
represent random instructions. Analysing this junk would pollute the anal-
ysis of the rest of the program with unnecessary (and probably inconsistent)
restrictions. Not removing wrongly disassembled code could also make the
disassembler unable to disassemble correct code, as it may then wrongfully
consider a target inside the incorrect code a crazy jump, see Figure 2.4.

2.3.1 Analysis loop

The code is split into small fragments (traces) by the disassembler, see Figure
2.2. A trace can only be entered at the beginning and branching can only occur
at the end. For each trace it is known from where execution may come, and
where it may proceed.

The traces are collected into blocks called functions (because the collections
usually correspond to high-level functions). Functions can only be reached by
call instructions, and left by ret instructions. Inside each function there are
usually jumps between the traces. It is possible for a function to have multiple
entry points if some (common) trace in the function can be reached from several
call-targets (via jumps). This may cause trouble when analysing, if the common
trace is reached with different depths of the local stack depending on the entry
point.

Analysis is performed repeatedly until the result is self-consistent, see Fig-
ure 2.6. All functions are put on a list of functions to be analysed, and then
handled one at a time. A function may be put on the list again after having
been analysed, if analysis of a caller or callee changed the known information
about the state when the function is called or makes a call.

When a function is analysed all traces within it are analysed. For each trace,
all the inputs (all values of the registers and stack) are set to the least common
knowledge of all the traces’ outputs that may pass control to this trace. Then
the trace is investigated and all statically known information in the trace is
calculated and set as its output. Next all known targets are examined to see if
the new information gained will affect any target trace input so that the input
knowledge has changed. If so, the target trace is put up for reanalysis.

2.3.2 Analysing one instruction

Each instruction is inspected by means of an abstract execution of the instruc-
tion, a simulation taking into account all possible input values at the same time.
A record is kept of the known changes to the processor state after each instruc-
tion. Before an instruction is inspected, the analyser get any source variables

13

7

(Push all function}

function

Analyse function

Y
(Push all traces of funct@1

i

called function
affected?

| (Push that functio}
- |

J/

No
return value or > ——

arguments? :

(Push calling function§

Figure 2.6: Flow chart of the analysis loop.

from the state record. It is searched backwards to the most recent change of the
register or stack location requested. Access to memory other than the stack is
handled in a different manner, since accesses to memory are of an unordered
nature - e.g. a read strictly before a write inside a function could occur after the

14

write, if the function is called several times.

If the search for a source operand is unsuccessful all the way back to the
entry of a function, the requested operand will be noted as an argument to the
function. After a function has been analysed, a check is also made to see if any
outgoing register state has been restored to the initial one. This is the case if
a register has been used as a local variable, and the original value was saved
(e.g. via a pair of push after entry and pop before return) during the function
call. Such a register is not an argument, unless it was also otherwise used in
any calculation.

An example of a simple analysis of a function is in Appendix E.

2.3.3 Circular dependencies

Figure 2.7: Three variables passing through a loop. The rectangle is the loop
body, and the circle represent merging of the possible incoming values. The
leftmost variable is unaffected by the loop, the middle one assigned and the
right has a circular dependency on itself.

Anytime a trace inside a function can be reached by itself, such as in a loop,
any variable set by an instruction in that trace may have a dependence on itself,
see Figure 2.7. If it is just set in the loop, there is no problem, and the possible
values are just merged with the possible values from other parts of the function
reaching the loop. However, a loop counter for example would depend on
itself and could create an infinite dependency chain if not treated specially,
and the chain broken.

Unfortunately, the obvious and easiest solution, to assume an unknown in-
coming state at loop entry until all source branches’ outgoing states (including
the one from the loop) are known would be disastrous. Firstly, because nothing
would ever be known as the loop itself cannot be analysed and give an useful
outgoing state, as the incoming state is unknown. Secondly, as the stack state
would become unknown. Thirdly, because variables not being touched by the
loop, but used again after it would be lost, for no good reason.

Instead, all loops have to be analysed several times. At the entry, only the
states from source branches so far analysed are used. When the loop has been
analysed, the state from its outgoing branch is also known, and the loop can be
reanalysed using that result too. To prevent variables depending on themselves
from causing infinite reanalysis, such dependencies are detected, and those

15

variables are recorded as having an unknown state on loop entry. And since
an unknown variable state will merge with any other state (constant, range or
pattern) to an unknown state, infinite analysis is avoided.

A similar problem is created by recursive functions. Also for this case the
second solution must be used, because arguments that are not circularly de-
pendent can be pointers, and must be properly tracked. Otherwise the first so-
lution could have been used (at the cost of less knowledge) since the problem
of the lost stack pointer is not an issue here because the semantic content of the
stack pointer is assumed and set at the function entry point when analysing.

2.3.4 Pointers

The data in the variables (registers, stack or memory) flowing through the pro-
gram can be representations of many things, many which we will never (need
to) know the meaning of. One kind that however is of crucial interest is the one
that directly affect program execution: data and function pointers (addresses
of data in memory and jump/call targets). All other data handling will in the
simplest approach (without doing any tuning) just be transferred to the output
program as is, without destroying the integrity of the code. But data that is
used as pointers must be traced through the program backwards to every pos-
sible origin. This is done so that every location referring to any object (function
or variable) that will be moved as a result of the tuning process, can be changed
accordingly. It is also done to find jump/call targets that are only reached via
pointers (which are usually set by simple mov instructions (assignments), but
not necessarily close to the jump /call instruction).

Actually, this should not pose a too big problem, as everything is traced
through execution anyway. Most data will however quite soon be regarded
as the completely unknown bit pattern?, but pointers will usually be (sets of)
constants, which are then easily treated. If anything used as a jump/call tar-
get when data analysis is finished is an unknown, a pattern or a range, the
pointer has apparently suffered some fancy arithmetics and (which although
it may be working for the original program) cannot be handled, because the
target addresses are thought to span an improbable and possibly huge set of
locations.

2.3.5 Data structures

Data structures must be reconstructed because they may contain pointers to
other structures and pointers to functions, see Figure 2.8. It is the function
pointers that are of most interest. When data structures are dynamically allo-
cated, the information about their contents cannot be associated with a specific
location in memory (global or stack), but the information will be associated
with the respective members of the structures themselves.

Another difficulty is to determine the size of data structures in statically al-
located memory® or on the stack. The problem of knowing how large objects
data pointers reference is important because this information is vital if changes

4Otherwise we could constant-propagate everything, and the entire program would be useless.
5Allocated on program startup, usually as a part of the executable image.

16

\
B | 1=\

- c; 1l e
- il

Figure 2.8: Data structures with pointers. The pointers A and B show that two
pointers must not point to the same place to access the same data. Cand Dalso
illustrate the alias problem.

are to be made to stack usage. It is not difficult to figure out the size for sin-
gle structures composed of separate objects, but arrays which are indexed are
problematic since it will not usually be possible to figure out the limit of the
index variable. The extent of a data structure can be guessed by assuming that
it end at any location used by another uncorrelated pointer. The loss of knowl-
edge of data structure sizes is the worst loss during compilation. However, the
information is not necessarily needed, but lacking it, most tuning cannot be
performed as memory and stack use cannot be rearranged.

Dynamically allocated data cause less trouble, as no relocation is needed,
and allocating the right size is handled by the analysed program anyway.

Import libraries and callback functions

A special problem for disassembly is posed by callback functions used by func-
tions imported from libraries. When investigating a program it must be known
if any parameter passed to a function in a library actually is a pointer to some
code (or data) inside the original program. This can only be achieved by either
inspecting the import library itself and see if any argument is used as a target
address for a call, or by parsing the include headers for the library.

2.3.6 The alias problem

The major problem concerning tuning pointers to memory is the alias problem.
When having an object in memory, it is possible to have several pointers to
that same object. The problem is that it is not generally possible to optimise
away the use of a pointer to an object (for example a write later followed by
a read), if it is possible that something in between (perhaps deep down some
function calls) has written to that object. Also, in general, a memory pointer
may address an area used for DMA to a hardware device, making changes to
memory reads and writes a dangerous business. A program running multiple
threads or using shared memory could also experience similar problems.

The alias problem does not make tuning impossible, as it can be circum-
vented by not allowing any tuning that affect the existence or order of any
memory reads and writes. However, disallowing such transformations will

17

make many improvements impossible. Therefore it is beneficial to find situa-
tions where the alias problem does not apply. This is for example the case with
some uses of the stack, when a pointer to newly grown space has not been
given away for unknown use.

2.4 Writing a new executable

And to see if we managed not to over-cook the program, an executable file
must now be written. The only difficulty is that when writing one part (section)
of the file it is not not known where it will end. As a consequence the starting
points of other sections are also unknown and therefore it is not possible to
write absolute addresses and references within the file when writing sections
referencing yet unwritten sections.

But by solving this problem, the problem of relocation is also handled. When
an import library is loaded, if the loader is lucky® the library can be loaded
at the address space in memory the image was originally prepared for. But
sometimes that space is already occupied and the library has to be relocated
before being used. For this to be possible every library (that is relocatable, and
they better be) come with a section of relocation information (a list of offsets
in the section containing addresses and how to change them to account for
relocation).

One solution is to imagine an address in memory where each section will
begin when it is written, and write all references to them is assuming those
addresses. But for future use all places that will have to be modified when
changing the references are noted. When all sections have been generated, all
sections’ start addresses are simply adjusted (so they are not overlapping in
memory when loaded) and all the locations on the list of references are fixed
to reflect that. This information can then also be output to a relocation table,
enabling the executable loader to relocate the image once more, if necessary.
The entire executable is prepared in memory and written to file when all fix-
ups have been applied.

2.4.1 Reassembly of instructions

When the changes to the program’s instructions have been done, operating
on the internal spaghetti representation of Figure 2.2, the instructions must be
converted back to machine readable form.

To avoid information duplication (in the disassembler and reassembler),
reassembly is done by inverting the tables that are used by the disassembler.
When assembling an instruction, the table entries possibly associated with that
particular instruction are easily found by means of a reverse lookup table. Then
by trying to encode the instruction according to each of table entries the short-
est possible machine code is easily found’. It is of course also possible to gen-
erate opcodes longer than necessary (but with identical meaning) if that would
be useful for aligning subsequent instructions on some boundary. Alignment
may be favourable for instructions that are jump targets since instruction fetch
then may be faster.

6And sometimes luck can even be arranged for by a clever programmer beforehand.
7Instructions have variable length, and many have several possible encodings.

18

Chapter 3

Tuning

As compilers are (perhaps even extremely) good at optimising code inside
functions, our primary goal is not to improve that part, but to do other things.
And as the compiler is assumed to have made a good job, the general idea is
to preserve the original code as much as possible, only making changes when
it is quite sure that they carry improvements.

3.1 Inlining

As stated in the introduction, one idea is to inline functions that the compiler
never got a chance to try because they were defined in another source file than
the caller. The obvious cases are functions only called from one location. To
avoid making the memory image too large, all other function inlining candi-
dates must be evaluated to see if inlining would be either smaller than setting
up the parameters and doing the call or if it is advisable due to a large number
of repeated calls from the same location, i.e. inside a loop.

Inlining a function can also open the possibility to do other simplifications
to the code. For example, a function that is called with a constant argument
may be simplified when inlined. Inlining is done by making a copy of the
inlined function at the call location in place of the call instruction which is
removed and converting any ret instruction to a jmp targeting the instruction
originally following the call instruction (except any ret instruction at the very
end of the inlined function, which is simply deleted). When the function has
been inlined, other tuning operations can be applied to the new, combined
function.

If all invocations of a function has been inlined and the function itself is
not exported or a pointer to it used (e.g. as a callback function), the original is
removed.

Even if a function can not be inlined (e.g. due to an excessive number of
calls to it), it may be possible to make the argument passing more efficient by
using registers.

19

3.2 Streamlining

Even though different generations of the x86 processor family all can execute
the same code (except when new instructions are used), they prefer it served in
different ways. That is something like trying to push elastic objects of one
shape through a hole with another shape. It will work, but not as fast as
could be if the object had the appropriate cross-section. (This is of course not
a big problem if one has the source code available and a compiler capable of
processor-specific optimisation/code generation).

One generic way of doing these improvements is to make the tuner capable
of as accurately as possible simulate the flow of instructions through execution
by having models of how the different processors behave, with emphasis on
cycles used (time spent). The models are applied to parts of the code, e.g. one
loop at a time and before and after jumps, etc. Then attempts are made to im-
prove the behaviour by applying transformations, like reordering instructions
and replace one pattern of instructions by another equivalent one.

For the 386 and 486, the model mainly have to keep track of the cycles
required for each instruction. For the Pentium (586), the simulation get more
involved by the dual pipeline that is capable of executing pairs of instructions
(if they match, i.e. are pairable) [1]. For the 686 there are complications by the
possibility of decoding 3 instructions in parallel into pops (micro-operations,
often more than one per instruction), which are then executed (possibly) out of
order at a maximum of 3 per cycle (if they are of the right types) [§], yielding
a bumpy road to high speed perfection (because of the difficulty of accurately
estimating the actual throughput).

But then it is also straightforward to cope with AMD and other manufac-
turers’ chips too, by creating appropriate models.

This will require tight integration between the editable instruction struc-
tures and the actual encodings, so that alignment on word boundaries, instruc-
tion length and such things (which also affect execution time) can be taken into
account.

3.3 Avoiding jumps

Jumps (especially conditional ones) in the code can be devastating for perfor-
mance. And actually worse so for newer generations of processors, because the
execution is done as a long multi-step process (pipeline), which the instructions
flow through nicely when they come in an orderly fashion. The processors are
capable of following unconditional jumps without much trouble (if they re-
cently followed the same jump, so they know the target). And they are even
fairly good at predicting the outcome of a conditional jump and then follow
them in the same effortless way. But when prediction fail (i.e. the condition
proved to be the opposite), the entire execution pipeline has to be flushed and
for out-of-order execution it must be ensured that effects of instructions before
the mispredicted jump are reflected in the state of the processor, and no things
get done for instructions after the jump.

Getting rid of all conditional jumps is impossible as they are the program
logic, but some of them may be replaced by conditional moves (which are only

20

available on recent models (> 686), see Listing 3.1) or perhaps some clever
arithmetics, avoiding jumping around in the code.

Sometimes it may also be possible to entirely remove some branches (e.g.
parts of a switch-statement) if the analysis has determined that the correspond-
ing conditions never can be fulfilled.

CMP CALC tmp
JCC continue CMP
CALC dest CMOVNCC dest,tmp
continue: label _not _needed:
With jump Without jump

Listing 3.1: Using a conditional move to avoid branching. cmp sets the status
flags, and may have to be moved to be directly before cmovncc if the calcu-
lation affect the flags. The correct name is cmovcc, ncc is used instead of cc
to show that it would be the opposite condition that has to be tested for. calc
stand for some calculation. The trick can not be used if the calculation access
some memory which the conditional jump is to guard against, e.g. an invalid
pointer.

3.4 Reordering

As the length of some code traces will have changed during tuning, the entire
code will usually have to be relocated to new offsets in the executable. As
another tuning operation, the order of functions and even traces should be
changed so that code that is close in the call graph also is closely located in the
image. This will reduce paging. One could also think of moving seldom used
branches (like error handling code) into special pages, or use it to fill up places
that are bad spots for jump targets because of bad alignment. See Figure 3.1 for
an example of straightening out a conditional jump that is almost always taken
by replacing it by one that is rarely used instead.

Determining if a branch is taken often or seldom can be done by profiling
the program. This is done by instead of tuning it, installing counters after each
branch and put the program through test runs.

3.5 Rearranging data structures

Data structures usually can not be done much about, but when a structure is
exclusively used internally, i.e. not used when communicating with an import
library, or read from or written to a file, it can be rearranged.

The most used item of the data structure would then be placed at offset 0,
since the encodings for pointers without an offset are shorter. It is also benefi-
cial to have other frequently accessed members at offsets < 127, as that allows
for the use of an one-byte offset instead of a full 4-byte (32-bit) offset. It is also

21

A,

B
\
N

uayo

INCC (7777
\

\\

\

\
W

—LOOP LOOP

v v

Figure 3.1: Instead of having to jump around the seldom used code (hatched),
the normal path is straight forward, and the rarely used code is instead reached
via a branch.

possible to use pointers offset by 80h = 128, i.e. pointing inside the structure
instead of at the first element, so that the negative one-byte encodings also can
be used (making the entire range -128 to 127 available cheaply). Sometimes
structures have substructures that are used more often than other members of
the larger structure. Then it may be beneficial to have the larger structure being
pointed to at the start of the substructure, to avoid an addition when calculat-
ing a pointer to the more frequently used sub-structure.

Data items that are accessed close to each other (in the code) should also be
neighbours in the data structure, and suitably aligned, to improve the usage of
the processor cache.

3.6 Going the other way

Some of the above adjustments could also be used to instead aim for the very
smallest executable size possible, which would be useful for daemons that are
always loaded in memory but not using much CPU time, or for programs run-
ning on low end machines with a very limited amount of memory (therefore
suffering from heavy paging).

22

Chapter 4

Implementation

This chapter give an overview of the implementation, which is written in C++.
The language was chosen for three reasons. The C connection provide easy
access to machine-near constructs manipulating bits and bytes (needed to ma-
nipulate machine code). The ++ part reduce the risk of the program attaining
critical mass' and make the program almost write and structure itself. And
perhaps most importantly: I know it.

4.1 Storage classes

Figure 4.1 show how the packaging file information is stored in a class derived
from executable _image . The actual code is handled by an executable ob-
ject, and further divided into call _function s and branch _target s. Each
branch _target is associated with a trace of instructions as described in Sec-
tion 2.2.2.

| executable_image |0—| executable |
T I
[1

| pe_file | | elf_file | | call_function |

I

| branch_target |

Figure 4.1: Storing an executable.

As shown in Figure 4.2, each assembler instruction is packaged as an in-
struction object. The subclass branch _instr keep track of all possible tar-
gets of branching instructions ((un)conditional jump, call and return). Each
operand is stored separately in an appropriate subclass of operand . The in-
structions are collected into traces by code _trace in branch _target _tra-
ces, while the branch _target class store the linkage of each trace to other

!When fixing 1 bug introduces 1 + € bugs.

23

code_trace | | branch_target
— 7
| branch_target_trace

ctrl_transfer_target |

T

|jump_target | |cal|_target |
| instruction |© operand
; |
one_opiinstr		branchl_instr		operand_register
two_op_linstr		operand_lmemory		
any_op_linstr		operand_in;mediate		

(for others)

Figure 4.2: Division of the code into functions, traces and instructions.

traces, i.e. a representation of the possible control flow in the program, via sub-
classes of ctrl _transfer _target s.

The data analyser store the calculated changes to the processor (and mem-
ory) state after each instruction in outgoing _state objects, see Figure 4.3.
The known state on entry to a trace or a function is stored in the subclasses
incoming _state and entry _state , respectively. Each outgoing _state
link to the previous one so that unaffected registers and stack are not forgot-
ten. When the contents of a location (register/stack) is needed, the request is
passed backwards through the state objects until the origin is found in an asso-
ciated register _state . Ifnotfound, the searchisended atanentry _state ,
which will supply an unknown value if necessary and mark the requested lo-
cation as an argument to the function being analysed.

Because accesses to memory are of an unordered nature (see Section 2.3.2),
the analysed contents of memory other than the stack is stored in a global
memory_state object.

The value of each location is stored in a subclass of variable , depend-
ing on what is known about its content. The variable object may also have
a variable _content associated, representing its abstract function, e.g. as a
stack pointer.

24

(stack also)
| outgoing_state |<>—| register_state M flags_state

1

| incoming_state
r e ______
|entry_state & memory_state |

variable_content

| variable_const | | variable_unknown |
I I
|variable_consts | | variable_split |
I
| variable_range | | var_cont_stack_ptr
— - --__c —______
| variable_pattern | Irl__/airtc_opt__ Enfar_nrrztr_) _1:

Figure 4.3: Outgoing states from instructions and their variable content.

Figure 4.4 show that the origins of variables are traced via variable _ops
which keep track of the operands of the instructions that created a variable. The
new value of the variable is calculated by member functions of the appropriate
subclass for the instruction.

variable

| variable_op |
[ZF]
|variable_unary_op | | variable_binary_op |
1 1
variable_op_inc		variable_op_add
variable_olp_dec		variable_olp_sub
variable_olp_not		variable_olp_and

Figure 4.4: Variable sources. Tracking what operations led to a variable.

25

4.2 Working classes

The main parts of the analyser/tuner system are encapsulated in the classes
shown in Figure 4.5. A disassembler uses an instruction decoder to
generate instruction s from the raw machine code in the executable image
and collects them into call _function s. Then a data _analyse _function
investigate the call _function s, and a tuner will tune the code. An in-
struction _encoder is used to find possible encodings of any instruction
with the help of a try _encode _instruction (for trying different possible
encodings).

| disassembler H instruction_decoder

|
_‘
| data_analyse_function H call_function | |instruction
T ' —
. t_u_nﬁzr_) H instruction_encoder |
!

| try_encode_instruction |

Figure 4.5: The main working classes of the analysing and tuning system, and
the objects they operate on.

26

Chapter 5

Results

5.1 Implementation

Because of the limited time for this work, only part of the ideas presented here
have been implemented so far. Therefore, only some small and academic ex-
ample programs has been successfully put through the tuner. This is because
more than expected small (and large) problems has surfaced, and it take time
to drown them in working code. However, no insoluble problems has been
found.

5.2 Reading and writing executables

The program has successfully read and written very simple PE and ELF files.
The PE and ELF files were created manually to keep the amount of executable
instructions to a minimum, as the writer is not capable of handling branches
very well, and even the simplest compiled C programs bring in some start-up
code. The reader/disassembler can handle larger (real) programs.

5.3 Changing an executable

A program consisting of two functions (main and func), has been modified by
the tuner to inline func into main. As the system does not have a functional
analyser yet, the data from that was ignored, and inlining was done without
any checks for avoiding stack corruption etc. Execution time was reduced from
2.0s to 0.9 s. This is probably the best improvement this system will ever pro-
duce, even when (and if) capable of handling real programs, as the example
was chosen to aggressively illustrate the possible benefits of inlining. See Ap-
pendix F for details.

27

Chapter 6

Finale

6.1 Conclusions

Is this the right way to improve execution speed? While not being the entirely
wrong way to make a program better, it is definitely a backwards approach. I
would recommend whole program optimising compilation as a way to better
utilise the information available in the source of the programs, because much
of that has been lost after compilation, and cannot be recovered later. There
is no tuning described in this thesis that is impossible for a (whole-program)
compiler to do.

And another problem which neither this approach with post-compile ad-
justments or smarter compilers can treat to any significant extent is reduction
of data structures and thus also memory used. Removing unnecessary vari-
ables from the program of course also mean that the instructions reading and
writing that data are removed. So unless the data structures are reduced as a
tradeoff between memory and time consumption, their reduction is generally
beneficial. This, however, along with the selection of the algorithms used in a
program, is still an order of magnitude more important than any optimising
compiler or other automatic tool, and a job for programmers.

6.2 Future work

A lot! Quite a few things remain to be done, as outlined below.

6.21 Todo

As described in Section 5.1, the implementation is not in sync with the descrip-
tion in this report and code for much of the described functionality has not
been written yet.

There are many things to do before the system has reached a first usable
and useful stage, as in a version 1.0. Firstly, the program analyser must be
completed and improved so it can cope with most sensibly constructed pro-
grams, say 90 % of the basic GNU utilities written in C, in order to be usable.
Secondly, the tuner, which does not exist at all yet, must also be able to do most
if not all of the mentioned code improvements, to be useful.

28

Presently, the analyser is lacking much necessary functionality:

e Only the simplest arithmetics instructions and some easy branching is
supported (basically the instructions making up example F1, except the
int). All other instructions set the analysed processor state to an un-
known one!, making further analysis almost useless, because for exam-
ple the stack pointer is lost.

e Global memory is not handled at all.
e Data structures and pointers (which are closely related) are not mapped.

e Non-relative branches and function pointers are not handled.

The executable writer is currently only capable of handling simple executa-
bles, and will generate garbage for most programs without advising the user
of the destruction performed.

It would also be good to expand the range of treatable programs to ones
using constructs that effect the execution path in a mildly strange, but reason-
ably predictable way, like programs using setjimp and longjmp , and C++
programs using exceptions (which is about the same thing).

The analysed result could perhaps also benefit from the analyser being able
to handle a partial ordering of global memory accesses, i.e. when some accesses
can be guaranteed to happen before other ones. This can reduce the number of
possible values of the memory locations, an example would be some initialis-
ers, which are run on blocks of memory before any other code affect or use
it.

Normally, calls to dynamic (shared) import libraries are left as is. But the
system could also be made to create a hot version of a program that make
heavy use of import libraries by inlining and tuning the used library functions
into the executable.

6.2.2 User feedback

Using some extra input from the user, it may be possible to allow the analyser
to pass some sections of code that it for some reason cannot handle itself. An-
other kind of feedback is to profile an input program, i.e. measure the usage of
different parts of the program’s code. The user must then exercise as much as
possible of the program, so that most instructions are run at least once, to get a
grip in the relative usage of branches.

6.2.3 Other uses

Presently, the program can only take input in the form of machine executable
code. Expanding it to accept assembler code (which it can output), the pro-
gram could be used as the assembler backend of a compiler and be the linker
at the same time. This way, it would also be possible to propagate some infor-
mation to the tuner which is otherwise unrecoverably lost at compilation, like
volatile markings of memory accesses.

1 As in known to be unknown.

29

One could also think about using the program as part of a JIT compiler. As
a JIT compiler normally only deal with part of a program at a time, this would
require a tight relationship between the compiler and tuner because the anal-
yser wont be able to see more than a function at a time (or perhaps even less).
So when a tuner with assembler transformations and reordering based on a
processor model has been implemented, that could be used to relieve the JIT
compiler constructor part of the work of creating efficient machine code.

It may also be possible to use the disassembler/analyser to make a decom-
piler output stage instead of a tuner/executable writer. This would only re-
quire that some changes are made to the code graph before it is output to file
in source form. Calculational expression trees would have to be converted
into readable mathematical expressions, cmp/test -instructions together with
conditional jumps combined into if-statements and while-loops where possi-
ble and register and stack usage changed into variables. Anything that can not
be transformed to something C-like, would be left as assembler, or macros for
each untranslatable instruction.

6.3 The source

To facilitate this further work, possibly by someone else, the so far written
source code is made available freely (as in freedom), subject to the GNU GPL
[9]. The project is called exmhcg?.

Zhttp://www.dd.chalmers.se/ f96hajo/exmhcg / may, or may not, be of use or avail-
able.

30

Acknowledgements

I would like to thank my supervisor Hdkan Sundell for giving me the oppor-
tunity to do this project, for good ideas and inspiring discussions. The encour-
agement and proofreading of early versions of the manuscript by my brother
Henrik is deeply appreciated. I am also grateful to my parents Evy and Lennart
for their never-ending support, without which, this work had never been pos-
sible. The people of the Subatomic Physics Group are all thanked for their
friendship, understanding and for not letting me lose contact with Physics.

31

Appendix A

Motivator

To show the difference between when the compiler had and not had the op-
portunity to inline an often called function in a program, the computer is in-
structed to calculate the utterly useless sum Zf;oi + 1, with N = 100000000
so large that execution not is instantaneous and the elapsed time can be mea-
sured. The idea is to show the benefit of inlining by placing the calculation of
i+ 11in a separate function func .

int main ()
{
int sum =0;
for (int i =0; i <=100000000;i++)
sum += func(i);
printf (”%d”,sum);

}

int func (int i)
{
return i +1;

}

The table below show that when func is inlined, i.e. made a part of main
(which can be done by a compiler if both functions are given in the same source
file), the program runs much faster. Both tests were also compiled with the
optimisation options -O3 -fomit-frame-pointer . Of course, the example
was chosen to greatly exaggerate the benefits of inlined code.

Inline Compile command Execution time

‘ (400 Mhz Pentium II)
Yes gcc func _and _main.c 0.58s
No ‘ gcc func.c main.c ‘ 231s

32

Appendix B

Short introduction to x86
assembly

This introduction is aimed at making the assembler code used in the thesis (es-
pecially the appendices) intelligible. A x86 system have eight general purpose
32-bit registers, and an instruction pointer, see Figure B.1. The low 16 bits of the
32-bit registers can be accessed separately, and also as the two lower bytes (8
bits) of the four first registers. The instruction pointer keep track of the address
in memory where the currently executed instruction is located.

The processor also have a flags register, which is updated by the arithmetics
instructions depending on the result, e.g. zero (or non-zero), overflow and
sign. It is then possible to use a conditional jump to branch depending on the
outcome of the calculation.

As operands, an instruction can use a register, memory or a constant (also
known as an immediate). Of course, a constant can not be the destination. An
instruction can also only have one operand being a memory reference, either
source or destination, any other must be a register or immediate.

Instructions are written on the form instr dest,src . Note the order
of the destination and source operands. A memory operand is written as
[pointer] , where pointer is one or two registers, possibly with the second
register (usually an index into a data structure) multiplied (scaled) by a small
factor (the size of each data item) and an offset: [base+index*scale+disp]

Scale is one of 1, 2, 4 or 8, and the offset (displacement) may be either 0, 8 or 32
bits.

Both operands of binary instructions are of the same size, either 8, 16 or 32
bits, with some exceptions for extending smaller types to larger ones.

Usually, the destination operand is overwritten with the result, so if it is
preferred to keep both sources, it is necessary to first make a copy of one source:

Type C Assembler
Overwrite destination | a += b; ADD EAX,EBX
Keep both d =a + b; MOV EDX,EAX

ADD EDX,EBX

33

EDI

EIP

Accumulator, hard-coded operand for e.g. multipli-
cations.

Often used as loop counter.

Stack pointer.

(SPnot used for 32-bit programs.)
Base pointer.

Source pointer (for string instructions).

Destination pointer (for string instructions).

Instruction pointer.
(IP not used for 32-bit programs.)

Figure B.1: The general purpose registers of a x86 processor. Apart from EIP,
which only can be accessed indirectly, and ESPwhich always point to the stack,
which register is used for something is optional, except when the use of a spe-
cific register is the only one possible with some special instructions, such as
MULand DIV or one of several short encodings for operations with EAX

Copy values

First, some instructions for copying data are described. REGis a register, IMM
an immediate and [MEM] a memory reference.

MOV REG,REG

MOV REG,IMM

MOV REG,[MEM] | Copy a value from the source to the destination.
MOV [MEM],REG

MOV [MEM],IMM

PUSH REG Push the source value onto the stack, i.e. sub-
PUSH IMM tract4 (the normal data size for a 32-bit program)
PUSH [MEM] from ESPand write the value to [ESP] .

POP REG Pop a value from the stack to the destination, i.e.
POP [MEM] read the value from [ESP] and add 4 to ESP.

34

Arithmetics

Next, some instructions for doing integer math and logic are needed.

ADD REG,REG
ADD REG,IMM
ADD REG,[MEM] Add the value of the source to the destination.
ADD [MEM],REG
ADD [MEM],IMM
SUB as above Subtract source from destination.
Same as SUB except that only the status flags are
CMP as above updated - the destination is not affected.
AND as above Bitwise and.
OR as above Bitwise or.
XOR as above Bitwise exclusive or.
:mg [RMEEGM] Add one to the location.
DEC as above Subtract one from the location.
NEG as above Negate location.
NOT as above Bitwise not on location.
Branching

Instructions to jump around in the code are also important. Note that when us-
ing a relative branch, the offset is added to EIP as it would be when executing
the following instruction, not the branching instruction. This mean that a zero
offset has no effect (except when being used with a CALL, because the value of
EIP is pushed onto the stack).

JMP REL Relative jump, add the immediate REL to EIP .

IMP REG Absolute jum t EIP to value of location

IMP [MEM] solute jump, se o value of location.
Relative call, push EIP of next instruction onto

CALL REL stack and add the immediate RELto EIP .

CALL REG Absolute jump, push EIP of next instruction

CALL [MEM] onto stack and set EIP to value of location.

RET Pop the topmost value of the stack into EIP .

RET IMM Same as above, but also pop IMM bytes of the
stack. Used for discarding arguments.
Conditional relative jump. Jumps if the status

Jee REL flags fulfil the condition tested.

LOOP REL Conditional relative jump. Jumps if ECXis non-

zero.

The CCon the conditional jump stand for a condition code, it can for ex-
ample be Z or NZ which would make the program jump if the last calculation
produced a result that was zero or non-zero, respectively.

35

Some special instructions

For completeness, the conditional move and interrupt instructions are also
mentioned.

Conditional move. The value is only written
to the destination if the condition is true. Only
available on newer processors (> 686).
Generates an interrupt. This causes the proces-
sor to execute the associated interrupt handler.
INT 80 is the system call when running Linux,
so control is passed to the kernel.

CMOVC®REG,REG
CMOVC®REG,[MEM]

INT IMM

36

Appendix C

Execution stack at work

Short illustrations of the stack at work is shown in Listings C.1 and C.2. In
the first a function call with two arguments is shown, and the second shows
what the stacks looks like to the function called. Note that dealing with 32-
bit code, the normal variable size is 4 bytes. A technical detail is that with
x86 processors the stack grow downwards, towards lower addresses. This, of
course, has implementational consequences, but no conceptual.

1 PUSH 00000007h ; push argument 2
2 PUSH 00000009h ; push argument 1
3 CALL add ; call the function,
; (result in EAX on return)
4 ADD ESP,8 ; remove the arguments
; from the stack
Before1 | - - | - | - |
T ESP
After1 | - | - | - | 7 |
+ ESP
After 2 | - | - | 9 | 7 |
1T ESP
After 3 | - | Retaddr | 9 | 7 |
1T ESP
The function add is called and returns.
Before4 | - | Retaddr | 9 | 7 |
1 ESP
After 4 | - | Retaddr | 9] 7]
T ESP

Listing C.1: A function is called with 2 arguments.

When a function is called, and just before it returns, the stack pointer ESP
point to the return address. In listing C.1, this is the memory address of in-

struction 4.

37

add:

1 SUB ESP4 ; grow stack space for one
; local variable (never used
; and uninitialised)

2 MOV EAX([ESP+8] ; get argument 1 (into EAX)
3 ADD EAX|[ESP+12] ; add argument 2
4 SUB ESP4 ; local variable out of scope
5 RET ; (result is in EAX)
Before1l | - | Retaddr | Arg1 | Arg2]
TESP
After 1 | - | Retaddr | Arg1 | Arg?2 |
TESP
After 2 | - | Retaddr | Arg1 | Arg?2 |
1T ESP 1 read
After 3 | - | Retaddr | Arg1 | Arg2 |
1T ESP 1 read
After4 | - | Retaddr | Argl | Arg?2 |
TESP
After 5 | - | Retaddr | Argl | Arg?2 |
TESP

Listing C.2: A function called with two arguments, and one (unused) local
variable.

38

Appendix D
PE and ELF files

Executable files consist of some headers (sometimes located at the end of the
file, despite the name) with general information (type and version of machine
and operating system to run on, address of entry point for execution etc.) and
the location, size and permissions (read, write and/or execute) of the sections
that contain the bulk of data. The layout of the headers is specified in [6, 7]
and is just packaging. This project is mainly concerned with the contents of the
code and data sections.

The main difference between PE and ELF files are the way imports and
exports are handled. This is part of the packaging, but has direct consequences
for the disassembler/analyser. The other code/data is basically unformatted
as it is intended for direct execution and use by the processor.

D.1 PE file (executable for Windows)

A portable executable (PE) file consist of a relic DOS header from older days,
see Figure D.1. After that come the PE header with the necessary loading in-
formation (image size, OS version, address of entry point, number of sections).
This is followed by section headers, with information about each section in the
file (size, location in file and image and permissions).

The data section usually contain an import directory, naming all functions
that are to be resolved (provided) by import libraries (dlls) on loading. The ac-
tual addresses of these functions (where they happen to be placed in memory
when the library is loaded) will be placed at specific locations in a table follow-
ing the import directory when the program is loaded. Any calls in the code
section to the external functions have been encoded to look for the addresses
there. Using this information the disassembler can be prevented from trying to
find the actual function definitions and instead handle separately such function
calls in the code (remembering that is was an imported function).

If the executable image is an import library itself it may also contain an ex-
port directory, naming all functions (or variables) that it provides. By reading
this information, entry points of functions and locations of variables in the li-
brary image are found. Here a problem is encountered: how is it possible to
determine if an exported object is a function or variable? By guessing!! If the

! The fancy word is heuristics.

39

| ELF header

Program | #1
headers | #2
| MZheader (DOSstub) | o
| PE Header | Program Symbol hash table
Section | #1 block (rx) Symbol sec.tion
headers | #2 Symbol strings
Procedure linkage
table
Code section Code section
Data section | Import table Program Data section
Export table block (rw)
Data Dynamic table
Global offset table
Section #1
headers #2
PE file ELF file

Figure D.1: Structure of the PE and ELF file formats. Both figures are to be read
from top to bottom - the division into columns is only to show the structuring
of the parts of the files.

address is in the (executable) code section it is assumed to be a function and if
not (i.e. in a data section) it is treated as a variable. The only way to validate
this assumption is by having some external supply of information. One semi-
automatic way could be to parse the include headers for the library. The best
(most accurate) solution is to inspect the executables importing the library and
actually using the objects in question. It would then be verified that the objects
assumed to be functions are called and that objects thought to be variables are
made read /write access to, and not the other way around. Also see “Callback
functions” under Section 2.3.4.

D.2 ELF file (executable for GNU/Linux)

An executable and linkable format (ELF) file is also built with an overall header
(with address of entry points and number of program blocks and sections),
see Figure D.1. The contents of an ELF file has a dual view, it is divided into
program blocks for loading into memory, and sections for tools that modify
the executable file itself. Headers for the program blocks (which contain block
sizes, permissions and locations in memory and file) directly follow the main
header, while section headers (with the same information for the sections) are
at the end of the executable. The section headers are not required for a file

40

to be executable, but their absence complicate modifications of the file, as the
structuring information of the file must be inferred from other data.

The symbol section, strings and hash make up a combined import/export
table. The global offset table contain addresses of imported functions, and the
procedure linkage table is a trampoline for external function calls using the
addresses in the global offset table. The import/export table of an ELF file does
have markers to differentiate between function and data objects (although it
may be left unspecified, giving the same identification problem as for PE files).

D.3 Similarities

So although not exactly the same, PE and ELF files are constructed along the
same lines. Not very surprising, as they do the same thing: pack an executable.

However, even if the contents of one format could be (with some slight
changes), packaged in the other format, that would not create an usable exe-
cutable for the other operating system. This is because executables import and
use functions from the original operating system and/or use system calls, that
do not have direct counterparts on the other system. So an executable file must
be packaged in the same format it was read from.

41

Appendix E

Data flow analysis example

Listing E.1 shows an analysed function. Note that the x86 has six flags that
are set depending on the outcome of arithmetic instructions. Three extra flags
are used by the analyser to be able handle the conditional instructions (mainly
jumps) that use combinations of flags (< and > comparisons). This is not nec-
essary for tracking calculations with constants as they can be handled via the
real flags. However, comparing two ranges might yield unknown values (both
0 an 1 possible) for the real flags, while some of their combinations are fixed.

ESP=?/st+0 EAX=?
EBX=?
example:
PUSH 4 ESP="/st-4 st-4=4
PUSH 5 ESP=?/st-8 st-8=5
ADD EAX,EBX EAX="? fl=2---222?2?2?7?
POP ECX ESP=?/st-4 ECX=5
ADD ECX,[ESP] | ECX=9 fl=0---00000100
ADD EAX,ECX EAX=? fl=?---2272?2?22??
ADD ESP4 ESP=?/st+0 fl=?---?2?27??2???
RET

Listing E.1: Instructions to the left and the state change after their execution to
the right, except on the first row which show the state on entry and the discov-
ered arguments. ESP=?/st-4 mean that the actual value of ESPis unknown,
but that it point four bytes below the stack reference level (stack level on func-
tion entry, and remember: the stack grows downwards on a x86). The changes
to the status flags are also shown after each modifying instruction.

E.1 Partial registers
The general purpose 32-bit registers of a x86 processor can be accessed in parts

also. E.g. the low 16 bits of EAXare called AX and the high and low 8 bits
of this are AHand AL. Listing E.2 show part of a function that exercise these

42

possibilities. Note that EBXis determined to be an input to the function, as
the fourth instruction uses the uninitialised high part of it. Also, an unaligned
access to the stack is made at the end. Here it can be seen that the machine
is little-endian, i.e. that the byte order in memory is opposite that of normal

writing. The two pushes will write 8 bytes at st-8 : 78, 56, 34,

12, 98,

ba, dc, fe,and the memory read will get the four middle bytes 34, 12,
98, ba, giving ba981234 .
ESP=?/st+0
EBX=?
example2:
MOV EAX,12345678h EAX=12345678h
MOV AL,3 AL=3
MOV BX,AX BX=(56h,03h)
MOV EDX,EBX EDX=(?,(56h,03h))
ADD AH,BL AH=59h
fl =0---00000100
MOV ECX,EAX ECX(1234h,(59h,03h))
PUSH FEDCBA98h ESP=?/st-4
st-4 =fedcba98h
MOV CX,[ESP] CX=ba98h
MOV DX,[ESP+02h] DX=fedch
PUSH 12345678h ESP=?/st-8
st-8 =12345678h
MOV EDX,[ESP+02h] EDX(ba98h,1234h)

Listing E.2: Exercising partial register reads and writes. When a location is
used that was not set with the same number of bits, the contents are merged
into a split variable, with a low and high part, possibly recursive. This is rep-
resented by (high part,low part).

43

Appendix F

Tuned examples

To avoid having to deal with a compiler’s start-up code, the example of Ap-
pendix A was assembled manually into an ELF file, and put through the tuner
which inlined the function call, see Listing E.1.

Before After
main: main:
MOV ECX,00000000h MOV ECX,00000000h
MOV EBX,00000000h MOV EBX,00000000h
loop: loop:
CALL 00000013h [func] MoV EAX, ECX
I NC EAX
ADD EBX,EAX ADD EBX,EAX
INC ECX INC ECX
CMP ECX,05F5E100h ! CMP ECX,05F5E100h
JNZ/NE FOh [loop] JNZ/NE F2h [loop]
MOV EAX,00000001h MOV EAX,00000001h
INT 80h? INT 80h
RET RET
func:
MoV EAX, ECX
I NC EAX
RET

Listing F.1: A function call which is inlined by the tuner. The original version
executes in 2.0 s, while the inlined need 0.9 s to complete (on a 400 Mhz Pen-
tium II).

105F5E100h is hexadecimal for 100000000.

2INT 80h with EAX=1, is the system call to exit a program, and EBXhold the exit code. So the
following RETis never executed, but is currently needed because the disassembler/analyser does
not realise that.

44

Tracking the stack pointer

Stack pointers, [ESP+n] , must be adjusted when they point to arguments to
account for the return address not being pushed onto the stack when a function
is inlined. Other stack pointers (for local variables) are not changed, see Listing
E2. Note that for example the two additions to the stack pointer at the end
of the inlined function could be merged into one after inlining, and that the

parameter passing on the stack can be avoided/simplified.

Before After
loop: loop:

PUSH ECX PUSH ECX

CALL 00000014h [func] PUSH 00000001h
PUSH 00000002h
MOV EDX, [ESP]
MOV EDX, [ESP+4]
MOV EAX, [ESP+8]
INC EAX
ADD ESP, 00000008h

ADD ESP,00000004h ADD ESP,00000004h

ADD EBX,EAX ADD EBX,EAX

func:

PUSH 00000001h

PUSH 00000002h

MOV EDX, [ESP]

MOV EDX, [ESP+4]

MOV EAX, [ESP+12]

INC EAX

ADD ESP, 00000008h

RET

Listing F2: A function call which is inlined by the tuner. Any references to
arguments passed (the lines in italics) on the stack are changed to account for
the return address never being pushed (by the CALL which is removed).

45

Bibliography

[1] Michael L. Schmit, Pentium processor optimization tools, AP Professional,
cop., Boston, 1995.

[2] Tom Shanley, Pentium Pro and Pentium 11 system architecture,
Addison-Wesley, Reading, Mass., 1997.

[3] Intel Corporation, IA-32 Intel® Architecture Software Developer’s Manual,

http://www.intel.com/design/Pentiu mil/ma nuals /,2002.
[4] Christian Ludloff, http://www.sandpile.org/ ,2002.
[5] Konstantin Boldyshev, http://linuxassembly.org/ ,2002.

[6] Tool Interface Standard (TIS), Formats Specification for Windows™ Version
1.0, TIS Committee, 1993.

[7] Tool Interface Standards (TIS), Executable and Linkable Format (ELF),
Portable Formats Specification Version 1.1.

[8] Agner Fog, How to optimize for the Pentium family of microprocessors,
http://www.agner.org/assem/pentopt .zip ,2000.

[9] Free Software Foundation, GNU General Public License,
http://www.gnu.org/copyleft/gpl.ht ml, 1991.

46

Glossary

Alias problem Several pointers may point to the same object in memory, with-
out any of the pointers (or the code handling the pointer) knowing
about the other ones. Then one pointer may affect a memory loca-
tion without the other ones knowing about it. It is then essential for
the other pointers to re-read the value from memory, and not use an
old local copy. (Compare the use of volatile in C, which does not
solve the problem, but deals with the consequences, by forcing a deref-
erenced pointer to always be re-read, as it may have changed.)

Alignment Data should usually be aligned in memory so that its address is a
multiple of its size. Access to unaligned data is slower (requires more
memory reads and rearrangement of the individual bytes read from
memory). Because assembler instructions are variable length, most in-
structions are not aligned, but execution speed may benefit from having
jump/call targets aligned on some boundary, usually 16 bytes.

Assembler Human readable form of machine code. mov eax,-25 instead of
b8 e7 ff ff ff .

Callback function A function C is used as a callback function when its ad-
dress is sent as a parameter to the function F, and the function F then
calls C via that pointer. Callback functions are for example used by
search and sort routines (like bsearch and gsort) to define the rela-
tive order between elements, and as filters when listing files in directo-
ries (called once for each entry).

Compiler A program source file is translated into machine code by a com-
piler. The result is an object file.

DMA Direct memory access. Communication with hardware devices (e.g.
graphic cards, sound cards) may be performed as ordinary memory
reads and writes, but using addresses in a range not used by the main
memory. The memory accesses usually affect the internal state of the
device, so that the next read to the same address may give a different
answer, even if no write was performed in between.

Header file A file used when compiling a program, that hold prototypes (not
definitions = the actual code) of external functions, i.e. their name, pa-
rameters and return type.

47

Inlining A function is inlined when the call to the function is replaced by the
actual definition. It is like when b(y) = y + 3 is generated from the
statements that b(y) = a(y) — 2 and a(z) = 5 + z, avoiding the call
to a(z). This can be done by the compiler only if it has access to the
definition of the inlined function at the same time as it would generate
the function call, i.e. the two functions are in the same source file, and
is usually done for small functions.

Linker One or several object files are merged into an executable file by a
linker.

Little-endian A format for storing values (of more than one byte) in memory,
with the least significant byte at the lowest address, i.e. in the opposite
order than it would be written. The x86 architecture is little-endian,
some others are big-endian.

Paging The process of swapping parts of memory between RAM and the hard
drive. (Done at the discretion of the OS to emulate more memory than
physically available, but can be using a considerable fraction of CPU
time on a machine with too little memory. Ever heard the VM (virtual
memory) eating its way through your hard drive?)

Peep-hole transformation Improving code by looking at and modifying a lit-
tle piece (window) of code at a time. Le. aiming for local optimum.

Pipeline Several instructions can be worked on at the same time by the pro-
cessor, but in different stages of execution by using a pipeline. Execu-
tion can be divided into decoding the instruction, calculating a possibly
needed memory address, reading memory if needed, doing the actual
calculation and writing the result to any memory destination).

Register-stack operation Moving a value between a register and the stack.
Registers are few, but accessed fast. The stack can be arbitrarily large
(within available memory), but operations on it are slower. A value not
needed right now can be temporarily stored on the stack, freeing up a
register.

Relocation When an executable image cannot be loaded at the address that
was intended, all absolute addresses must be adjusted by the offset by
which the image is moved to the actually used address.

Stack A stackis a collection of last in first out objects, usually represented as a
list. The basic operations are to push an object onto the top of the stack,
and to pop the topmost object off the stack. Think of a pile of plates,
which is normally only accessed from the top.

48

