Triggered

Trigger-less = free-running = ...

Each channel self-triggers

Data timestamped vs global clock

Coincidences by software trigger \rightarrow events

The free-running usual complaints

Huge data-rates

(depends on necessary thresholds)

Local 'pile-up' (real signal missed due to preceeding hit) (issue shared with *any* triggered common-stop-system)

Massive fan-outs/fan-ins for local neighbour-firing (any triggered system does a large fan-in too...)

Hardware trigger issues

Noisy triggers? (global or / multiplicity of many channels)

Long trigger latency + master start distribution (delays before QDCs run out of delay)

Read-out overhead per event? (slowest system rules) (multi-event readout - everywhere?)

Detectors - information needed

Detectors – information II

Is your triggered system multi-event capable? (in the background)

What calibration procedures (triggers) do you need? (CLOCK & TCAL enough?) (Analysis experience strongly suggests continuous calibrations!)

TDC = TAC + ADC

Classic:

- Charge capacitor between t1 and t2.
- Output pulse: height ~ time interval
- Multiplex \rightarrow ADC: digitise pulse height

Alternative style:

- + Measure time to next clock:
 - With classic TDC
 - With abused FPGA
- + Store clock cycle number

Tacquila – crate vs. crate (pulser) Choosing one channel in crate 2, specific time

Tacquila ambiguity I

Tacquila ambiguity II

Tacquila ambiguity workaround?

Workaround (for e.g. TOF-walls??):

Each detector channel to 2 tacquila channels, with relative delay

Channel 17 (master start) is measured on many boards, relative to same clock \rightarrow fixed by using different delays (at least one)

Proton Drift Chambers

Currently: no trigger delivery, requires trigger

FE cards free-running into local circular buffer (256 x 2.5 ns steps)

Physics trigger causes encoding (and buffering?), send to CCB

CCB buffers and transfers data over GTB to SAM (\rightarrow VME)

Free-running Drift Chambers

With existing hardware: free-running mode should be possible

FE cards free-running, time-stamp all edges (protect against short pulses) FE cards operate with few-bit clock, sync from CCB Data continously flowing from FE buffers and CCB buffers over GTB to SAM (\rightarrow VME). CCB inserts high bit clock epochs and global sync.

Drift Chamber Rates?

FE delivers channel (4 bits) + edge (1 bit) + data lost (1 bit) + timestamp (16 bits) $\rightarrow \sim 22$ bits

covers 1 entry transmission (2+5 bits) x 16 ch (4 bits) x 8 entry buffers (3 bits) + wrap (2 bits)

CCB adds FE card number (4 bits) + fill with more time bits to 32 bits

CCB inserts epoch markers (higher ~30 bit time stamps)

DAQ integration policy

Thorough integrity checks

- Event-wise checks, e.g.:
 - Event counters
 - Trigger type
 - Data packaging
- All mishaps reported (centrally)

(Expect DAQ integration team to add tests.) (Expect 'evil' trigger conditions.)

Error reports = system broken

Any reported errors to be:

- Investigated
- Explained
- Repaired

(Broken sub-systems are *removed* from the DAQ.)

DAQ stop/start not for slow-control

No slow-control operation may require a (user) DAQ stop/start cycle.

Even if the read-out data-bus is used for communication.

(Reason: independent systems in the deadtime domain shall be unaffected.)

The DAQ always runs II

The read-out may not (on non-fatal errors):

- Crash
- Exit
- Do infinite looping, etc...

Instead, re-init until error-condition resolved (by user).

(Ex. non-fatal: missing/replugging gate cables.)

(Broken VME-bus is fatal.)

Working unpack procedures

Unpack prodedures: Allow integrity checking Usable online (i.e. with network data source)

Enforcement

Non-compliant systems are **removed**. (from the dead-time / data-collection domain).

Compliance rule-of-thumb:

- 1 month before test experiment
- 2 months *before* production run

Removed systems become time-stamped, with separate data-file-production.