

Mechanics of

sticky events

Håkan Johansson,

Chalmers, Göteborg

LNGS/GSSI,
Gran Sasso, May, 2017

Trace
compression

 page 14→

with Giovanni Bruni:

r3­14

r3­15

r3­30
r3­52

r4­12

r4­11

r4­35r4­10

r4­43

x86­63

x86­36

r4­46

x86g­10
x86g­71

München

Coimbra

r4­28

S406 systems

Experience with setups that:

● Have many channels.
● Have many kinds of systems.
● Take data for ~1 week.
● Like high event rates. :-)

Introduction

● Store slow-control information (HV settings,
magnet currents...) in the data stream
– Integrate with a distributed DAQ (NuSTAR).

– Follow the DAQ topology.

● 'Normal' events not suitable:
– Just flow through the DAQ / analysis.

– Late connected clients / files would not get
earlier set values.

● New concept: sticky events.
– Delivered however late the connection is.

Sticky subevents

● Packaged in sticky events.
● The sticky thing is the subevents.

– Sticky = held active until replaced.

● Sticky subevents identified (as usual) by
– type/subtype/ctrl/crate/procid

● Removed as active with length = ­1.

Sticky events: simple semantics

● Sticky subevents are valid until replaced
● … or revoked (replace by nothing)

a aba cb

a a a a b ba ba c

Sticky state
(is logically defined before each normal event)

Sticky (sub)events (same colour = same id, letter is 'content')

Normal events(Revoke)

Guaranteed delivery

● An receiver (either file or network client) will
before each normal event have received
exactly the (at that point) active set of sticky
subevents.

Sticky subevents may be delivered:
● Multiple times.
● In any order.

abb ab ab a

=

=
a b

=
a b b

DAQ / proxy servers

● Absorb the complications in standard programs.
● Keeps analysis clients simple.

Not so much a design choice,
rather a lucky side-effect.

Output stages keep track

aa a ab a

aa a

a b c

a b aba a a

a cabba

ab ca

Replay

Replay

Replay

Revoke

New files

Output stages keep track (network)

aa a ab a

aa a

a b c

b ab

a cabba

Replay

a c

Loss due to slow client

Replay

New client

Merging / time sorting

aa a ab aa b c

a aba c

a a ab

+

→

Merging – loss of source

aa a ab aa b c

a aba c

a a ab

+

→

Revoke active sticky subevents
that lost their source

ab ab ab

ab ab

Usual insert
(no special handling)

Replay by
source

Complicated?

Complicated? (comparing compressed)

Trace
compressionwith Giovanni Bruni Work-in-progress!!!

● FPGA-friendly
● Reduce:

● bandwidth
● storage

Example (1100 traces):
● raw: 12 bits
● this: 3.8 bits/sample

(From 16-bit storage:)
● .gz: 5.4 bits/sample
● .xz: 3.8 bits/sample

Strategy

Centre values to

store around 0

Length proportional to # significant bits
(~ 2x, due to length-encoding prefix)
(inspired by Huffman code)

Input value

Subtract previous

Encode
(mask bits)

Bitshift,
accumulate bits
in output word

Store bitpacked

For each sample:

● VHDL
● 1 sample/clock cycle

(@100 MHz easily)
● Tested in testbench,

data compared to C implementation.
● 550 LUTs on virtex4 (compiled, not tested)

– Dominated by large barrel shifter.

– (Could be smaller (~1/3), but with ~10-30
cycles/sample.)

FPGA code
entity logcode_compress is
 generic(bits : integer);
 port (clk : in std_logic;

 reset : in std_logic;

 input : in std_logic_vector(bits­1 downto 0);
 in_word : in std_logic;
 get_last : in std_logic;

 output : out std_logic_vector(31 downto 0);
 out_word : out std_logic
);
end logcode_compress;

Some results

● Drawback: current version requires noise-level adaption
● Working on new encoding scheme:

without drawback - slightly less efficient, even simpler (de)coding

Fine!

Thank you!

Lots of FUN !

Live by the compiler timing messages!

http://fy.chalmers.se/~f96hajo/shows/

http://fy.chalmers.se/~f96hajo/shows/

	Mechanics of sticky events
	Introduction
	Sticky subevents
	Sticky events: simple semantics
	Guaranteed delivery
	DAQ / proxy servers
	Output stages keep track
	Output stages keep track (network)
	Merging / time sorting
	Merging – loss of source
	Complicated?
	Complicated? (comparing compressed)
	Trace compression
	Strategy
	FPGA code
	Some results
	Finale!

