LMD in FPGA to Time Sorter via Fakernet

Håkan T. Johansson, Subatomic Physics, Chalmers, Göteborg

> R3B Collaboration Meeting, 8-10 Nov 2023, Helmholtz Institute Mainz

Bad news first

What will be presented is **not** ready for *large-scale* use.

Requires excessive monitoring...

Can be used small-scale / testing.

Fakernet: FPGA-independent TCP + UDP

Manufact.	Board	FPGA	Ethernet	
Digilent	Arty A7	Artix 7- 35/100	100 Mbps	
QMTECH	Cyclone IV Starter Kit	Cyclone IV	1 Gbps	
ALINX	AX516	Spartan 6	1 Gbps	
ALINX	AX7101	Artix 7-100	1 Gbps	
ALINX	AX7201	Artix 7-100	1 Gbps	
• • • • •		Xilinx		
		Altera		

Fakernet LMD...

 Produce LMD events in FPGA

. . .

~ 1000 lines of VHDL. ~ 1000 LUTs.

```
when WAIT_EVENT =>
    -- We cannot process data until there is at least one word
```

```
-- in the event buffer (the internal header).
```

```
if (has_in_word = '1') then
```

```
state <= READ_EVENT_HEADER;</pre>
```

```
elsif (i_flush = '1') then
  state <= PREPARE PAD;</pre>
```

```
end if;
```

when READ_EVENT_HEADER =>
 -- Latch the internal header data. One cycle later to allow the
 -- write to the RAM block to have completed.

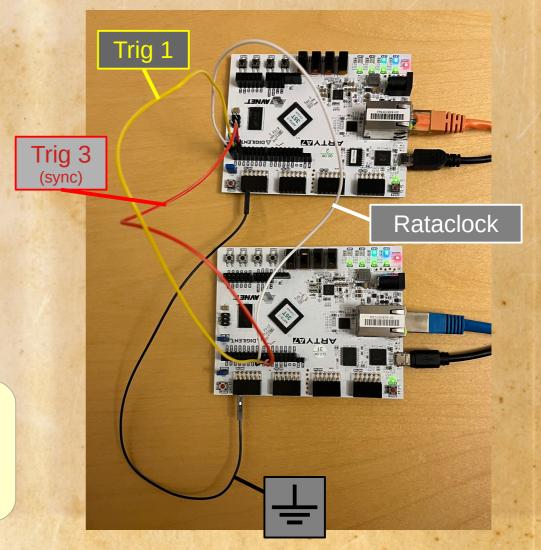
cur ev words <= inevh payload words;</pre>

```
cur_ev_trig <= inevh_trig;
cur ev cnt <= inevh cnt;</pre>
```

```
ts_has <= inevh_ts_has;</pre>
```

```
ts_err <= inevh_ts_err;</pre>
```

```
state <= PREPARE_EVENT;</pre>
```


when PREPARE_EVENT =>

Fakernet LMD => Timesorter

- Produce LMD events in FPGA
- Two boards, sync'ed with rataclock timestamps

 → Combined in drasi TS (timesorter)
- Sync triggers...
- Sync check values...

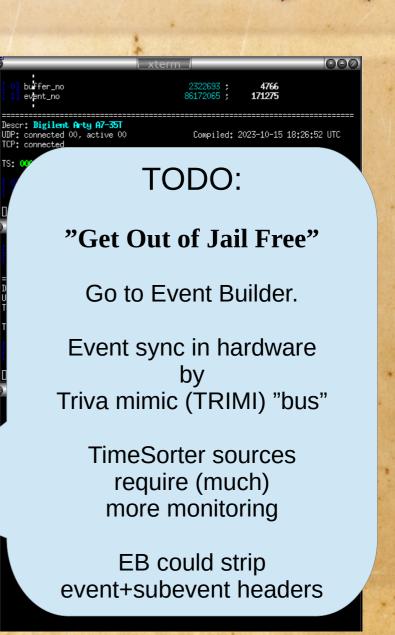
One small addition before TCP open().

Fakernet LMD => Timesorter

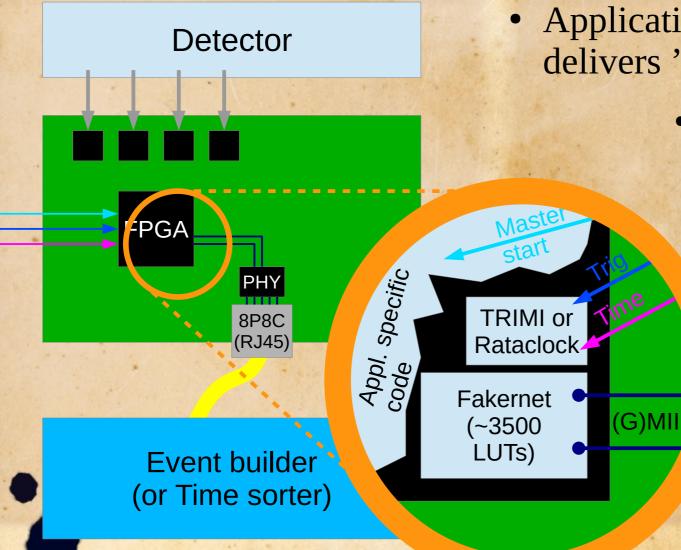
- Produce LMD events in FPGA
- Two boards, sync'ed with rataclock timestamps

 → Combined in drasi TS (timesorter)
- Sync triggers: < 5 ns
- Sync check values: ok

"Go To Jail" Go directly to Time Sorter. Do not pass Readout, do not collect deadtime



Fakernet LMD => Timesorter


- Produce LMD events in FPGA
- Two boards, sync'ed with rataclock timestamps

 → Combined in drasi TS (timesorter)
- Sync triggers: < 5 ns
- Sync check values: ok

"Go To Jail" Go directly to Time Sorter. Do not pass Readout, do not collect deadtime

Direct LMD from FPGA

- Application specific code delivers 'module' event data
 - Format as LMD by small 'adapter' code
 - Send directly to EB / TS
 - Needed:
 - FPGA
 - PHY
 - No CPU

Fin!

Fakernet thanks:

- Philipp Klenze The Idea!
- Anders Furufors Initial impl. help
- Gorka Landaburu External use
- Bastian Löher Rataclock popularisation

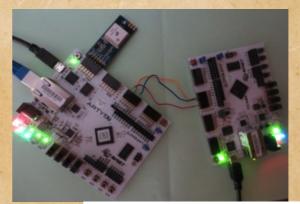
- Wonderful community tools:
 - openFPGALoader
 - GHDL (simulator)
 - GTKWave
 - Wireshark

Fin!

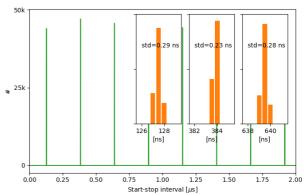
Fakernet thanks:

- Philipp Klenze The Idea!
- Anders Furufors Initial impl. help
- Gorka Landaburu External use
- Bastian Löher Rataclock popularisation

- Wonderful community tools:
 - openFPGALoader
 - GHDL (simulator)
 - GTKWave
 - Wireshark


Thank you!

Backup


Fakernet in other use

FPGA NTP server

0.5 ns sampler

Start+stop pulses, 128+n*256 ns apart, from board #1 to board #2.

(2) 10 -20 -20 -11.40 -20 -11.40 -20 -11.40 -20 -11.40 -20 -11.40 -20 -11.40 -11.40 -11.40 -11.40 -11.40 -11.5 ppm @ 100 MHz = 99998850 Hz (0.1 ppm = 10 Hz) -11.5 ppm @ 100 MHz = 99998850 Hz -11.60 -11.60 -11.5 ppm @ 100 MHz = 99998850 Hz -11.60 -11.60 -11.60 -11.60 -11.60 -11.5 ppm @ 100 MHz = 99998850 Hz -11.60 -11.60 -11.60 -11.60 -11.60 -11.60 -11.5 ppm @ 100 MHz = 99998850 Hz -11.60 -11.60 -11.60 -11.60 -11.60 -11.60 -11.60 -11.5 ppm @ 100 MHz = 99998850 Hz -0.60 Psm d # 2 -0.6

2500 5000

7500 10000 12500 15000 17500 2000

Time [s]