FPGAs for timing and compression

Håkan T. Johansson, Chalmers, Göteborg SFAIR / SFS-KF XLI(I)[?], AlbaNova, Stockholm, Oct 2022

[?] Did we stop counting?

High-precision time and clock distribution - Rataclock

- Single-wire, DC-balanced serial clock + time signal
- PLL-friendly (-> clock)
- 64-bit timestamp, continuously

(Talk by

Hans)

With Bastian Löher, GSI. "sales", HW & test.

Developed with paper-clips...

• < 50 ps so far (with SIS3316)

- Used @ R3B in 2022 (FOOT, TPC)
- DTAS (DESPEC), 2022
- Several more prepared...

http://fy.chalmers.se/~f96hajo/rataser/

Traces: size, value and cost

Adaptive downsampling:

- What is the gain?
- What is the damage?

Adaptive downsamping for DPTC: Developed by (MSc theses): Lukas Rahmn, Anton Fredriksson (2020) Hezhe Xiao (2021)

In the previous episode... (DPTC)

Difference predicted trace compression

0. Get a trace.

Easiest: ask a friend!

- 1. Calculate differences.
- 2. Group (e.g. by 4).
- 3. Determine min. bits needed in group.
- 4. Store. Group headers give bits/sample.

DPTC in use:

F. Hueso-González et al., A dead-time-free data acquisition system for prompt gamma-ray measurements during proton therapy treatments NIM A, 1033, 2022. Struck SIS1160/SFMC01 (FPGA)

At R³B, for FOOT (Si) readout Terasic DE10 nano boards (ARM CPU)

Non-ideal measurements

DPTC storage cost is noise driven!

Difference predicted trace compression

COMPRESSION EFFICIENCY OF THE DPTC ALGORITHM FOR ACTUAL TRACES, CATEGORISED BY DETECTOR TYPE AND DETECTED RADIATION, AND COMPARED TO POPULAR GENERAL-PURPOSE COMPRESSION METHODS AND HUFFMAN ENCODING.

Label	Category	Details	Traces #	Samples #	$\langle A_{\mathcal{P}} \rangle_{\mathrm{g.}}$	$\sigma_{\mathcal{N}}$	$\langle c_{\mathcal{S}} \rangle$	DPTC	gzip xz(LZMA) – — Bits/sample — — –		Huff. — —
a	γ in segmented BEGe	core signal	40	5000	78.3	2.16	4.06	3.89	5.54	4.04	3.58
b		segment 1	40	5000	27.3	2.16	4.06	3.86	4.87	3.89	3.55
c		segment 5	40	5000	53.2	2.21	4.09	3.91	5.54	4.13	3.59
d	n/γ discrimination	Ionisation chamber	200	200	907	71.2	9.10	9.16	11.37	9.78	8.75
e		<i>n</i> -det. anode	200	200	226	4.88	5.24	5.36	6.63	5.32	5.12
f		<i>n</i> -det. cathode	200	200	220	6.20	5.58	5.71	7.00	5.62	5.46
g	position-sensitive	$lpha$ -particles ${ m ^{40}Ar}$	50	1000	852	29.7	7.84	7.81	11.07	8.10	7.38
h	Si pin-diode		50	1000	638	6.36	5.62	5.58	9.37	6.23	5.24
i j k l	γ from ¹³⁷ Cs in LaBr $_3$	no signal split signal split 1:2 signal split 1:4 signal split 1:8	100 100 100 100	200 200 200 200	534 292 194 122	5.30 3.90 3.23 3.05	5.36 4.91 4.64 4.56	5.55 5.08 4.81 4.65	7.91 7.18 6.69 6.37	6.33 5.67 5.24 5.06	5.47 4.98 4.68 4.43
m	cosmic μ in LaBr ₃ , varying HV of PMT	350V ^a	100	600	9.2	0.25	0.94	1.67	0.65	0.49	0.65
n		400V ^a	100	600	19.4	0.25	0.94	1.67	0.84	0.63	0.78
o		450V	100	200	921	4.28	5.05	5.55	8.36	6.42	5.76
р	cosmic μ in LaCl ₃ , different digitizers	CAEN DT5730	100	400	301	3.88	4.90	5.00	7.23	5.47	4.89
q		CAEN DT5751	100	400	40.6	0.86	2.73	2.72	3.94	2.82	2.64
r	Flat traces ^b	all values 0	1	1000	0	0	-	1.51	0.28	0.67	0.26
s		all values 10	1	1000	0	0	-	1.51	0.28	0.67	0.26
t		all values 100	1	1000	0	0	-	1.51	0.28	0.67	0.26

Based on the noise of the signal...

...and matches actual!

... the average storage size (bits/sample) is estimated...

DPTC storage cost is noise driven!

Difference predicted trace compression

COMPRESSION EFFICIENCY OF THE DPTC ALGORITHM FOR ACTUAL TRACES, CATEGORISED BY DETECTOR TYPE AND DETECTED RADIATION, AND COMPARED TO POPULAR GENERAL-PURPOSE COMPRESSION METHODS AND HUFFMAN ENCODING.

Lahel		Details Th	races #	Samples #	$\langle A_{\mathcal{P}} \rangle_{\mathbf{g}.}$	$\sigma_{\mathcal{N}}$	$\langle c_{\mathcal{S}} \rangle$	DPTC	gzip – — Bits/	xz(LZMA) sample — —	Huff. — —
- f	Among riends	ore signal egment 1 egment 5	40 40 40	5000 5000 5000	78.3 27.3 53.2	2.16 2.16 2.21	4.06 4.06 4.09	3.89 3.86 3.91	5.54 4.87 5.54	4.04 3.89 4.13	3.58 3.55 3.59
d e f	Side remark: Testing with real data critical. DPTC developments were first done with <i>synthetic</i> traces. (i.e. we thought we know how traces and noise behave.) We were not right .)))	200 200 200	907 226 220	71.2 4.88 6.20	9.10 5.24 5.58	9.16 5.36 5.71	11.37 6.63 7.00	9.78 5.32 5.62	8.75 5.12 5.46
g h))	1000 1000	852 638	29.7 6.36	7.84 5.62	7.81 5.58	11.07 9.37	8.10 6.23	7.38 5.24
i j k l)	200 200 200 200	534 292 194 122	5.30 3.90 3.23 3.05	5.36 4.91 4.64 4.56	5.55 5.08 4.81 4.65	7.91 7.18 6.69 6.37	6.33 5.67 5.24 5.06	5.47 4.98 4.68 4.43
m n o)))	600 600 200	9.2 19.4 921	0.25 0.25 4.28	0.94 0.94 5.05	1.67 1.67 5.55	0.65 0.84 8.36	0.49 0.63 6.42	0.65 0.78 5.76
p q	Major change to storage (i.e. compression) strategy)	400 400	301 40.6	3.88 0.86	4.90 2.73	5.00 2.72	7.23 3.94	5.47 2.82	4.89 2.64
r s t	riai uaces a. a.	n values 10 11 values 100	1 1 1	1000 1000 1000	0 0 0	0 0 0		1.51 1.51 1.51	0.28 0.28 0.28	0.67 0.67 0.67	0.26 0.26 0.26

Based on the noise of the signal...

...and matches actual!

... the average storage size (bits/sample) is estimated...

Adaptive downsampling

Reduce storage need by reducing number of **samples**:

- Combine as average.
- Where 'compatible' with noise.
- Lossy... (but maintains integral)

Adaptive downsampling: method

Group samples into as few averages as 'possible'.

'Possible' when **deviations** are **within** expectations of **noise** (σ_{noise}).

Control parameter: *K*

Averaging **lengths:** 2^{*n*}, only change **-1,0, or +1** each step.

Additional storage: **1 or 2 bits** per average. (1 for 0, 2 for \pm 1).

For **all** x_i and **all** $n < \max$ level:

$$\sum_{j=1}^{2^{n}} x_{i+j-1} - \sum_{j=1}^{2^{n}} x_{i-j} < K\sqrt{2^{n+1}} \sigma$$

- Yes: no restriction.
- No: averaging **length** $\leq 2^n$ for x_{i-1}, x_i .

Real-world traces – costs (savings)

Lossless (DPTC)

The fate of one particular Gaussian:

To assess the impact of the lossy compression:

Study fits of Gaussian pulses.

Next page:

Many Gaussians

The fate of one particular Gaussian:

"Damage report"

lines: $d_{a/w/c} = \sigma_{a/w/c, ds}/\sigma_{a/w/c} - 1$, at 10%, 50%, surface: $d_a^2 + d_w^2 + d_c^2$, K: lin, ml: 6

Linear (triple) downsample conditon.

"Terra

lines: $d_{a/w/c} = \sigma_{a/w/c, ds}/\sigma_{a/w/c} - 1$, at 10%, 50%, surface: $d_a^2 + d_w^2 + d_c^2$, K: step, ml: 6

Step (pair) downsample conditon.

-oss map

width

width

width

width

Wrapping up: savings vs. loss

Note: **precision loss** compared to **noise loss** <u>only</u>. Detection processes may induce much larger uncertainties, due to **statistical physical processes**, e.g. energy loss straggling.

Wanted!

Real-world examples of final-result effects...

- Do **you** analyse pulse shapes?
- Does your analysis yield **FoM** values?

• Want to **try** ADS-DPTC?

→ Please contact me.

Figure-of-merit; Signal separation... = Quantify quality?

Finale!

10

Thank you!

Adaptive downsamping for DPTC: Developed by (MSc theses): Lukas Rahmn, Anton Fredriksson (2020) Hezhe Xiao (2021)

Rataclock protocol

