
trloii-intro(5) TRLO II Manual trloii-intro(5)

NAME
trloii-intro − Start-up guide for TRLO II usage.

DESCRIPTION
This guide walks through compiling the TRLO II companion programs, flashing the firmware onto a VU-

LOM/TRIDI module and some first tests.

DOWNLOAD
The code is available with git. Currently at a GSI filesystem. (If you have no access, the author may pro-

vide a tar-ball.)

git clone /u/johansso/trloii.git

or from outside:

git clone USERNAME@lx-pool.gsi.de:/u/johansso/trloii.git

cd trloii

Find out the current tar-ball firmware file name by visiting:

www-browser http://fy.chalmers.se/˜f96hajo/trloii/firmwares.html

Download (wget(1) may be useful), and then unpack:

tar -zxvf trloii_firmwares_XXX.tar.gz

This creates a directory fw with all bitstream files (*.rbt), version notes / comments (trlo_compile.txt) and

interface definitions (*_defs.h).

NFS-HOST COMPILATION
There are not (yet) any programs that run on the host. The directories for the control programs support hav-

ing executables for multiple architectures present at the same time. Doing a build of the control library on

the (presumably faster) server/workstation/desktop does cut down compile time a bit as some common gen-

erated files are produced.

cd trloctrl

Find all firmwares that we have downloaded and create build directories for those:

./find_firmwares.pl

Do all the builds:

make

This will take some time. Tested on GSI and also more recent Debian.

GIT version January 10, 2014 1

trloii-intro(5) TRLO II Manual trloii-intro(5)

EMBEDDED SYSTEM COMPILATION
Be in the same directory on your embedded system:

cd trloii

cd trloctrl

The above, again:

make

This will take even more time. Have patience. (Read e.g. the vulomflash(1) manual page.)

Then compile the TRIMI control program:

cd ../trimictrl

make

And the flash utility:

cd ../flash

make

cd ..

ALIASES
It simplifies use to set up aliases for the control programs. (When having the executables for several archi-

tectures it also prevents accidental use of the wrong executable - which even is fatal (hang) on some sys-

tems.)

If you are using tsch, then add to ˜/.tcshrc, with ˜ representing the home directory on the embedded system

(here with hostname VMECPU, and ARCH the architecture string):

test $HOST = VMECPU && \

alias vulomflash /trloii-path/flash/bin_ARCH/vulomflash

test $HOST = VMECPU && \

alias trimictrl /trloii-path/trimictrl/bin_ARCH/trimictrl --addr=VA

If you are using bash, then add to ˜/.bashrc:

test $HOSTNAME == VMECPU && \

alias vulomflash=/trloii-path/flash/bin_ARCH/vulomflash

test $HOSTNAME == VMECPU && \

alias trimictrl="/trloii-path/trimictrl/bin_ARCH/trimictrl --addr=VA"

The trimictrl program like vulomflash is module and firmware independent. If the TRIMI is actually used,

the module would for best MBS compatibility generally be placed at address VA=2. As one would only

have one TRIMI per processor, it makes sense to include the VME address in the alias. Please do NOT use

module address 0x02 for this tutorial.

A helper script exist which produces such lines. To be run on the embedded system:

scripts/makealiases.sh

The shell has to be restarted to get the aliases. Easiest is probably to log out and in again.

GIT version January 10, 2014 2

trloii-intro(5) TRLO II Manual trloii-intro(5)

FLASHING
For the following, let us assume that your VULOM/TRIDI module is at address 0x07. This is set by the ro-

tary switches on the module. On a VULOM with a display this should be shown in the lower right corner

of the display.

First just read two registers from the module (we use the alias):

vulomflash --addr=7 --read

This should give something like:

VULOM base address: 0x07000000

LOG: Virtual address for VULOM/TRIDI @ VME 0x07000000 is 0x3002a000.

VOLUM+0 => 0x785b9f22

VOLUM+RANGE_REG(0x800000) => 0x00000067

where 0x785b9f22 has been read from the FPGA and 0x00000067 from the CPLD. (The CPLD handles

the flash memory.) If the module runs the default priority encoder and deadtime locker, then VULOM+0

probably reads as 0x0. In this case it is a TRLO II, and 785b is part of the firmware identification md5sum.

The CPLD can also differ, but only in the low byte (0x67 here). If the program crashes (trap / SIGBUS),

the VME address is likely wrong. Alternatively, the FPGA has not loaded any (good) firmware.

The next step is to list the contents of the flash memory of the module. The memory is divided into 8 inde-

pendent ranges, which can be used to store different firmwares. After power-on, the firmware in range 0 is

automatically loaded. One should therefore only put firmwares for production use in range 0, after having

tested them from another range. If the firmware interacts badly with the VME interface, it could prevent

communication with the CPLD, and thus simple repair. After each firmware image in flash is space for a

text comment, which is printed thus:

vulomflash --addr=7 --readprogs

Giving the comment field for each range. If it recognizes a TRLO II comment, only one abbreviated line is

output per range, e.g.:

Rng 3: TRLO II ver/vulom4b_trlo 2013-12-23 18:39:03 (9.491ns) 785b15c6 Rng 4: TRLO II vu-

lom4b_trlo 2013-12-11 10:21:58 (9.496ns) 119bae55

where the identification md5sum is at the end. (Note: the checksum is over the source code, not the gener-

ated .rbt bitstream file.)

Select a range where the new firmware can be stored (in the following example it is 6). Move to the direc-

tory with the appropriate firmware:

VOLUM4: cd fw/vulom4_trlo

VULOM4B: cd fw/vulom4b_trlo

TRIDI1: cd fw/tridi1_trlo

Find the name of the bitstream file (*.rbt):

ls

Beam it up:

GIT version January 10, 2014 3

trloii-intro(5) TRLO II Manual trloii-intro(5)

vulomflash --addr=7 XlogicY.rbt --prog=6

Which should progress like this:

VULOM base address: 0x07000000

LOG: Virtual address for VULOM/TRIDI @ VME 0x07000000 is 0x3002a000.

Firmware: vlogic_4b.rbt

Comments: trlo_compile.txt

From file: firmware: 7819904 bits, comments: 323 bytes.

Performing command ’prog’...

Read 977488 bytes from range 6.

Range: 6 Erased blocks 00 - 07.

Firmware loaded (7819904 bits, 977488 bytes). 323 bytes comment.

Read 977488 bytes from range 6.

Range 6 verified OK (7819904 bits, 977488 bytes). 323 bytes comment.

If this went fine, one may now read all ranges again:

vulomflash --addr=7 --readprogs

The newly stored firmware should appear:

Rng 6: TRLO II ver/vulom4b_trlo 2014-01-08 16:56:47 (9.491ns) ab66c5ad

Tell the CPLD to load this firmware into the FPGA and restart it:

vulomflash --addr=7 --restart=6

Check to see if it restarted with the new firmware:

vulomflash --addr=7 --read

VOLUM+0 => 0xab661f20

VOLUM+RANGE_REG(0x800000) => 0x0000006e

The new identification md5sum should appear at VOLUM+0. If it has the same value as before, but

firmware flashing has succeeded, then the module most likely has a known bug in its CPLD firmware that

prevents restarts from non-0 ranges. The CPLD firmware can be reprogrammed via JTAG. (A workaround

is to load the FPGA firmware into range 0. This is however for the moment disabled in vulomflash, pend-

ing addition of a few more safety checks... Contact the author.)

cd ../..

TRLOCTRL ALIASES
Knowing the used firmware image identification, an alias for the trloctrl program can be set up.

Like above, either in ˜/.tcshrc:

test $HOST = VMECPU && \

alias trloctrl /trloii-path/trloctrl/fw_FWID_ZZ/bin_ARCH/trlo_ctrl \

--addr=VA

or in ˜/.bashrc:

GIT version January 10, 2014 4

trloii-intro(5) TRLO II Manual trloii-intro(5)

test $HOSTNAME == VMECPU && \

alias trloctrl="/trloii-path/trloctrl/fw_FWID_ZZ/bin_ARCH/trlo_ctrl \

--addr=VA"

Such lines can be produced by giving the module address and firmware identifier to the helper script:

scripts/makealiases.sh VA FWID

TRLOCTRL USE
First test is to see trloctrl talk to the module:

trloctrl

which would look like:

LOG: Virtual address for TRLO II @ VME 0x03000000 is 0x3002a000.

LOG: TRLO: MD5SUM: 0xab66c5ad (CT: 52cd753f = 2014-01-08 15:56:47 UTC)

Next thing is to clear the setup registers (they are unfortunately not initialised to suitable defaults - being set

to 0, basically all multiplexers source the first front-panel input; better is to be tied to a hardwired zero):

trloctrl --clear-setup

And printing the current setup:

trloctrl --print-config

will only show one item, as all setup registers that have clear-default values (0 for all but the multiplexer in-

puts) are suppressed:

DEADTIME_IN(1) = WIRED_ONE

(This is the deadtime input of the trigger state machine which is initialised differently by --clear-setup.)

Start a 1 kHz pulser, and route the output to the front-panel via a pulse stretcher:

trloctrl "period(1)=1000us" "stretch(1)=50ns" \

"GATE_DELAY(1)=PULSER(1)" \

"LEMO_OUT(1)=GATE_DELAY(1)" "ECL_OUT(1)=GATE_DELAY(1)"

Monitor the values of the scaler channels connected to each multiplexer source:

trloctrl --mux-src-scalers

One could connect a cable from the used ECL or LEMO output to an input an see the input channel count-

ing. Abort with Ctrl-C.

Have fun!

AUTHOR
Håkan T. Johansson <f96hajo@chalmers.se>

GIT version January 10, 2014 5

trloii-intro(5) TRLO II Manual trloii-intro(5)

SEE ALSO
trimictrl(1), trloctrl(1), vulomflash(1),

GIT version January 10, 2014 6

