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Abstract

A tool to get quick access to nuclear physics experimental data on-line and
off-line. The system can help to unpack event-wise experimental data from
e.g. nuclear physics experiments, and provide easy access to the various data
members, in form of hbook ntuple files, root trees, or plain C structures in
any program via the network, but also in user functions or for quick viewing
from the command line. It can also create plots showing the correlation
between data occurring in different detector channels, sometimes helpful to
quickly verify that cabling schemes are correct.

This is achieved by defining a descriptive parseable language that is used
to express the structure of the binary data. Data structures and related
unpacking methods are generated at the same time from the description.
The language is suitable to define the meta-data placed around the (possibly
modified) module data stream in order to group events, assign trigger and/or
timestamp information, separated from the actual channel data. Typical
examples for different data specifications are shown in the write-up.

The system can in particular be used as an input data filter reading from
a variety of different input streams and formats provided by different sys-
tems, and provide standardised output data streams for further analysis or
simulation steps.

This work has in part been supported by the EU FP6, and by the the Royal
Society of Arts and Sciences in Göteborg.

The extensive and patient testing by the LAND group at GSI is deeply
appreciated, as well as the suggestions for the program and this write-up.
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Chapter 1

Introduction

Information recorded by a data acquisition system (DAQ) must be trans-
formed before being easily used with a data analysis tool (like paw [1] or
root [2]). This write-up describes and is a manual for a tool to help taking
that step. The creation of the processing stage to unpack data from the
raw data files produced by a DAQ, ordered by read-out module, into some-
thing that is suitable for processing and rapid monitoring and visualisation,
ordered by detector channel, is a repetitive and rather boring task. It does
contain a multitude of interesting aspects, mostly in the realm of computing
however, but is not what one would like to spend time on every time a few
modules or detectors are to be tested.

This tool is named ucesb after the working principle it adheres to: “un-
pack and check every single bit”.

1.1 Overview

A ucesb-based unpacker is a tool to do rather “quick and dirty” checks of
event-based data produced in e.g. nuclear physics experiments. This is done
by providing the necessary pieces and infrastructure to perform the recurring
tasks:

• A generic input stage for file reading, including on-the-fly decompres-
sion of data files as well as reading the data over the network from a
tape-robot via remote file I/O (RFIO) or directly using tcp/ip from a
running DAQ.

• Extraction of the event-wise data from a few record/buffer-based file
formats (and tcp transports).
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Introduction

• Simple data structures suitable for fast cleaning between events and
random order filling with in-order extraction, while retaining zero-
suppression1.

• A “language” to specify the layout of data produced by the DAQ read-
out of modules. A parser and program to generate C++ code based on
the specification, that can unpack the data into suitably generated data
structures. The generated unpacker performs rigorous checking of the
data integrity versus the specification given. In cases when the data
format for one reason or another is too complicated to be specified in the
provided language, hand-written unpacker functions can be seamlessly
integrated.

• Along with the raw data format specifications, a mapping describing
how the raw data correspond to physical detector channels can be given.
From this, data structures arranged by detectors are generated. The
program performs the data mapping for each event.

• Ability to dump selected parts of the data (from the internal data
structures) as ntuples into hbook or root files, usable by e.g. paw or
root, or plain C structures over the network.

• A few modes of simple but effective on-line data monitoring.

The user can thus concentrate on the work of dealing with the data from
the module or detector of interest itself.

1.2 Intended audience / skills needed

What to expect? The average user (physicist?) is surely able to use the
command line options. The greatest desire would probably be to as quickly
as possible generate paw ntuples or root files.

Describing a simple data format, to unpack data from some new module,
and to specify an accompanying data mapping, is a little more intricate but
still straight-forward and only requires some extra will and discipline2.

1With few exceptions, the data structures are designed to allow the program to operate
such that the event processing time is proportional to the non-zero data size in each event,
and not the worst case event size (when all channels contain data), which usually is orders
of magnitude larger.

2The sometimes thought of as nasty, very rigorous, checking of the data integrity is
actually quite helpful here.
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Quick start

Implementing some quick data analysis, averaging, or other consistency
checks within the user function, should also be fairly easy, but may at first
seem daunting. The difficulty is that it requires knowledge of how the various
members of the data item will be named, and how to handle the container
data structures for zero-suppressed arrays. This path would most likely be
treaded by a DAQ-close person, with the paw/root idea appealing more to
others.

A more complicated task is to construct the unpacker functions for more
involved data formats — which usually is the equivalent of saying that the
data formats sports one or more levels of explicit or implicit zero suppression
where the output can be anything between small and sparse up to rather
dense. Handling this efficiently requires quite some care.

Using the monitoring facilities provided from the command line is quite
easy. Adapting them to new kinds of data will by necessity involve diving
into the usage of the classes and functions performing the wanted tasks.

In addition to this documentation, the program source comes with over a
dozen unpackers, handling data from various smaller or larger experiments.
They span the entire range from doing nothing at all with the data, to
completely furnishing their own data structures, see Appendix A.

1.3 Quick start

Seeing is believing!

1. Obtain the sources, by cloning the GIT repository:

git clone http://fy.chalmers.se/~f96hajo/ucesb/ucesb.git

2. Build all example unpackers:

make

or just one of them (this example handling data from the S245 experi-
ment):

make land

One common build problem is that the default parser generator yacc
does not handle the extensions used in the syntax descriptions — edit
the first lines in the Makefile by removing the hash comment markers
(#) from #YACC=bison and #export YACC to explicitly use GNU bison

instead.

For some of the examples below to work, support for cernlib [3] or
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root [2] and ncurses3 is needed — recompile with:

make clean

make land USE EXT WRITER=1 USE CURSES=1

3. Let the program process a data file by running:

land/land /misc/scratch.land1/s245/lmd/r06 0308.lmd

Obviously, access to some appropriate input file is needed.

4. To create an ntuple (requires cernlib or root), add:

--ntuple=RAW,r06 0308.ntu or --ntuple=RAW,r06 0308.root

to the command line. The ntuple will include all raw level variables.

5. With ncurses support, let’s go to the movies!

--watcher=POS*T:POS*E,N1 1-5 ?T

6. Further options are listed by:

land/land --help

7. Some data from a test setup is available online,

http://fy.chalmers.se/~f96hajo/ucesb/mwpc test1.gz

It can also be used for testing:

make mwpclab USE CERNLIB=1 USE CURSES=1

mwpclab/mwpclab mwpc test1.gz

mwpclab/mwpclab mwpc test1.gz --ntuple=UNPACK,mwpc.ntu

mwpclab/mwpclab mwpc test1.gz --watcher

3Generally available with UNIX-like operating systems.
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Chapter 2

Data levels

The work done by the unpacker program creates a bridge between data re-
presentations suitable for long term storage in a file, and a representation
suitable for manipulations in the memory of a computer. Actually, much of
the computing efforts in analysing nuclear physics experiments is dealing with
similar kinds of conversion problems — between data representations suitable
for long term storage (archiving and documentation1) and the calculations
that one needs to perform.

2.1 Data flow

Figure 2.1 gives an overview of how data flows within a ucesb unpacker.
Except for the input stage and associated buffering, the content of each
event is sequentially filled into data structures modelling various layers of
the setup — in a sense going backwards from the electronics to the physics
of ions traversing detectors.

The processing of each event begins with the unpacker functions looping
over all subevents of the event and calling the appropriate member functions
to interpret the data in the input buffer. The unpack functions will place
the data found in the unpack level data structure, which has a layout closely
tied to the data arrangement in the file, usually representing various digital
acquisition modules, DAMs.

The map functions loop over the non-zero data in the unpack structure
and for items with a mapping defined, the values will be copied to the des-
tination in the raw level. Before mapping is performed, an unpack user
function (with access to the unpacked data) can be called. This is required

1On the use and power of text files and parsers within that realm, see [4], Section 4.2
and Appendices C and D.
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Figure 2.1: Data flow in a ucesb based unpacker. The dashed lines mark
optional data paths enabled by various command line options.
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Data structures

in case the data has been collected in multi-event mode, i.e. such that seve-
ral physical events are stored in each data-file event. In such instances, the
unpack level data structures will hold one DAQ event, while the raw and
subsequent structures are filled and processed once per physical event.

The remaining two data levels (cal and user) are not expected to be
generally useful without specialisation — they would make the first steps
of a data-analysis proper. Being too generic, one quickly finds them not
providing any particular advantage for but the simplest kinds of analysis.

The transform routine converts the integer data in the raw level data
structure into floating point values stored in the cal level, with linear trans-
formations using parameters given in one or more calibration files.

If present, the cal (final) user function is called. It has access to all
previous data levels, and can be used for arbitrary processing of the data.
A user level data structure may be declared, and filled from the cal user
function. Certain limitations apply to the layout of the user data structure,
as its members are eligible for use by the ntuple writer and therefore must
be parsable by the psdc helper program.

After all data levels have been filled, the monitoring and event dumping
routines (e.g. ntuple writing) are executed.

2.2 Data structures

The programs are written in C++ and make heavy use of both member func-
tions with special names in each data item and structure to perform parti-
cular tasks, and template parameters to create arrays, etc., with appropriate
sizes of containers and accompanying bit-masks. Templates are also used to
overcome the usual unpacking plague of byte-swapping. The recurring idea
is to let the compiler do the work of creating optimised code2.

The program’s main task is data juggling — to and from each data struc-
ture, and in many cases with seemingly random or non-linear mappings, e.g.
when detector signals have been connected with contrived channels orderings
to the DAMs to avoid cross talk. Also the ntuple generation and monitoring
tools need easy access to the various structure members. As those access
patterns often are determined at runtime, depending on groups of channels
selected on the command line, the actual accesses within the program can
only be furnished via pointers, not by name.

The data structures look and behave as fixed C structures, much more
than C++ classes. Member functions are not used to access the individual

2Good old C preprocessor #defined macros are also a big help — die-hard object
oriented total-encapsulation evangelists will not find themselves completely at home. . .
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Data levels

items — any routine having a set of pointers may help itself — provided it
respects the additional information it has regarding how zero suppression is
implemented before dereferencing the pointers. The filling of arrayed data
structures have member functions to assist in doing the lazily performed3

item clearing needed. Templates are used to define array sizes and item
types at compile time.

2.2.1 Zero-suppression

Zero-suppression is a common and simple technique to avoid excessive me-
mory access and processing by not storing or performing calculations on data
from channels that produced no significant signals in an event, i.e. were noise-
compatible. The idea is directly applicable when dealing with a set (array)
of similar items of data, by simply leaving unused entries out.

The data structure holding such compacted data must be designed to
efficiently assist all the algorithms that need to deal with the data:

Fast clearing Before each new event is processed, all data structures must
be logically cleared. This is quick when only some markers that tell if
data is available are reset, and not the data items themselves.

Avoiding memory management Trading memory for speed, much time
is saved. By allocating memory enough for the worst case event (all
channels having data) from the outset, or by only allowing the struc-
tures to grow, memory management is simplified.

Random order filling When either filling file input data into the unpack

level, or mapping unpack module data into the raw level, the items
usually do not appear in order. The data is filled into ordered struc-
tures by employing a bucket sort strategy. By handling the data array
together with a bit-field marking valid locations, only the bit-field must
be cleared between events.

Ordered extraction With the data structures being in order, extracting
sorted data is trivial.

The program has two container structures for storing zero suppressed
data (the prefix raw has become a misnomer):

3Lazy evaluation is to defer execution of a routine until necessary. In this case, indi-
vidual zero-suppressed member items are not cleared until just before they are marked as
used for a new event.
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raw array zero suppress<T,n> Stores n items of type T in fixed locations.
A bit-mask is used to keep track of active slots. The index of each item
is implicitly given by its slot. By default used for the unpack and raw

levels, as those expect random fill order.

raw list zero suppress<T,n> Similarly stores n item of type T, consecut-
ively and each with an index. A counter keeps track of the number
of used slots. Used for the cal level, as this expects to be filled in
order from the raw level. (Items will be properly ordered even if given
out of order, but performance will be lower, due to the insertion-sort
behaviour.).

Both kinds of zero-suppressed containers only clear an item the first time
(if at all) any member of it is filled each event. See Figure 2.2.

Multi-entry items

For read-out channels capable of delivering multiple hits for each event, a
special version (raw list ii zero suppress<T,n>) of the list container that
has no indices exists. The hit number index within each slot is in these cases
usually meaningless, as it just gives the read-out order — multi-hit data are
generally time signals, and as such ordered by themselves.

2.2.2 Multi-event support

Data collected in multi-event mode have the information of several physical
events (triggers) stored within the same event of the data file. The reason
for operation in multi-event mode is to reduce the overall dead-time for most
events. Doing the data transfers coalesced in larger chunks, triggers are
for most events only blocked during the analog-to-digital conversion in the
modules. Each module stores data for many events and is read out fewer
times. As the fast transfers (e.g. block transfers) usually do not differentiate
between different events, the data for all the contained physical events will
then be stored together in the subevent, followed by the next module. During
unpacking and data mapping, this must be sorted out.

The ucesb based unpackers deal with this by allowing data items (e.g. a
module) to be marked multi, whereby an arbitrary number of single-event
instances are allowed to occur within each file event at the unpack level. After
unpacking, the unpack user function is called, which is responsible to both
tell how many physical events are contained in the file event, as well as assign
each single-event item to one of the physical events. None of the supported
file formats contain any explicit support for multi-event data, handling this is

9
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File and event formats

thus up to the user. Modules supporting multi-event operation will generally
place an event counter into e.g. the header word of each chunk of single-event
data, thereby allowing omission of completely empty events.

The remaining loops over the data (mappings and user function calls), are
then performed once per physical event. As special information contained
within the file event may only apply to one single event, generally the last,
this can be marked as such in the data mappings. (Using multi-event mode
with e.g. the MBS [5], all but the last event in a multi-event series will not
be able to invoke any operation from the DAQ software and can thus be
implicitly taken as e.g. trigger 1. Any other trigger that needs some special
handling already by the DAQ programs, e.g. some time calibration event,
must terminate a multi-event series.)

2.3 File and event formats

The raw data produced by a DAQ are generally packaged in events, which in
turn are stored in data files. This section describes the overall features of the
formats the ucesb unpackers can be compiled to use. As the DAQ of any one
particular experiment is using only one particular output data format, and
the data format also affects some aspects of the unpacking, each unpacker
can only be compiled to use one input data format at a time.

2.3.1 File buffering

Perhaps mostly seen as a relic from times when network speeds were pro-
hibitively small and data had to be stored directly on tape, most data file
formats specify that events should be packaged in some sort of records of
lengths usually being a multiple of a large power of 2.

The fixed size buffers had the advantage of working better with the record-
based tape storage formats, and still allows for a certain level of error recovery
if a file is damaged4. A drawback is that the events generally never fit exactly
into the records, and thus either space is wasted at the end of each record
(on average, the size of half an event), or some events must be fragmented
over several records, leading to inconveniences during unpacking.

4Also todays disk storage media and software is not completely fault-free, e.g. some
S287 data files were somehow damaged during early storage, before being written to the
GSI tape robot.
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Figure 2.3: Big- and little-endian memory access conventions.

2.3.2 Endianess

The endianess of a processor architecture defines how it transfers multi-byte
values between the CPU and memory. While the registers in the processor are
generally just interpreted as one entity, the storage of any multi-byte content
in memory (and by extension also on more permanent media) requires a
convention, see Figure 2.3.

With the big-endian convention, the byte location containing the most
significant bit is stored in the memory byte with the lowest address, i.e. the
one selected by the pointer used to address the memory. This resembles the
usual left-to-right writing of numbers, and is generally used by micropro-
cessors with fixed-length (usually 32-bit) instruction words.

In the little-endian convention, the least significant byte is written at the
first memory location, followed by increasingly more significant bytes. This
has the advantage that the same memory pointer is able to point to the same
object, either it is interpreted as being 8, 16 or 32 bits long. This is convenient
for architectures using (or having their roots from) variable length instruction
encodings, where immediate operands for the machine instructions often can
be given in various sizes, depending on magnitude.

The ucesb format specification uses the little-endian convention of num-
bering bits in bit-fields from 0, starting at the least significant bit. (The
big-endian convention usually start numbering the bits from 1 at the most
significant bit.)

As the experimental data is collected using various computer architec-
tures, and then often analysed using others, efficient handling of data con-
version is paramount. Converting to and from the non-native endianess is
easy, just flip the order of the bytes comprising each item — support for this
is directly available in most CPUs since a decade. The trouble is thus not the
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Figure 2.4: Scrambling.

speed impact of making e.g. an ana-
lysis program deal with byte swap-
ping, but rather a book-keeping prob-
lem of knowing what and when to
do it, i.e. remembering or recognising
with what endianess the data were
created.

In network protocols, this prob-
lem is usually dealt with by employ-
ing so called network order, which is
the same as big-endian byte order.
The data structures (i.e. the ordering
of the various variables) are the same
on all architectures. Each machine is
responsible for converting every item
before transmission and after recep-
tion, if needed. This is most of-
ten done by using the hton* and
ntoh* macros5, which translate into
a copy on big-endian machines (fre-
quently being completely optimised
away), and one or a few simple in-
structions to perform the byte swap-
ping on others.

Scrambling

There is one way to make matters worse. Assume some of the data is stored
with 16-bit entries, but in the wrong byte-order. Now, swap the bytes of
the data as 32-bit elements. Suddenly, the entries are all in the correct byte
order, but also pair-wise interchanged, as in Figure 2.4.

2.4 File formats

For a detailed description of the formats, please consult the respective referen-
ces/specifications. The following subsections mostly contain some comments
on some aspects of the various formats. They should not be taken as a
suggestion to implement yet another format, but rather as some remarks
on pit-falls to avoid or at least to look out for and beware of.

5hton* is for host-to-network conversions and ntoh* is for network-to-host translations.
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An important aspect of a data file format is to not be more “chatty” than
necessary. Fields must be filled with correct information, as having wrong
information is even more harmful. Likewise, event sizes do matter, not only
due to the sheer storage size needed for files containing millions of events,
but also as I/O capacity easily becomes more limiting than CPU processing
speed.

2.4.1 LMD – list mode data (MBS)

The GSI list mode data files, LMD, are based on fixed-size buffers contain-
ing events. The events in turn contain subevents, one or more produced by
each read-out controller in a multi-branch setup. The subevents may be dis-
tinguished by several identification fields, but unfortunately have no clearly
specified way of conveying the endianess of the originating processor. This
becomes a problem due to the rule of any receiver doing 32-bit aligned byte-
swapping to native order at all stages in the data transport. At the same
time, all lengths are stored as the number of 2-byte words, thereby if not
expressly encouraging the use of compact 16-bit encodings6, at least inviting
to the creation of confusion at unpacking to deal with possible scrambling. . .

During data collection, the buffers are handled as several together in so-
called streams. Events that do not fit into the space left in one buffer may
be fragmented into the next, or over several buffers if necessary, but may not
span multiple streams. Streams can not be spanned since they make up the
quanta of formatted event data emitted by the event-building process (the
collection and juggling of subevents from various subsystems into complete
system-wide events).

2.4.2 EBYEDATA – Daresbury MIDAS

The EBYE7 file format is record based [6], and the data is stored by MIDAS
in events [7]. Each data item is 2x16 bits and byte order information both
for the record header and the data itself is stored in the header. Even the
data format as such is specified, with each entry using 32 bits, 16 bits for the
value, and the remaining bits used to identify the source of the value, divided
into groups and items. This strictness leads to undesirable contortions when
e.g. storing 32-bit valued entries from scalers.

The data format is not really a raw data format, but has already been
somewhat sorted by the DAQ. While simplifying small setups, it is quite

6Using dense encodings is a good thing.
7Possibly meaning event-by-event, no direct explanation has been found.
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cumbersome to use the format generally, and forces the DAQ to do quite
a lot of mapping of the data — which can only be considered to be a bad
thing — being a recipe for mistakes and trouble while correcting mismaps
afterwards off-line!

The detailed unpacking of the fixed data is not handled by the input
stage of a ucesb program, but by a format specification, see e.g. the madrid
unpacker (cf. Appendix A). Both this and the following PAX format have
no subevents. To be able to use the generic unpacking code with minimum
changes, a dummy subevent declaration is used.

2.4.3 PAX – KVI data

The PAX file format specifies a simple record and simple events with a length
and a type. The headers and data are arranged in 16 bit units (thus limiting
the length of the events8), and the byte order is specified in the record header.
There are provisions for fragmented events, although the ucesb unpackers
do currently not support them.

2.4.4 HLD – HADES raw data

The HLD file format [8] does not use any records, the events and subevents
are stored directly into the file, only adhering to certain alignment rules.
Alignment of the event, and each subevent within, is given by the event
header. Byte order of the event and subevent headers is well described,
as well as the word size of each subevent. The scrambling problem does
not apply, as the rule is that no automatic byte-swapping is done during
data transport — final reader makes it right for themselves. Each event
is associated with a time stamp, but in pseudo-clear-text and it only gives
second resolution, despite its use of 64 bits.

8One should remember that 216 is 64k, which really is a lot of space for one event.
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Chapter 3

Command line options

The unpacker program comes with a set of common command line options,
controlling the input, output and error handling. Options not available due
to various compile-time choices are shown in parentheses. The following terse
descriptions, explained more in detail in this chapter, are from the program
itself:

file://SRC Read from file SRC.

rfio://HOST:SRC Read from rfio file SRC from HOST.

event://HOST Read from event server HOST.

stream://HOST Read from stream server HOST.

trans://HOST Read from transport HOST.

--scramble Toggle scrambling of data.

--in-tuple=LVL,DET,FILE Read data from ROOT/STRUCT.

(--merge) No support for overlapping sources compiled in.

--calib=FILE Extra input file with mapping/calibration parameters.

--max-events=N Limit number of events processed.

--print-buffer Print buffer headers.

--print Print event headers.

--data Print event data.

--debug Print events causing errors.

--event-sizes Show average sizes of events and subevents.

--quiet Suppress harmless problem reports.

--io-error-fatal Any I/O error is fatal.

--allow-errors Allow errors.

--broken-files Allow errors again after bad files.

--help Print this usage information and quit.

--output=OPT,FILE Save events in LMD file (native/net/big/little,size=nM).

--bad-events=FILE Save events with unpack errors in LMD file.

--server=OPT Data server (stream:port,trans:port,size=nM,hold).

--show-members Show members of all data structures.

--show-calib Show calibration parameters.

--ntuple=LVL,DET,FILE Dump data as PAW/ROOT ntuple.

--watcher=DET Do ncurses-based data viewing.

--corr=TRIG,DET,FILE Create 2D correlation plot.

--dump=LVL Text dump of data from data structures.

(--threads) No threading support compiled in.

(--files-ahead) No threading support compiled in.

--progress Do ncurses-based thread monitoring.
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3.1 Input data

The unpacker will read and process all input sources in sequence.

file://FILENAME Read data from a normal file. This option also works
without a file:// prefix, i.e. any argument will as last (default) action
be attempted as a file path and name. If a file is compressed using gzip
or bzip2, a process will automatically be started to decompress the file
on the fly.

stdin can also be used for input by specifying file://-, such that the
unpacker can be used in a pipeline. Note that decompression will not
be attempted in this case.

rfio://HOST:PATH Read data using the rfio protocol. Only tested so far
with the GSI tape robot (HOST=gstore). To encourage good tape robot
hygiene, i.e. staging the files before usage, the unpacker will only read
files that are already staged.

event|stream|trans://HOST:PORT Read data from an MBS TCP server
providing data with either of the event, stream or transport protocols.
HOST is the Internet host-name of the server, the PORT is optional —
without it, the default port for the given protocol is used. Both the
stream and transport servers deliver full buffers. For the event server,
buffers are internally simulated, to fit the normal unpacking scheme.
There is (currently) no way to specify any filters which the event server
could use to select events for transmission. This option is naturally
only available when the program is compiled to use the MBS/LMD
data packaging format.

--in-tuple=OPT,LEVEL,DET,FILE Read data from either a root file or a
struct producer/server, see Sections 6.1 and 6.2. Implemented by
reversing the --ntuple option and using the same OPTions, see further
down. The layout of the input file or structure must match what would
have been generated as output.

All input that cannot be read using mmap is internally buffered, see Section
7.1.1. When compiled with thread support (cf. Section 5.3), the filling of the
internal buffers is decoupled from the data processing.

--scramble All MBS data transport processes perform 32-bit (4 byte) byte-
swapping on all data in order to remove the need for the user to have
to consider endianess issues. However, as the MBS/LMD data format
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cannot store endianess information about the original data producing
machine, any 8- or 16-bit data may have been scrambled within the
32-bit words, making the user have to worry about scrambling instead.
This option can possibly help. As different subevents may or may not
have been scrambled, more drastic (in program) actions may need to
be taken.

--merge=N When the experimental data has been written to several files
concurrently, each containing a fraction of the events, it may still be
necessary (or at least simpler) to perform the analysis in strict event
order. With this option, the unpacker will keep (at most) N subsequent
input files open, and from each have one pending event located with
headers. Events are processed in order from the different files (most
simply determined by inspecting the event numbers1). The compile
option USE MERGING is needed.

N should be 2 times the number of event builders that were in use.
This is necessary as when the event builders switch files, they are likely
to do it at roughly the same time, and there is no guarantee that the
file that ended first will be followed/continued by the next file number
in the queue. Using a lookahead of the same number of files as event
builders, there should be no problem.

3.2 Output raw and processed data

The unpacker can write raw data files and create ntuples of processed in-
formation.

--output=OPT,FILE When handling data in LMD format, the events can be
written to an output file. Support for adding and omitting subevents
is available. It is important to note that events with unpack or other
processing faults will not be written to the output file. The behaviour
can be adjusted with some comma-separated OPTions:

native,big,little Writes the file in the specified endianess, default
is native. While the MBS standard approach is to let any data re-
ceiver do byte-swapping of data received to native order (on 32-bit
boundaries) before any processing, this program defers swapping
until the handling of each data word. This approach simplifies

1This currently needs an MBS patch, as normally the different event builders use a
local numbering.
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the treatment of scrambled data files. As a side effect the writer
has to be able to swap data (in case it e.g. is merging files with
different endianess), thus it became straight-forward to make the
output endianess selectable.

compact Trim the last output buffer.

size=nnn(k|M|G) Limits the size of each output file to (approxim-
ately) the given size. Automatic file numbering is employed.

events=nnn(k|M) Limits each output file to contain the given number
of events.

eventcut=nnn(k|M) Whenever the event number is a multiple of the
specified number nnn, a new file is opened. This is similar to
the previous option, with a twist: each numbered file will always
contain the same set of events, irrespective of any event selections
(mainly by faults) that may differ between various versions of the
unpacker.

newnum The automatic file numbering will skip numbers for files which
already exist.

wp Write-protect each file after it has been written. Can be used to
prevent accidental removal of recorded data when the unpacker
program is used to act as a DAQ output stage.

[incl|excl]=[name|tag=min[-max][:tag2=...]] Sets of subevents
can be selectively chosen for inclusion in (or exclusion from) the
output file. The selection is based either on the subevent name as
declared in the specification (see e.g. Listing 4.2) or one or more
values or ranges of the subevent header tags: type, subtype,
procid, subcrate and control. Entire events can be (de)selected
using their trigger=value|range.

skipempty Do not emit empty events (after subevent exclusion).

FILE The output filename is given as the last option. If it contains
a number (before a possible .lmd extension), this is used for the
filenumbering counter. With a .gz or .bz2 extension, the output
data will be piped through an appropriate compressor. To use the
unpacker in a pipeline, use - for the filename to write to stdout.
In this case, no file size limits can be applied, and any normal
program output (text, stdout) will be sent to stderr.

--bad-events=OPT,FILE When debugging the unpacker specification itself
— or the DAQ— the most interesting events are those that do not work
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properly. With this option, any event which causes an exception during
unpacking or processing is stored in FILE. The same additional modi-
fiers as to --output can be applied, except selection of (sub)events.

This option is only useful for events that are somehow malformed. If
the integrity of the data-file records themselves has been compromised,
no event extraction is possible and unpacking can not be attempted.

--server=OPT When handling MBS/LMD data, the unpacker can also act
as a data server for other analysis clients, i.e. the opposite end of
stream:// and trans://. The compile option USE PTHREAD is needed,
as the server runs in separate thread — see Section 7.2.1. In addition
to the native,big,little, incl=|excl=, and skipempty modifiers
described above, the following OPTions are available:

size=nnn(k|M|G) Set the maximum amount of memory used to keep
data buffers from the time when they become available until read
by the last client.

hold Do not allow any client to miss any data. Use judiciously, since
if some client is slow, that will set the pace at which data is pro-
cessed.

stream|stream:PORT|trans|trans:PORT Specify the protocol(s) to
use, and optionally use alternative port numbers. The default
is to set up a stream server.

flush=n Flush the output buffers every n seconds.

--ntuple=OPT,LEVEL,DET,FILE The unpacker can write hbook (cernlib,
as used by e.g. paw) or root ntuple files of the data2, from the various
data levels available within the program, cf. Section 2.1. One or more
LEVELs can be selected using a comma-separated list of the keywords
UNPACK, RAW, CAL, and USER.

The data from the selected levels is chosen by the list of names of
DETectors requested. If no specific detectors are requested, all available
data will be included. The available member names can be seen with
the --show-members option. Items can also be selected from specific
levels by prefixing the item by the level name: LEVEL:DET.

2Also with root files, only simple data layouts, corresponding to hbook column-wise
ntuples, are currently generated. Creation of more advanced root trees would allow other
zero-suppressing data-structure constructs to be used, grouping variables naturally, but is
not yet implemented.
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Each data member can be described with a “path” consisting of name
fragments and indices, e.g. N4 2 1T, the time of the first PM tube of
the second paddle in the fourth plane of LAND. When two successive
elements in the path are of the same kind, name or index, they must be
separated by an underscore. Ranges of indices can be specified using a
dash, e.g. N4 1-10. If a digit or underscore is part of a textual name, it
must be escaped by a backslash3, otherwise it will be interpreted as the
start of an index or a separator. Single or several parts of the path can
be wildcarded using a question-mark or asterisk, e.g. POS1?T or N*T.

The file type to generate is determined by the presence of .nt4 or .root
in the output FILE’s name. Further OPTions to adjust the output:

UR,URC,URCUS When similar items from several data levels are reques-
ted, the names may clash. With these options, the names of items
from the unpack, raw, cal, and user levels can be prefixed by U,
R, C, and US, respectively.

RWN,CWN,ROOT Force the output type as a row-wise or column-wise
hbook ntuple or a root file.

STRUCT Instead of writing a file, a tcp/ip server can be started which
will deliver the requested data, event-wise, to any (number of)
stand-alone program(s), see Section 6.2. With this option, a
dummy FILE name is still needed but ignored — except if spe-
cified as - to request delivery of the protocol data directly to
stdout.

PORT=n Used in conjunction with STRUCT, to use an alternative PORT.

STRUCT HH Create the C header necessary to handle data received when
using the STRUCT option. The header is stored as FILE.

UPPER,LOWER,H2ROOT Data member names by default use the type case
they have in the data structures. They can be forced to either
upper or lower case, or mimicking h2root’s default behaviour,
making only the first character upper case.

id=ID Set the ntuple ID. Only numbers are allowed for hbook files.

title=TITLE Set the title of the ntuple.

3Most often another backslash is needed to escape the backslash itself on the
shell command line, unless proper quoting is used: --ntuple=TDC\\5\\6 T,... or
’--ntuple=TDC\5\6 T,...’. It is not recommended to use digits or underscores as part
of variable names.

4Allowing for both .ntu and .ntp.
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ftitle=FTITLE Set the title of the output file.

NOSHM By default, shared memory is used to communicate with the
external, forked process file writer. This options forces commu-
nication using a pipe.

3.3 Input data diagnostics

Several options provide quick access to the organisation and layout of the
raw data files themselves and the packaging of the data.

--print-buffer Make a human readable dump of every buffer header (or
equivalent, for non-LMD data formats)5.

Buffer 0, Size 16384 Used 0 Thu 1970-01-01 00:00:00.000 UTC

Events 0 Type/Subtype 2000 1 FragEnd=0 FragBegin=0 LastSz 0

File header:

Label R06

File R06_0308.LMD

User land

Time 27-Sep-01 09:13:59

Run

Exp

Buffer 1082774, Size 16384 Used 10032 Thu 2001-09-27 07:13:46.905 UTC

Events 3 Type/Subtype 10 1 FragEnd=0 FragBegin=0 LastSz 1444

Buffer 1082775, Size 16384 Used 15868 Thu 2001-09-27 07:13:47.023 UTC

Events 4 Type/Subtype 10 1 FragEnd=0 FragBegin=0 LastSz 1456

--print Make a human readable dump of all event and subevent headers.

Event 7938336 Type/Subtype 10 1 Size 1444 Trigger 1

SubEv ID 1 Type/Subtype 34 3100 Size 384 Ctrl 9 Subcrate 0

SubEv ID 1 Type/Subtype 34 3200 Size 216 Ctrl 9 Subcrate 0

SubEv ID 1 Type/Subtype 32 3100 Size 800 Ctrl 0 Subcrate 0

Event 7938338 Type/Subtype 10 1 Size 412 Trigger 7

SubEv ID 1 Type/Subtype 34 3100 Size 392 Ctrl 9 Subcrate 0

--data Include the data payload, as hexadecimal, with each subevent.

51970-01-01 is the Epoch of UNIX time and is seen in the example since the DAQ has
apparently only initialised the time field of the file header to 0, not the actual time.
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Event 270987188 Type/Subtype 10 1 Size 404 Trigger 2

SubEv ID 1 Type/Subtype 34 3200 Size 8 Ctrl 9 Subcrate 2

02000000 00004321

SubEv ID 2 Type/Subtype 32 3130 Size 96 Ctrl 9 Subcrate 1

28190af1 281c0a73 50910145 5096013e 5099016e b8b00157 68c00103 68c1014c

68c2014a 68c3016a 68c40101 68c50142 68c60102 68c70129 68c80129 68c90144

68ca0129 68cb0126 68cc013c 68cd0162 68ce011b 68cf0164 40b10240 40b4017a

...

--dump=LEVEL Make a textual dump of the unpacked data, along with the
names of each variable in the requested LEVEL data structures.

--event-sizes (This option is only available for the MBS/LMD data format.)
After event processing has finished (i.e. just before the program termin-
ates) a summary of the subevents (and events) encountered per trigger
type is produced. For each entry, the minimum, maximum and average
payload subevent size is presented. The (subevent) header sizes are not
included, but presented separately.

type/stype id crt ctrl min max avg(ev) avg(tot) head occurances

trig 1: ( 0 7232) 4236.6 100.6 ( 7885)

34/ 3100 10: 2: 1 ( 384 384) 384.0 19.0 0.6 ( 390)

32/ 3130 8: 1: 2 ( 4 1516) 180.5 180.5 12.0 ( 7885)

32/ 3130 8: 2: 2 ( 8 1368) 19.8 19.8 12.0 ( 7885)

34/ 3200 10: 2: 1 ( 124 124) 124.0 124.0 12.0 ( 7885)

34/ 3500 10: 2: 1 ( 4 64) 8.0 8.0 12.0 ( 7885)

82/ 8200 10: 0: 3 ( 3320 3960) 3479.0 3479.0 12.0 ( 7885)

...

trig 2: ( 0 6376) 3748.1 88.6 ( 3549)

34/ 3100 10: 2: 1 ( 384 384) 384.0 19.2 0.6 ( 177)

32/ 3130 8: 1: 2 ( 0 1048) 41.8 41.8 12.0 ( 3549)

32/ 3130 8: 2: 2 ( 8 1308) 12.6 12.6 12.0 ( 3549)

34/ 3200 10: 2: 1 ( 8 8) 8.0 8.0 12.0 ( 3549)

82/ 8200 10: 0: 3 ( 3292 3468) 3342.2 3342.2 12.0 ( 3549)

...

all trig: ( 0 27628) 4200.3 97.5 ( 11972)

34/ 3100 10: 2: 1 ( 384 392) 384.2 19.4 0.6 ( 605)

32/ 3130 8: 1: 2 ( 0 1796) 187.5 187.5 12.0 ( 11972)

32/ 3130 8: 2: 2 ( 0 1456) 61.6 61.6 12.0 ( 11972)

9934/ 3199 10: 2: 1 ( 4 4) 4.0 0.1 0.4 ( 437)

34/ 3200 10: 2: 1 ( 8 124) 89.6 89.5 12.0 ( 11959)

34/ 3500 10: 2: 1 ( 0 64) 7.5 5.3 8.4 ( 8410)

82/ 8200 10: 0: 3 ( 0 24600) 3463.8 3463.8 12.0 ( 11972)

...

As a general rule, the program will not die immediately upon receipt of
a TERMinate signal (as e.g. generated by pressing ctrl+C), but will in-
stead as quickly as possible stop processing further events, and then run
the finalisation routines (among others, making the (sub)event totals
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display). This behaviour is expected to be the generally most wanted.
If the user insists (by sending the TERM signal several times), the pro-
gram will immediately abort, though. The reason for not quitting dir-
ectly is the desire to terminate cleanly, i.e. run the finalisation routines.

3.4 Error handling

The name ucesb is an abbreviation of “unpack and check every single bit”,
and came about for a reason. The easiest way to ensure that both the un-
packer itself and the data are correct is to make, by default, a big fuzz about
any small inconsistency, i.e. generously generate warning and error messages.

--allow-errors Normally, the program will terminate after 10 errors have
been detected during unpacking or event processing (including any user
functions). With this option, errors are not a reason for termination.

--broken-files Instead of completely aborting processing of data, each file
is dismissed after 10 errors, continuing processing with the next file.

--io-error-fatal Immediately terminate the program upon any I/O error.
Default behaviour is to treat an input source with an error as having
reached end-of-file and to continue using any remaining sources. This
option is particularly useful when performing merging and repeating
(serving) of data from some event builders, as the stream servers some-
times disconnect themselves. By running the ucesb data repeater from
within an infinite loop shell script, any time a server is disconnected,
the connection process is started all over again. Without this option,
data from the disconnected server would not be used again until all
other sources also were lost, finally causing the repeater to restart.

--debug This option has the same effect as --print --data, but only for
events which suffered some kind of unpack failure.

3.5 Processing and monitoring

There are some general kinds of “analysis” that can be applied to the raw
data from a DAQ, independent of the kind of experiment. They can help to
verify that the converter DAMs are operational, and to some extent that the
channel mappings are correct.
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--watcher=OPT,DET The watcher (also known as the DAQscope, see Section
6.3 with Figure 6.1 for an example) provides an ncurses-based quick
view of the detector channel raw spectra, i.e. showing where in the
conversion range the data appear.

The DETector channels to be shown are specified similarly as when gen-
erating an ntuple. A colon may also be used as an item separator,
in which case items demanded before the colon will be placed before
any items requested after a colon. This is needed as the item selection
routine picks items to display in the order they occur in the data struc-
tures of the program, which sometimes makes the information harder
to read than necessary, by e.g. intermixing times and amplitudes6.

MIN=n Set the first value of the range of raw values to be displayed in
the spectra.

MAX=n Set the last value of the range of raw values to display.

RANGE For some calibration procedures, each event is associated with a
certain value of a specific parameter. One example would be time
calibration events, where, for each event, a specific delay between
the common signal (e.g. start) and the signals injected into each
TDC channel (e.g. stop) is somehow provided for. With this op-
tion, such a value can be passed along to the watcher subsystem.
The values will then be displayed on the line below the single
spectra to show approximately with which value each part of the
spectrum is associated. This can be helpful to rather quickly7 ar-
range for suitable offsets within the time calibrator signal paths
to make them end up reasonably within range.

COUNT=n By default, the display will update (and clear) the collected
histograms every 10000 events, 15 seconds or when an end-of-spill
event is received (as indicated by the user code) — whichever
happens first. With this option, updating will happen every n

events.

SPILL|BOS|EOS Update the display on either both of, or only at begin-
or end-of-spill.

6Thus does --watcher=POS1-2 1-4T:POS1-2 1-4E provide a more readable view
of the same data than just --watcher=POS. Implicit indices and names in-between
can be represented by a wildcard asterisk, e.g. simplifying the above selection to
--watcher=POS*T:POS*E.

7As compared to the lengthy procedure when forced to use more elaborate but precise
on/off-line analysis methods to determine the offsets currently in effect.
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TIMEOUT=n Make the display update every n seconds.

--corr=TRIG,DET,FILE With this option, a 2-dimensional triangular picture
of the correlations between the occurrences of hits in different channels
is created and written to FILE after all events have been processed.
The DETector channels to plot are specified with the same comma- and
colon-separated list as for the --watcher option.

It would in some circumstances be useful to also select which events
should be included in the plot, which could be done with the TRIG

option, not yet implemented, however. The user function can naturally
be used to make more advanced selections.

The option can be given several times, producing many different pic-
tures. The unpacker program generates the pictures internally in pgm

format which is directly piped into a convert process, producing a
file of the format chosen by the file name extension. A good choice is
png, since it is loss-less, while jpg is not suitable, being lossy and thus
introducing unwanted artefacts in the pictures.

--thresholds This option is a relic from the ancestor program that un-
packed the multi-event data of IS430. It was used to calculate pedestal
values (thresholds) to be loaded into the ADCs, to have efficient zero
suppression.

In the author’s opinion, pedestal determination for use by a running
DAQ is one of the few calculations that should be done within the DAQ
software (see Section 3.3.1 of [4]) — the option has as a consequence
silently fallen into disrepair. To be able to do the calculations also out-
side the DAQ would not be evil, so perhaps it should be resurrected. . .

3.6 Miscellaneous

--show-members Display a list of all data members available within the pro-
gram at all levels. The markings z: and m: means that the arrays are
zero-suppressed or multi-entry, respectively — cf. Section 2.2.1.

UNPACK_vme_tdc3data32 .UNPACK.vme.tdc[3].data[z:32]

UNPACK_vme_tdc3eob_u32 .UNPACK.vme.tdc[3].eob.u32

UNPACK_vme_scaler0_data32 .UNPACK.vme.scaler0.data[z:32]

UNPACK_vme_scaler0_header_u32 .UNPACK.vme.scaler0.header.u32

UNPACK_vme_adc5data32 .UNPACK.vme.adc[5].data[z:32]

UNPACK_vme_adc5eob_u32 .UNPACK.vme.adc[5].eob.u32

UNPACK_vme_header_failure_u32 .UNPACK.vme.header.failure.u32

UNPACK_vme_header_time_stamp .UNPACK.vme.header.time_stamp
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UNPACK_vme_header_multi_events .UNPACK.vme.header.multi_events

...

RAW_BACK2E .RAW.BACK[2].E

RAW_MONE_E .RAW.MONE.E

RAW_MONDE_E .RAW.MONDE.E

RAW_MONTGT_E .RAW.MONTGT.E

RAW_DSSSD2F32E .RAW.DSSSD[2].F[z:32].E

RAW_DSSSD2F32T .RAW.DSSSD[2].F[z:32].T

RAW_DSSSD2B32E .RAW.DSSSD[2].B[z:32].E

RAW_DSSSD2B32T .RAW.DSSSD[2].B[z:32].T

RAW_DSSSD2FT .RAW.DSSSD[2].FT

RAW_DSSSD2BT .RAW.DSSSD[2].BT

...

Each entry is presented twice, both in a PAW-like fashion (which e.g. is
the format used to specify what signals to include with the --ntuple=
or --watcher= options), and in a more C-like style, more closely resem-
bling what is used within the program.

Note that all digits which are not specifying the size of an array are
part of the variable names — those will need special escaping on the
command line, as detailed under the --ntuple= option.

--calib=FILE The cable mapping information (used by ucesb to generate
the raw and cal level data structures) is stored in the file gen/data map-

ping.hh which is parsed by the unpacker program to generate the
unpack-to-raw data mappings. With the same parser, also a set of
calibration parameters (to be applied at the raw-to-cal mapping) can
be read. They may be placed in the file calibration.hh, which is used
if it exists. This option gives the opportunity to specify further files.

--show-calib Display a list of all calibration parameters.

--max-events=n Process at most n events before terminating.

--help Print a summary of the command line options and quit.

The ucesb-based unpackers are also envisaged to be compiled such that
any heavy processing performed can be split between several processors, using
multiple threads. The implementation (see Section 7.3) is not complete yet;
the associated options are so far only of use to the developer.

--threads=n Use n threads for processing. By default, n equals the number
of available processors.
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--files-ahead=n Let n files be open simultaneously in advance, to prevent
event processing from being delayed by a slow I/O subsystem. This
would be particularly useful when the data files need CPU-intensive
decompression, e.g. bunzip2.

--progress Show the file reading progress and the status of the various
processing threads using a ncurses-based display.
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Chapter 4

Raw data structure
specification

The raw event data layout is described in a C structure like format. From
this, the ucesb unpacker generator will create appropriate code to perform
“unpacking with a vengeance” — verifying data integrity by checking all bits
of the input.

4.1 Data format specification

The data format descriptions are given in a file project.spec in the project/
directory of the experiment. Before it is parsed by ucesb it will be processed
by the C preprocessor, which does file inclusion, macro expansion and com-
ment removal, see Listing 4.1. By putting -*- C++ -*- on the first line of
each specification file, GNU emacs will help indent and colour the code nicely,
although it really isn’t C++ code.

// -*- C++ -*-

#define USING_CRATE2

#ifdef USING_CRATE2
// Include the specification for crate2
#include "project_crate2.spec"
#endif

/* And then comes the rest ... */

Listing 4.1: (Ab)using the C preprocessor to handle comments, include files
and expand macros.
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4.1.1 Item blocks, SUBEVENT

The specification is “free format”1 and each item (an event, subevent or any
smaller separate entity) loosely looks like a mix of a structure and a function
in C, as in Listing 4.2.

SUPER TDC(slot)
{
UINT32 value;

}

SUBEVENT(ONE CRATE)
{
tdc1 = SUPER TDC(slot=5);
tdc2 = SUPER TDC(slot=6);

}

EVENT
{
crate1 = ONE CRATE(type=5);

}

class SUPER TDC
{
uint32 value;

};
class ONE CRATE
: public unpack subevent base

{
SUPER TDC tdc1;
SUPER TDC tdc2;

};
class unpack event
: public unpack event base

{
ONE CRATE crate1;

};

Listing 4.2: Basic structures with simple items. Corresponding generated
unpack structures (edited for clarity).

A named item type is defined by the name together with any parameters
it may take within parentheses, and a structure body:

IDENTIFIER(param1,param2,...) { ... }
The parameters may be given default values, like param2=5. Subevents are
different in that they are marked as such:

SUBEVENT(IDENTIFIER) { ... }
and only have implicit parameters, representing the subevent header mem-
bers, in case of LMD files: type, subtype, control, subcrate, and procid.

An item is included into another item by stating the name it should have
in the enclosing structure and, like a function call, the name of the item
type and any arguments. To avoid confusion, the parameter name of each
argument is stated explicitly.

[qualifier] member = IDENT(param1=arg1,param2=arg2,...);

The item may have one or more qualifiers preceding it (only valid within
certain contexts):

multi Signifies that several instances may occur for data of several physical

1Columns or line breaks do not matter. Arbitrary whitespace (space, tab, and newline)
is used to separate keywords and identifiers.
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events of the same item. Used in a multi-event unpacker, see Section
2.2.2 and Appendix C.

external The structure is external (hand written) and not part of the spe-
cification, see Section 5.5.1.

norevisit The item may only be used once per event. Only applies within
a select several statement.

revisit Only applies to subevents within the EVENT declaration. This re-
moves the default limitation of only allowing each item to match one
subevent per event.

4.1.2 The EVENT declaration

An unpacker has one EVENT item, giving the possible contents of the input
file. As opposed to items declared in subevents and other items, the subevent
items declared within the EVENT are not expected to come in the given order,
or occur at all. It behaves like a select several statement (see Listing C.3
on page 92), where the subevent declaration to use to unpack each subevent
is selected by the given subevent header items. Ambiguities are not allowed,
and will cause run-time errors. When creating an unpacker that only has
explicit interest in some subevents, the statement

ignore unknown subevent;

may be used to ignore unhandled ones, as in Appendix B.

4.1.3 Multiple choice: select several

Often, the order of data from various modules is not fixed and entire modules
may be completely left out if they did not produce any data. To handle this,
a kind of C switch statement can be specified: select several, see Listing
4.3. All included items are made members of the data structure, and each
time the unpacker reaches this point, it will try to match the next data word
versus the items. Matching is by default done by calling a special version of
the unpacking routine for each item, which determines if that item can handle
the data (usually some part of a bit field matching a slot number). For many
common cases with bit-fields (where the member items are using e.g. MATCH
or RANGE selectors), the ucesb program is able to generate a direct look-up
table. Using the significant (i.e. differing) bits for selection by indexing into
the look-up array, the time-consuming match-attempts for all declared items
are avoided. In any case, if two items match simultaneously, a run-time
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SUBEVENT(FASTBUS CRATE)
{
select several
{
adc0 = LECROY 1885(geom=10,channels=96);
qdc[0] = LECROY 1885(geom=13,channels=48);
qdc[1] = LECROY 1885(geom=17,channels=48);
qdc[2] = LECROY 1885(geom=15,channels=48);

}
}

class LECROY 1885
{
};
class FASTBUS CRATE
: public unpack subevent base

{
LECROY 1885 adc0;
LECROY 1885 qdc[3];

};
class unpack event
: public unpack event base

{
FASTBUS CRATE crate2;

};

Listing 4.3: Items with several components in arbitrary order. The corres-
ponding generated code (edited for clarity) is also shown. The
lower panel also has code for some specifications not shown in
the upper panel. Listing 4.4 has details on LECROY 1885.

error occurs. If no items match, or the subevent is out of data, the loop
terminates. Otherwise, the item is unpacked, and the select several tries
to match another item, for the following data word.

Two variants are also implemented: a simple select, which only unpacks
exactly one item, and select optional, which accepts zero or one items.

4.1.4 Constants, variables and expressions

At most places where a number is expected, either a numerical constant, a
variable or an expression can be used. A numerical constant may be expressed
as an ordinary base-10 number, hexadecimally or binary, i.e. 19, 0x13, or
0b10010.

Variables may be either parameters of the item block being processed or
data members of the structure. Structure members are either persistent or
local unpack variables (as directed by the NOENCODE modifier, see below).
Members of sub-structures (including bit-fields) are accessed by separating
the structure instance name and item member name with a dot: tdc1.value
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or qdc[1].value. Please note that the ucesb program does not keep track of
all known variable names, it just reproduces the full names in the generated
code, and thus cannot check their validity or existence. That is done by
the compiler. Bit-fields are for technical reasons implemented as C union

structures. In these cases, when a name is part of a bit-field, ucesb does
know enough to add the union name as a prefix.

ucesb can also transfer more complicated expressions to the generated
code, including parentheses for evaluation order and the most common arith-
metic operations: - + * / ~ & | ^ << >> ( ). (Variables within the un-
packer are implicitly unsigned, making the right-shift operation unsigned.)
Both constants and variables can be used. Type-casts can be expressed us-
ing static cast<type>(var), which effectively performs the C-style (type)
var conversion, but had less parsing issues within ucesb itself.

4.1.5 Data items: UINT8, UINT16, UINT32

Each basic data item is defined by its length (type) by one of UINT8, UINT16,
or UINT322 and a name:

TYPE identifier;

The name may be followed by a NOENCODE marker, which prevents the item
from being part of the unpack data structure — it is then handled as a
temporary variable in the unpacking function, and thus just unpacked and
discarded. This is generally used together with specially declared data con-
tainers to handle the information payload, see MEMBER in Section 4.1.8.

An item may optionally be preceded by either the word optional or
several in which case it may either be omitted altogether, or represent a
value occurring multiple times. As the unpacking then operates in a greedy
fashion (consuming as much input as possible before proceeding with the next
logical item), this makes most sense together with the bit-fields as described
below, since those can judge if a data-word has a fixed bit-pattern set or not.
Note that several can only be used together with NOENCODE, as multiple
items cannot be stored — ucesb only creates multi-entry items for MEMBER
directives. This should perhaps be fixed, although one would then also need
to specify a limit on the number of occurrences.

4.1.6 Bit-fields

Data delivered by digitisation modules is generally packed in 16 or 32-bit
words, containing both the digitised value and the channel number of each

2Support for 64-bit entries is in progress.
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Data word
31 - 27 26-24 23 22 - 16 11 - 0

geom n r channel value

Table 4.1: LeCroy 1885/1875 data format [10].

non-zero conversion, see Table 4.1. To enable easy handling of these bit-
fields, given a list of which bits contains what variable, ucesb can create the
needed C structures3. The bits are numbered from 0, starting at the least
significant bit, see Listing 4.4.

Each item in a bit-field begins by specifying the bits, with an underscore
to represent ranges, followed by a colon and the name or a constant bit
pattern. Constants are checked during unpacking, and bits not specified
are implicitly expected to be zero, also verified during unpacking. Each bit
may only be part of one variable4. The allowed values of a variable can be
restricted by MATCH or RANGE.

4.1.7 Checking bits: MATCH and RANGE

Each bit-field item can be followed by an equals sign, and either a constant or
a MATCH(value) or RANGE(min,max) statement, which specifies what value
or range of values (inclusive) the item may have. The check is done during
unpacking, and any mismatch will be reported as an error. As the arguments
may be e.g. the parameters given to the enclosing unpack item, it is possible
to write generic descriptions of the data from some kind of module, and make
e.g. slot numbers variable.

When an unpack item is used as a part of a select statement, the
matching routine will not report errors for mismatching fields, only conclude
that the data cannot be for the current module. Furthermore, when matching
items (of a select statement), only the first data member of each item is
tested, unless the item’s structure contains a MATCH END keyword somewhere,
marking the end of values to be verified. CHECK is mostly a synonym for MATCH
and should perhaps be deprecated5.

3Taking into account that the ordering of items is different in little and big endian
machines.

4Without too much trouble, ucesb could be extended to generate multiple unions to
allow for varying interpretations of the bits.

5The idea was to use MATCH for variables that may be matched, and CHECK for any
other. The implementation is the same for both though.
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BITFIELD()
{
UINT16 data
{
0 11: value;
12 14: channel;
15: overflow;

}
}

LECROY 1885(geom,channels)
{
MEMBER(DATA12 RANGE data[96] ZERO SUPPRESS);

UINT32 ch data NOENCODE
{
0 11: value;
// 12 15: 0;
16 22: channel = RANGE(0,channels);
23: range;
24 26: n = 0;
27 31: geom = MATCH(geom);

ENCODE(data[channel],(value=value,range=range));
}

}

SUBEVENT(FASTBUS CRATE) {
select several {
adc = LECROY 1885(geom=10,channels=64);

}
}

class BITFIELD
{
union
{
struct
{
uint16 value:12;
uint16 channel:3;
uint16 overflow:1;

};
uint16 u16;

} data;
};
class LECROY 1885
{
raw array zero suppress < DATA12 RANGE,

DATA12 RANGE, 96 > data;
};

Listing 4.4: Two structures with bit-fields, followed by the generated struc-
tures. The second bit-field ch data is only used during unpack-
ing, the value is stored in the zero-suppressed array data.
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4.1.8 Data members: MEMBER

A data member not directly corresponding to data words occurring in the
on-file data format can be added to an item’s unpack structure by using
the MEMBER directive. This is useful to store lists of items, and required
for any variables that should enjoy zero-suppression, as in Listing 4.4. The
declaration contains the type and name of the member (together with any
array specifications), and optionally a keyword specifying the kind of zero-
suppression to be used:

MEMBER(TYPE identifier[m][n] ZERO SUPPRESS);

Such a data member may also be sent to a sub-item for filling, in which case
the sub-item should have the name as a parameter and also declare it as a
MEMBER within the body to describe the type. It will then not be made a
part of the structure, but sent as a reference to the unpack function.

Zero-suppression always acts along the innermost (last) dimension, and
can be of these kinds:

ZERO SUPPRESS Zero-suppressed data structure, suitable for filling in random
order.

ZERO SUPPRESS LIST As above, but only to be used when the items are
expected to come in order of increasing indices.

ZERO SUPPRESS MULTI(n) Two-dimensional zero-suppression. For each in-
dexed item, up to n multi-hit items may occur.

NO INDEX LIST An unindexed list of items, filled as they occur. Note that
as opposed to the previous specifier, the length of the list is given as
the last array item of the data member itself, see Listing 4.5.

4.1.9 Encoding data members: ENCODE

To insert values into arrays or items created by MEMBER declarations, the
ENCODE directive is used:

ENCODE(destination,(subitem1=var1,...));

The destination is the name (possibly with indices) of the MEMBER variable,
and the assignments tell which destination fields should take what values. It
is generally used from within a bit-field specification, where part of the bit-
field gives an index, and another part a value. Each subitem is a member of
the structure holding the destination variable. If the destination is not
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GROUP DATA(group)
{
MEMBER(DATA16 data[64] NO INDEX LIST);

UINT16 header NOENCODE
{
0 7: group = MATCH(group);
8 13: item count;
14 15: 0b01;

}

list (0 <= index < header.item count)
{
UINT16 value NOENCODE;

ENCODE(data APPEND LIST,(value=value));
}

if (!(header.item count & 1))
{
// Padding needed to keep 32-bit alignment
UINT16 pad NOENCODE { 0 15: 0; }

}
}

Listing 4.5: Specification for a GROUP DATA block of EDOC073 data [7].
Each 16-bit data item is inserted into a variable length array
data. Discarding of the alignment padding is controlled by an
if-statement. As all direct input items are marked NOENCODE,
the data array is the only surviving result of unpacking.

a structure, but a basic type itself, use a single underscore as the subitem

name. var may be a variable or an expression as detailed in Section 4.1.4.
When the array is of the NO INDEX LIST kind, the flag APPEND LIST

should follow the destination, but no index.

4.1.10 Counted number of data words: list

Much like a for-loop, a specified number (e.g. from a header word) of items
can be unpacked using a list:

list(min <= index < max) { ... }
index is the loop variable, it can be used for checking and indexing data
member assignments within the loop body. min and max specify the iteration.
Generally, min will be 0 and max the number of items to read. The relational
operators are part of the syntax, and not modifiable.
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4.1.11 Conditional unpacking: if

Parts of an item structure unpacking can be made conditional:

if (expr) { ... }
where expr is some variable or expression that can evaluate to true or false
(non-zero or zero). expr may also specify a user-written member function of
the current class, by preceding the name of the function (without parentheses
for the function call) with the external keyword. The function is to have
the prototype:

uint32 unpack class::identifier() const;

The body of the if-statement may be followed by an else-clause:

if (expr) { ... } else { ... }
or

if (expr1) { ... } else if (expr2) { ... } else { ... }

4.1.12 Checking word counts

To facilitate the verification of word counts (usually found in a trailer word
of some modules, see Listing 4.6), various locations within the data stream
can be marked using

MARK COUNT(mark);

where mark is a unique identifier. It will be handled as a simple void*

pointer.
Like a MATCH statement for the bit-field variable containing the word

count,

CHECK COUNT(mark1,mark2,offset,multiplier)

checks that the number of bytes between the positions mark1 and mark2 plus
the offset (in bytes) is equal to the value times the multiplier (i.e. the
counted word size). As an example, if a trailer which contains the word count
should be included, a positive offset is to be used, since all marks must be
declared before the variable is verified.
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VME CAEN V1190(geom)
{
MARK COUNT(v1190 start);

UINT32 header
{
0 4: geom = MATCH(geom);
5 26: event number;
27 31: 0b01000;

}

// ... Actual TDC data

MARK COUNT(v1190 end);

UINT32 trailer
{
0 4: geom = CHECK(geom);
5 20: word count = CHECK COUNT(v1190 start,v1190 end,4,4);
24: tdc error;
25: buffer overflow;
26: trigger lost;
27 31: 0b10000;

}
}

Listing 4.6: The CAEN V1190/1290 family of TDCs emit the word count
at the end of the data for each event.

4.2 Data mappings: SIGNAL

The mappings of data from the unpack to the raw level data structures are
also part of the specification. They at the same time give the layout of the
raw level — items are created in the structures as needed. Each mapping:

SIGNAL(raw name,unpack name C,type ["unit"]);

describes the logical detector signal raw name together with the source item
unpack name C and the data type. The type must be the same as in the
unpack structure, or a run-time error will occur upon program start-up, as
the actual mappings cannot be set up. Optionally, the unit of the value can
be specified, see Section 4.3. The source is specified using the C notation
of structure items, while the destination uses a more PAW-like format6, with
underscores (or digits) separating names between structure encapsulation
levels. Any series of digits is treated as an index. It is currently impossible
to specify a digit to be part of a raw level name.

Listing 4.7 gives various examples of possible mapping specifications,

6Note that the string-like PAW-resembling format starts numbering at one, while the
array-like C notation uses zero-based indices.
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// Declarations of single detector signals
SIGNAL(DETA 1 T2, vme.tdc[1].data[6], DATA12);
SIGNAL(DETA 1 E, vme.qdc[2].data[12], DATA12);

// Create an item in the raw level without source
SIGNAL(DETB 5 T, , DATA12);

// A list of mappings/items
SIGNAL(DETC 2 FRONT 1 T, vme.tdc[2].data[0],

DETC 2 FRONT 16 T, vme.tdc[2].data[15], DATA12);

// Make an array zero-suppressed
SIGNAL(ZERO SUPPRESS: DETC 1 FRONT 1);

// An item with cal level entry, and units
SIGNAL(DETD 1 E, vme.qdc[3].data[0], (DATA12 "ch",float "#MeV"));

// An item which is only mapped for the last physical event in a
// multi-event unpacker
SIGNAL(LAST EVENT: SCALER 1, vme.scaler.data[0], DATA32);

struct raw event DETA
{
DATA12 T[2];
DATA12 E;

};
struct raw event DETB
{
DATA12 T;

};
struct raw event DETC FRONT
{
DATA12 T;

};
struct raw event DETC
{
raw array zero suppress < raw event DETC FRONT,

raw event DETC FRONT, 16 > FRONT;
};
struct raw event DETD
{
DATA12 E UNIT ("ch");

};
struct raw event
: public raw event base

{
raw event DETA DETA[1];
raw event DETB DETB[5];
raw event DETC DETC[2];
raw event DETD DETD[1];
DATA32 SCALER[1];

};

Listing 4.7: Signal mapping variants, with corresponding generated raw

level structures (edited for clarity).
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along with the generated data structures. By giving an entry without a
source, it is possible to enforce the creation of a raw level item of that name,
as well as enlarging an array to accommodate the given index. By giving
two source and destination names, which are similar except for one index, a
range of mappings can easily be described:

SIGNAL(raw1,unpack1 C,raw2,unpack2 C,type ["unit"]);

The program also supports generation of a cal level data structure, with a
similar layout as the raw level. This can be used to implement simple linear
conversions from the integer data delivered by the modules to floating point
values representing more physical quantities. Whenever this is wanted, the
data type is declared as a pair, giving the raw type and cal type, respect-
ively:

SIGNAL(raw,unpack C,(raw type ["unit"],cal type ["unit"]));

To make an array zero-suppressed, the name of the array (ending with the
array index to be compacted) should be preceded by a keyword:

SIGNAL(ZERO SUPPRESS: raw array name);

This will create an array optimised for random fill order at the raw level, as
the mappings are expected to be complex due to e.g. anti-cross-talk cabling
schemes. The cal level (if present) will use a representation suitable for
ordered filling, since the items would come 1-by-1 from the raw level. The
keywords NO INDEX LIST and ZERO SUPPRESS MULTI are also available, and
work as for data MEMBERS, cf. Section 4.1.8.

Finally, an item can be marked LAST EVENT (or FIRST EVENT) to make it
only map for the last (or first) event when each unpack event contains data
for multiple physical events.

In addition to the creation of appropriate raw and cal level structures,
the ucesb program also generates a text table gen/data mapping.hh, con-
taining the data mappings to be performed. That file is read by the unpacker
program at startup, and parsed using the same mechanism that parses cal-
ibration parameters for the raw to cal level conversions (see below). The
mappings have the format

SIGNAL MAPPING(type, name, src C, dest C);

where type and name are ignored (used for information only), and src C

and dest C are the C-form specifications of the source (at unpack level) and
destination (at raw level) data items.
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4.2.1 Calibration parameters: raw to cal level conver-
sions

In addition to, or helping, the user functions (where arbitrary code can be
inserted), the unpacker program can do simple linear data conversions while
transferring data from the raw level structures to the cal level. The trans-
formation parameters are entered in a file calibration.hh, which is auto-
matically read by the unpacker at start-up, if it exists. The --calib=FILE

option can be used to choose what parameters to load by using another file.
Each parameter is given as either of

CALIB PARAM(var, conversion,value1 [unit1],

value2 [unit2], ...);

CALIB PARAM C(var C, conversion, value1 [unit], ...);

where var (or var C in C-form) is the name of both the source (at raw level)
and destination (at cal level) variable7. conversion determines the type of
transformation to do along with the values. Correct units must be sup-
plied, i.e. when the variables at raw or cal levels have units associated. The
currently known operations are shown in Table 4.2.

Name values Operation

SLOPE OFFSET slope, offset cal = raw · slope+ offset

OFFSET SLOPE offset, slope cal = (raw + offset) · slope

Table 4.2: raw to cal level transformations. The coefficients (e.g. slope
and offset) are the calibration parameter values used in order.

4.3 Unit and prefix handling

To assist the user in using consistent units and powers of magnitude of vari-
ables and calibration parameters, units can be associated with raw and cal

level variables. The affiliations are defined in the SIGNAL specifications.
A unit consists of one or several more basic units, separated by spaces

or asterisks or slashes, the latter two marking the sign of the exponent of
following basic units. Exponents (also negative) are given after a caret (^).

7For these conversions, the unpacker only supports mappings between the same vari-
ables. The actual mapper code would support arbitrary mappings, but the zero-suppressed
data structures expect the items to come in order.
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Examples: ns, cm/ns, MeV/ch, cm^2. It is allowed to give calibration para-
meters with other prefixes than those used in the variables, e.g. specifying
a gain factor as keV/ch with the cal level variable using MeV. In this case,
the unit of the variable definition must have all its (replaceable) prefixes pre-
ceded by hashes, e.g. #MeV or #cm/#ns. A unit definition of a variable with
no prefix (i.e. unity) can still allow prefixes, by using a double-hash: ##s.
The program does not have any deeper knowledge of units, it only matches
the basic unit constituents in arbitrary order, requiring exponents to add up
correctly. In particular, there is no support (yet) for any conversions, e.g.
1 G = 10−4 T.

Gain parameters connecting the raw and cal levels must have the correct
unit for the multiplication involved in the conversion, i.e. the unit of the cal
level variable divided by the unit of the raw variable. To make the calibration
parameters look sane, it is suggested to use the unit ch (as in channels) for
raw level variables, where applicable.

43



Chapter 5

Compilation and user code

The sources making up one unpacker have various origins: code created from
the data format specifications, generic unpacker sources and possibly user
code. In addition, the programs that generate code are tightly coupled to
the functionality provided by the generic sources, and thus frequently need
to be synchronously rebuilt during development of ucesb itself.

5.1 Sources

Welcome to pre-processor heaven!
First, an overview of what makes up the unpacker sources (from within

the unpacker/ directory):

eventloop/ Common sources used by all unpackers. Command line pars-
ing, event loop and other execution dispatches. Contains the generic
data structures heavily drawn upon by the generated code, as well as
wrappers to instantiate various functionality from generated templates.

common/ These sources are shared with the code generation programs ucesb
and psdc.

file input/ The input stage and file unpack parts, replacing the MBS event-

api. Similar to, and partially lifted from lmd read/ of land021 — it
has gradually become better than the original.

threading/ Mostly experimental routines, for later use with USE THREADING.

watcher/ The ncurses based watcher, borrowed from land02 and enhanced.

1land02 is a batch mode detector calibration and reconstruction system for experiments
performed with the ALADiN-LAND setup at GSI.
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hbook/ This directory is exactly the same as in land02 (it is an ugly hack —
done via a symlink in the CVS tree — but works beautifully). There-
fore, ucesb has the same ntuple stager and writer as land02.

ucesb/ The data format specification parser and unpacker code generator.

psdc/ A data structure parser and mirror (reflection) structure and function
generator.

spec/ Contains data format specifications for a few commonly used modules.

The many other directories contain experiment-specific sources or other
examples, see Appendix A.

5.2 Compilation

To make things easy, the Makefile in the root unpacker/ directory governs
the building of all programs, both code generators and example unpackers.
It should be enough to issue:

$ make

To build one specific program, its name is given as an argument, like make

is430 05. Each program is usually created with the same name as its dir-
ectory, e.g. is430 05/is430 05 is the resulting executable.

The rules for building one unpacker are in makefile unpacker.inc. This
may in turn include additional rules using the file makefile additional.inc

in the specific directory of the unpacker being built.
To maintain the sources for an experiment specific unpacker outside the

unpacker/ tree, it is enough to arrange for a Makefile within that directory
to locate and invoke make with the common makefile unpacker.inc. An
example of such a Makefile can be found in the hacky/ example directory.

5.3 Compile options

As some features of the unpacker depend on external libraries that are not
always available, they are enabled by compile time options, via environment
flags. They can be enabled at compilation by specifying make USE ...=1.

USE PTHREAD Compile the unpacker with support for multiple threads. Even
without the multi-threaded event processing (USE THREADING) some
other operations will run in separate threads. Most notable, all data
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input (except direct mmap) will be buffered and the reader will be oper-
ating asynchronously relative to data processing, helping to hide most
network latencies. This by avoiding the serialisation caused by pro-
cessing the events of one or a few buffers, then request a new buffer
and wait for it to be delivered before being able to process further
events2.

USE MERGING Make the unpacker program capable of keeping several input
files open simultaneously, so that events can be processed in order, even
when they were recorded alternatingly to multiple files. Currently,
due to some technical limitations (pointer handling within the event
structures), this disables some other program functionality, notably
ntuple-generation. Nevertheless, raw level inspection and file output is
possible.

USE CERNLIB With cernlib available, the program can be compiled to pro-
duce hbook ntuple files, using the --ntuple= command line option.
It requires the environment variable CERN ROOT to be correctly set3.
This option has been superseded by the following option:

USE EXT WRITER For simplified compilation and increased performance, the
hbook ntuple and root file writing as well as the structure server
are furnished by external processes. They are automatically forked as
needed by the --ntuple= command line option, and receive the event-
wise data via shared memory or a pipe. The build system will only
attempt to compile the required cernlib and root components if the
necessary libraries are found.

USE CURSES Enables use of the ncurses text terminal control library, needed
for the --watcher and --progress options.

The options controlling the input file format flavour (see Section 2.4)
are specified within each specific project itself, and thus are not given ex-
ternally. They are USE LMD INPUT, USE PAX INPUT, USE EBYE INPUT and
USE HLD INPUT. The alternative option enabling the MBS eventapi (also
reading LMD data), USE MBS INPUT, is deprecated as it offers no advantages.

2Any forked decompressor (gunzip, bunzip2 or lzma) is always a separate processes,
and as such would (where possible) run in parallel with the event processing. However, in
cases where the decompress programs themselves have fairly small output buffers, and the
system pipe size (usually 4096 bytes on Linux, 64 kB by default on FreeBSD) is smaller
than a buffer, operation would be serialised without the USE PTHREAD option.

3This is usually performed by some login script. On a Debian system using the pre-
compiled cernlib packages, setting CERN ROOT=/usr is enough.
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It performs worse than the common input stage and has a more cumbersome
interface.

The compilation process will itself determine if a suitable4 rfio library
can be found or not.

5.4 Code generation

An unpacker also consists of source files that the ucesb and psdc programs
generate, see Figure 5.1. They will be placed in the gen/ subdirectory of
the particular unpacker being compiled. These are some C++ source files
(the unpacker code itself) and header files which declare data structures and
templates with macros for functions to iterate over the structure members.
These header files are included from several files in the eventloop/ directory,
which define macros necessary to turn the templates into something that
actually can be compiled.

The code and structures are first generated by ucesb, into one single
output .uce file, from which the various needed parts can be extracted.
These are the unpack level data structure, associated unpacker code, raw
and cal level data structures and listings of inter-level data mappings.

To be able to do the unpack → raw and raw → cal mappings, let the
watcher run, enumerate data items for ntuple generation, and so on, we
need both ’parallel’ data structures (having the same layout, i.e. names and
branching, but with different content) and functions that do the iterations
over the structure members. These mirror objects are generated by the psdc
program, which takes an ucesb-generated header-file as input and produces
one output .psd file, from which, once again, the wanted parts (structures,
functions) are extracted into individual files. These files are littered with
macros, such that the generic code can give prefixes to names, insert condi-
tional and loop constructs, declare temporary variables, etc., by defining the
macros differently before the various inclusions of the generated files.

Examples of this practice can be found in the files eventloop/watcher.cc,
eventloop/struct fcns.cc and eventloop/struct mapping.hh. Each of
these inclusions begin with 10-15 #defines, followed by #includes for the
generated files — e.g. in gen/struct mirror.hh for creating mirror struc-
tures or gen/struct fcncall.hh for iterating functions — and finish by
#undefining the macros.

Each nesting level in a structure is handled as its own (sub)structure, and
thus also has its own associated iterating functions for various tasks. The

4Only the GSI-specific implementation has been extensively tested so far.
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gen/unpacker.hhgen/matcher.hh gen/structures.hh

unpacker.cc

gen/data mapping.hh

ucesb

gen/struct mirror.hh

gen/struct fcncall.hh

gen/struct dump.psd

unpacker.o

gen/project.uce

project.spec

psdc

psdc

watcher.cc

project user.cc

project user.o

struct mapping.o struct fcns.o

$(LD)

struct fcns.ccstruct mapping.cc

struct mapping.hh

./projectdatafile.lmd

gen/raw struct fcncall.hh

watcher.o

gen/raw struct mirror.hh

$(CXX)$(CXX) $(CXX)

$(CXX)

$(CXX)

gen/raw struct dump.psd

gen/raw structure.hh

extract.plextract.pl

extract.pl

extract.pl extract.pl

extract.plextract.pl extract.pl extract.pl

s

s

s

Other .o files

Figure 5.1: Code generation and compilation process. Dashed lines mark
files used by inclusion. project.spec and the optional
project user.cc are the unpacker specific files. Files prefixed
by gen/ are generated and other .cc and .hh files are part of
the generic sources (which become customised by including the
generated files). The extract.pl script is used to let the spe-
cification parser and code generator ucesb and the structure
reflector generator psdc easily create all needed output in only
one invocation. $(CXX) and $(LD) are the system C++ compiler
and linker, respectively.
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trick with the zero-suppressed data (i.e. members marked ZERO SUPPRESS

etc.) is that they are defined using the generic templated wrapper classes,
that have equally named functions declared, which will be interwoven with
the generated code.

5.4.1 The ucesb unpacker generator

After pre-processing by the C pre-processor (to discard comments and include
additional files), the contents of the .spec files are parsed by the ucesb pro-
gram, building an internal representation of the specifications. When parsing
is complete, some consistency checks are performed on the full information.
The data mappings are inserted into list and tree structures.

For unpacking of the individual data structures, code is recursively gen-
erated. For each data structure, one structure declaration and one function
is created to do the unpacking of the input data, filling the accompanying
structure. A second, non-writing version of the unpacker (matcher) is also
generated, to be used for select statements.

Each data mapping pair has two entries, one which defines the target
name at raw level, and one identifying the source item at unpack level. The
source items have names already corresponding to the described data format.
From all the raw level destination names, a tree is built, with branches for
each sub-name and arrays for the indices. When completed, structures are
generated for each level in the tree.

5.4.2 The psdc reflector creator

For many of the tasks that the unpacker program can perform — generating
ntuples of various subsets of the variables available, creating correlation plots
and “watching” selected items, as well as mapping data from one level to
another in a dynamic way — it needs to actively have some knowledge about
its own data structures, more than just having them compiled. Reflection is
the process by which a computer program can observe and modify its own
structure and behaviour.

The generated unpacker programs do not have a full-featured reflection
system by which they can create arbitrary items etc., but with some help
from the psdc program (that can parse a subset of C structures5) the needed
functionality is obtained. For this two things are required: Firstly, a way to
iterate over and operate on all members of a structure, including substruc-
tures. Secondly, structures parallel to the data containers which can store

5One limitation being that all substructures must be defined separately, i.e. not nested,
but before the structure using them.
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some associated information for each member of the original structure, like
mapping destinations or cumulative results for many events (as done by the
watcher).

Both these ends are achieved by psdc, which creates, for each structure,
both a function that operates on all items and a mirror structure6. After
code generation, examples can be found in the various unpacker directories
as gen/* fcncall.hh and gen/* mirror.hh. Both functions and structures
are riddled with macros. The generated files are then included from other
sources, where the macros have been appropriately defined, such that the
compiler can create executable code with the wanted functionality.

5.5 User functions

To allow arbitrary processing of the data, user-specified functions can be
called at various stages of the event-wise transformations, see Figure 2.1. A
user function is enabled by defining its name in the file control.hh:

#define CAL EVENT USER FUNCTION project user function

and adding the object file to the project’s makefile additional.inc:

OBJS += project user.o

as well as enabling the use of the control.hh file:

CXXFLAGS += -DCONTROL INCLUDE

The prototypes of the functions are given in the generic file user.hh:

void INIT USER FUNCTION()

Used to make any needed initialisations of data structures declared
and used in the file(s) with the user functions. Please note: there is
currently no really comfortable way to access the various event data
structures. It would at times be convenient to store also some cumu-
lative data directly inside some (external, i.e. hand written) unpacker
classes. However, as this will require careful handling for threaded op-
eration, a more permanent and suitable interface would be needed, but
has not been designed yet.

void EXIT USER FUNCTION()

Called after all events have been processed, to do any cleanup or
presentation of any cumulative results. Please note: this function is
intentionally called also if the program is aborted, e.g. by pressing

6Mirror structures — that’s what is to be expected from a reflector. . . ?
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ctrl+C, as the TERMinate signal is caught and just causes event pro-
cessing to cease.

int UNPACK EVENT USER FUNCTION(unpack event *event)

Called when the data of one event has been unpacked. Can be used
to perform additional consistency checks, e.g. verify event counter syn-
chronisation between different modules. For multi-event unpackers,
it must perform the necessary assignments of the data in the unpack
structure to physical events, and return the total number of events
contained. A return value of 0 prevents further processing of the event.

void RAW EVENT USER FUNCTION(unpack event *event,

raw event *raw event

MAP MEMBERS PARAM)

Called after data has been mapped from the unpack to the raw level
structure. The MAP MEMBERS PARAM is only used when handling multi-
event data, to tell which physical event is processed.

void CAL EVENT USER FUNCTION(unpack event *event,

raw event *raw event,

cal event *cal event,

USER STRUCT *user event,

MAP MEMBERS PARAM)

Called after the data has been mapped into the cal level data struc-
ture. If the unpacker has defined its own user level data structure
(USER STRUCT, see Section 5.5.2), this is also available for filling here.

void WATCHER EVENT INFO USER FUNCTION(

watcher event info *info,

unpack event *event)

To enhance the displayed information, the watcher must know which
class of triggers each event belongs to (given by the type member of
watcher event info). It also needs to know when it is a good time to
update the display, e.g. at end-of-spill events (directed by the display

member). See eventloop/watcher event info.hh for further details
and options.

bool CORRELATION EVENT INFO USER FUNCTION(

unpack event *event)

This function is used to tell which events are suitable for inclusion in
correlation plots.
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bool COPY OUTPUT FILE EVENT(lmd event out *event out,

FILE INPUT EVENT *file event,

unpack event *event,

const select event *select)

Additional subevents can be inserted into any output data stream using
this function. The destination is event out, while file event holds
the original event data and event has the unpacked information, from
which the new subevents can be constructed. The user’s command line
wishes of which subevents to include are handled with select.

void HANDLE COMMAND LINE OPTION(const char *arg)

Command-line options to control aspects of the user code are handled
by this function being called for all options not recognised by the com-
mon code. It should return true for successfully handled options. See
the is430 05 unpacker for an example. Note that this interface may
be modified when (and if) the recognition of command-line options is
changed to use getopt().

void USAGE COMMAND LINE OPTIONS()

Print short help messages for the additional options supported by the
above function. Called in response to --help.

5.5.1 External (hand-written) unpackers

When the data format (of a subsystem) is too complicated to be described by
the specification language, the data structures holding the data as well as the
associated unpacker itself can be written manually and seamlessly invoked
by the generated code.

With hand-written code, the possibilities are virtually unlimited. This
section will only deal with the basic inclusion of such a structure. For further
reference, some of the examples in Appendix A make use of external data
structures and unpackers.

Listing 5.1 shows how the external class EXT COMPLEX ITEM must first be
declared (with any arguments, each of type uint32), such that the code gen-
erator ucesb knows the calling sequence, and then used with the external

keyword, such that it does not to try to find a real declaration.
To make the declaration of the class available when compiling the gen-

erated unpacker code, the name of a header (.hh) file including it should
be specified with the USER EXTERNAL UNPACK STRUCT FILE macro in the file
control.hh:
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external EXT COMPLEX ITEM(id);

SUBEVENT(COMPLEX SUBEVENT)
{
select several
{
external item1 = EXT COMPLEX ITEM(id=3);
external item2 = EXT COMPLEX ITEM(id=5);

}
}

Listing 5.1: Including an external structure and unpacker from a data
format specification.

#define USER EXTERNAL UNPACK STRUCT FILE "project external.hh"

The details of the construction of an external unpacker is outside the
scope of this write-up, thus the following description is only a broad outline.
When creating a new external unpacker, it is suggested to investigate the
existing ones in the example directories, and use a suitable one as template.

Class declaration

Listing 5.2 shows the outline of a class declaration. First, some common de-
clarations must be included, e.g. the type of the data source pointer ( buffer)
which is used by the unpacker function:

#include "external data.hh"

This file also contains some convenient macros for reading the input data, as
well as some small external unpackers, which could also be used as templates:

EXTERNAL DATA SKIP Advances the input data pointer to the end of the
subevent, effectively discarding the data.

EXTERNAL DATA16 Retains a pointer to the input buffer and the length of
the remaining subevent data. The input pointer is advanced to the
subevent end. The retained pointer and length can be used to handle
the data in a user function instead. This is possible as the file input
buffer is never released until the event has been completely processed
and retired, see Section 7.1.

EXTERNAL DATA32 Similar as above.

A natural ingredient is the data members that should hold the event-wise
unpacked data. For performance reasons, excessive memory allocation and
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#include "external_data.hh"

class EXT COMPLEX ITEM
{
public:
EXT COMPLEX ITEM() { }

public:
/* Data members... */

public:
void clean();
EXT DECL UNPACK ARG(uint32 id);
EXT DECL MATCH ARG(uint32 id); // If part of a select statement

public:
DUMMY EXTERNAL DUMP(EXT COMPLEX ITEM);
DUMMY EXTERNAL MAP MEMBERS(EXT COMPLEX ITEM);
/* more dummy functions... */

};

DUMMY EXTERNAL MAP STRUCT(EXT COMPLEX ITEM);
/* more dummy structures... */

Listing 5.2: Declaration of an external data structure.

deallocation should be avoided. Memory should either be statically reserved
for the worst case item size, or reallocated as needed when an event requires
more space then was previously needed. Special care may be needed when
using multi-threaded operation, as that will have several hundred events in-
flight at the same time, possibly causing very large reservations.

In addition to the data members, the unpacker class must have some
member functions:

void clean()

Called before every event for each instance of the item to reset the
data structure members to an empty state. Often, when using some
sort of zero-suppression, this only means to reset a counter or bit-
field. Touching all allocated memory should generally be avoided, lest
performance shall suffer.

template<typename data src t>

void unpack( data src t & buffer,...)

Called to perform the unpacking of one item, i.e. reading the input
data using the buffer data source pointer and filling the data mem-
bers as needed. As the data src t is a templated type (the ac-
tual data source handling is compile time generated in several versions

54



User functions

#include "external.hh"
#include "error.hh"

void EXT COMPLEX ITEM:: clean()
{
/* Reset the data members for a new event... */

}

EXT DECL DATA SRC FCN ARG(
void,EXT COMPLEX ITEM:: unpack,uint32 id)

{
uint32 header;
GET BUFFER UINT32(header);
if (header != id)
ERROR("Header (0x%08x) mismatch id (0x%08x).",header,id);

while (! buffer.empty())
{
uint32 w1;
GET BUFFER UINT32(w1);
if (!(w1 & 0x80000000))
break;

/* Insert the data words into the structure... */
}

}
EXT FORCE IMPL DATA SRC FCN ARG(
void,EXT COMPLEX ITEM:: unpack,uint32 id);

// The __match() function is needed when the structure is part of a
// select statement.

EXT DECL DATA SRC FCN ARG(
bool,EXT COMPLEX ITEM:: match,uint32 id)

{
if ( buffer.left() < sizeof(uint32))
return false; // not enough space for entire header

uint32 header;
GET BUFFER UINT32(header);
return header == id;

}
EXT FORCE IMPL DATA SRC FCN ARG(
bool,EXT COMPLEX ITEM:: match,uint32 id)

Listing 5.3: Minimal functions needed for an external unpacker. The data
consists of a header word with the instance id, followed by
data words, each marked with the high bit set. Note the liberal
use of the ERROR macro whenever any irregularity in the data
is encountered, in line with the ucesb motto: “Unpack and
check every single bit.”
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to handle byte-swapping and unscrambling), the function definition
is normally done using the convenience-macro EXT DECL UNPACK(), or
EXT DECL UNPACK ARG(...) if the item has some parameters.

template<typename data src t>

static bool match( data src t & buffer,...)

This function is only needed when the structure is part of a select

statement, in which case it should determine if the data at the cur-
rent point comes from the current item instance. Usually the external
unpacker would be declared with some parameters to be used at the
identification. The function is declared static as it must not perform
any unpacking, this is left for the unpack function upon a successful
match.

To make the data structures available for use by all the features of the
unpacker, many provided directly at the command line (e.g. text dumps of the
data, member lists, mapping of data to raw level structures), several further
functions are needed. To not make their presence mandatory, DUMMY ...

macros are provided to declare them, such that compilation of the generic
code, that expects them to exist, works.

Function implementation

Listing 5.3 shows some small unpack and match functions for a simple
data format. The convenience-macro

GET BUFFER UINT16|32(destination)

is used to retrieve the data words from the input buffer. It wraps the
functions that handle any needed byte-swapping, as well as throwing an
error if the subevent unexpectedly runs out of data.

Once again, the EXT DECL DATA SRC FCN[ ARG] macros are used to hide
the template character of the buffer. To allow the function bodies to be
placed in a separate compilation unit (.cc file) and not require their presence
along with the prototypes (in the .hh file), the needed template versions are
instantiated by the EXT FORCE IMPL DATA SRC FCN[ ARG] macros.

5.5.2 Custom user event and calibration structures

Variables derived during reconstruction in the CAL EVENT USER FUNCTION can
be made available for dumping in ntuples etc. as a user level by including
them in a user-defined structure, named in the file control.hh by:

#define USER STRUCT project user struct
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The structure must be declared or included from a header file whose name
is given in the project-specific makefile makefile additional.inc:

USER STRUCT FILE = project user struct.hh

An illustration of this practice can be found in the hacky unpacker example.
As these structures must be parsed by the psdc reflector generator in order for
the data members to be known to the generated internal routines (to be con-
sidered for inclusion in ntuple output as well as being externally assignable,
see below), certain restrictions on their layout and members apply — see Sec-
tion 5.4.2. Each structure must contain the macro USER STRUCT FCNS DECL,
as exemplified in Listing 5.4.

struct detector data
{
float hit x UNIT("#cm");
float hit t UNIT("#ns");
float speed UNIT("#cm/#ns");

uint8 nhits;

USER STRUCT FCNS DECL;
};

struct my user struct
{
detector data dets[2][2];

USER STRUCT FCNS DECL;
};

struct detector calib
{
float t common UNIT("#ns");
float t offset[16] UNIT("#ns");
float t slope UNIT("#ns/ch");

float wire spacing UNIT("#cm");

CALIB STRUCT FCNS DECL;
};

struct my calib struct
{
detector calib dets[2][2];

CALIB STRUCT FCNS DECL;
};

Listing 5.4: Structures for user level data and calibration parameters,
for a setup with 2 × 2 detectors of the same kind. Units and
prefixes are used generously.

It is also possible to declare a structure for holding calibration parameters
which can be read and assigned during program startup (see Section 4.2.1).
The structure is declared analogously to the user level data structure, with
USER replaced by CALIB. It is accessible as the global variable calib. To
take advantage of the unit checking system on input, each structure member
can be associated with a UNIT, cf. Section 4.3. Note that the unit and prefix
handling is a matter internal to the generic code of a ucesb unpacker, the
user-supplied analysis routines deal with the variables in a normal manner.
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Output and Monitoring

Without any options given for output, the unpacker program will only unpack
the data, verifying the integrity of the input files. While already this may be
enough to identify problems, it is not too exciting. . .

6.1 Ntuple generation

An “ntuple” contains the data items of a (possibly large) structure stored for
many events, arranged to easily process the information event-wise [9]. In
this respect, also the input files (.lmd, .pax, .hld. . . ) would qualify, but the
key concept of an ntuple is the ability to access one or a few members within
many or all of the events easily, without having to bother about all other
items. Imagining the events as rows and each structure item as a column,
the storage is thus actually more column-oriented than the stricter row-wise
orientation of the input data files. One or more ntuples (as well as some other
objects, e.g. histograms) can be stored in cernlib hbook files, for use with
e.g. the paw [1] interactive system. With this, single and multi-dimensional
plots and histograms of the variables and correlations between them from
many events can be made. A root tree is the equivalent (more advanced)
form of ntuples for the root [2] data analysis framework.

hbook ntuples come in two flavours: row-wise and column-wise. The row-
wise ntuples only support a fixed list of items per event (which are always
present) and each item is a floating point variable. These are not efficient
(or convenient), so although supported by the unpacker program, they will
not be considered further. The column-wise ntuples support both integer
and floating point data types, as well as giving ranges for the items. This
is especially useful for the integers, whereby also the number of bits used
to store the items will be kept to a minimum. A limited-range integer may
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also be used to define the event-wise array size of other items, such that
zero-suppression can be achieved. Multiple levels of zero-suppression are not
supported, and there is no support for multi-level (nested) structures — all
variables have to be flattened to the top level.

To create a column-wise hbook ntuple, cernlib provides three functions:

HBNT(id,title,options)

Used once to create the ntuple and give it a name.

HBNAME(id,block name,pointer,description)

Called (several times) at startup to add variables to the ntuple. For
each set of variables, the names, types and ranges must be provided,
along with a pointer to a structure in memory that has the layout
described. (Variable sized arrays have the worst-case size as given by
their size-controlling variable’s maximum limit).

HFNT(id)

This function is invoked once per event. The hbook ntuple filling mech-
anism will use the pointers provided in the HBNAME calls to retrieve the
values of all items.

Although the working principle of filling the ntuples from a fixed-location
existing data structure (Fortran common block) is straight-forward and gener-
ally appealing, it is not suitable for the generic unpacker. The data structure
layout used by the unpacker cannot be described in this scheme. Bit-mask
versions of zero-suppression are unheard of, and also the multi-level handling
of items that logically belong together, must be flattened before they can be
used by hbook1.

To cope with this situation, each event to be written to the ntuple will be
pre-staged to a fixed “virtual” structure in memory, with a layout suitable
for HBNAME description. The structure is virtual as there exists no description
of it as a C structure, its memory layout is calculated within the program at
startup when handling the --ntuple option.

The unpacker program internally has a list of pointers to all variables
(every item within an array separately) together with its name (handled as a
path within the data structure tree). These are set up at startup by letting
generated functions iterate over the structures. These pointers and name
pairs are among others also used when setting up unpack → raw maps, and
raw → cal transformations.

1The same arguments also hold for land02 — the ntuple creation code was actually
created there.
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The handling of the --ntuple= option selects all data members that are
wanted (as specified on the command line). The list of names and pointers is
then sent to the ntuple-stager2. The stager sorts the entries based on names,
to arrange “similar” items together, basically such that indexed variables
with the same name come in order. This way, flattening of the data structures
is performed, in some sense reordering the entries along another index than
is used internally in the unpacker program.

The number of needed variables in the worst case, i.e. for a full event,
is counted and memory space is allocated. Finally, the stager runs over the
“virtual” array, producing the necessary strings and pointers and invokes
HBNAME to make hbook believe that such an array exists.

For each event, the ntuple writer will iterate through a list of pairs of
source and destination pointers to copy the data from the internal data struc-
tures to the virtual array. It also does the conversions necessary to handle
bit-mask protected zero-suppressed arrays and creates index variables in the
array to mark which index each entry originates from. As zero-suppression
is strictly obeyed, the iteration time is proportional to the number of ejected
items. Finally HFNT is called to let hbook store the data to file.

The capability of the ntuple stager and writer to create root trees is
invoked by giving a .root file extension, or by using the ROOT option. The
trees have the same layout as the hbook ntuples, i.e. the stager essentially
behaves as if h2root had been used. Creation of more advanced trees is
a future development. Only root files can be read with the --in-tuple

option. Pass hbook files through h2root first to avoid indigestion.

6.1.1 Examples

To create a file.ntu ntuple with all unpack level variables, use the option:

--ntuple=UNPACK,file.ntu

To get the data organised by detector instead, fetch the raw level:

--ntuple=RAW,file.ntu

Many levels can be requested at the same time:

--ntuple=UNPACK,RAW,file.ntu

By explicitly naming some variables, only those will be included in the output
file (the detector names in the following examples apply to the LAND setup,
use the --show-members option to get a list of available variables):

--ntuple=RAW,POS,N,TFW,TOF,file.ntu

2The same information (names and pointers) is collected by land02, but in a different
way, and sent to the same stager.
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Or at the unpack level:

--ntuple=UNPACK,fastbus,camac,file.ntu

The writer can also be reversed, becoming a reader for input:

--in-tuple=UNPACK,file.root

6.2 External structure server

Along with the internal partition of the actual ntuple writing into a separate
process (see Section 7.4) and the simultaneous cleaning of the interface for
set-up and data transfer to the needed hbook/root libraries, an opportunity
appeared to also deliver the virtual structure directly to other external pro-
grams. The idea is simple: for any requested ntuple output, a C header-file
with a declaration of a structure corresponding to the virtual array can be
generated. This can be included into any C program, allowing it to use the
members in a normal fashion, see Listing 6.1. By calling a few functions
provided by one lean library (based on a single source file in plain C), the
external program connects to a tcp/ip server operated by a running ucesb

unpacker, and fetches the data event-by-event into the structure. The pro-
gram is free to do whatever it likes with the structure contents. It can even
be a root script or program.3 This interface is most suitable for on-line
monitoring or testing of ideas when one for some reason does not want to
perform that task in a user-function of the unpacker itself.

6.2.1 Example

First the header file with the structure layout must be created:

--ntuple=UNPACK,STRUCT HH,ext struct.hh

The server is started by:

--ntuple=UNPACK,STRUCT,dummy

Following this (and compilation of the external program), start processing:

./my external program localhost

where localhost would be replaced by the hostname of the server machine.
The protocol is unidirectional, thus also suitable for pipe-line operation:

... --ntuple=UNPACK,STRUCT,- | ./my external program -

The pipeline functionality could be used by another analysis system wishing

3The possibility to run a similar server with root intrinsics have been investigated, but
an easy and efficient solution supporting multiple clients was not found. Being independent
also have other advantages.
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typedef struct EXT STR h101 t
{
// UNPACK
uint32 t TRIGGER;
int32 t EVENTNO;
// RAW
uint32 t POS1 1E;
uint32 t POS1 1T;
uint32 t POS1 2E;
uint32 t POS1 2T;
/* 10 items omitted ... */
uint32 t POS2 4E;
uint32 t POS2 4T;
uint32 t TFW;
uint32 t TFWI[32 /* TFW */];
uint32 t TFW1E[32 /* TFW */];
uint32 t TFW1T[32 /* TFW */];
uint32 t TFW2E[32 /* TFW */];
uint32 t TFW2T[32 /* TFW */];

} EXT STR h101;

typedef struct
EXT STR h101 onion t

{
// UNPACK
uint32 t TRIGGER;
int32 t EVENTNO;
// RAW
struct {
struct {
uint32 t E;
uint32 t T;

} [4];
} POS[2];
uint32 t TFW;
uint32 t TFWI[32 /* TFW */];
struct {
uint32 t E[32 /* TFW */];
uint32 t T[32 /* TFW */];

} TFW [2];
} EXT STR h101 onion;

Listing 6.1: Example of structure layout for use by external programs. The
two structures have the same organisation in memory. The left
has names directly corresponding to the hbook/root ntuple,
while the right is generated with heuristics to combine named
indices into structured arrays, for looping over the items.

to use the unpacker just to read raw data files, perhaps as a forked process,
hiding the pipe-line.

The header file can also be generated without direct access to the pro-
gram of a running server, by connecting with the struct writer program
(which is the same as runs the server):

$UCESB/hbook/struct writer hostname --header=ext struct.hh

It resides in the hbook/ directory of the unpacker sources (denoted by $UCESB).
It can also be used to run a proxy-server:

$UCESB/hbook/struct writer hostname --server

The events from a server can be stored in hbook or root files by using the
writers since all necessary information to set them up is available in the pro-
tocol data stream:

$UCESB/hbook/root writer hostname --outfile=mytree.root

Finally, if the external program instead have been constructed to generate
data, this can be passed as input to the ucesb process:

./my external generator | ... --in-tuple=UNPACK,STRUCT,-
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6.2.2 Implementation notes

For the user of the external program, the event-wise filling of the structure
behaves as if the new data is simply copied into it each time. The exception
is that zero-suppressed arrays are not touched except for the number of valid
items given by the controlling variables in each event. Internally, the amount
of data transferred over the network is additionally reduced by employing a
byte-packaging favouring short encodings for small values, zeros and NaNs4,
at the same time handling the byte-swapping issue due to machines having
different endianess.

The server handles multiple client connections efficiently by, analogously
to Figure 7.1, employing a common buffering of outgoing data, although no
separate thread is used in this case. The packed data for multiple events
are stored into buffers of approximately the same size before being sent over
the network to allow the bulk transmissions to handle larger chunks than
individual events may provide. As the total amount of buffering is limited
(currently 16 MiB), client connections that are too slow to handle all events
will eventually skip chunks of events as some buffers are re-used before being
transmitted to those clients. No losses occur when the connection is made
as a pipe.

The server listens on two tcp/ip ports. The main socket only act as a
port-mapper to the second sacrificial socket, bound to a random port num-
ber, and handling all data transmission. This way, there are rarely any
connections open on the main port, allowing for easy restart of the server
without having to wait for the dreaded “socket in use” due to the previous
server having just torn down the connections on the main port. Works like
a charm.

6.2.3 Interface library for the external program

The functions needed in an external program to either fetch or produce event-
wise data through the generated structure are collected in a client library
with prototypes in $UCESB/hbook/ext data client.h. This header is to be
included by client programs:

#include "ext data client.h"

For the compiler ($CC) to find it, add the hbook/ directory to the include file
search path, usually:

$CC ... -I $UCESB/hbook/

4NaNs are used to mark unset values of floating point variables and are therefore frequent
at cal level (and higher).

63



Output and Monitoring

And link ($LD) the object file of the client library with the program:

$LD ... $UCESB/hbook/ext data client.o

Alternatively, include the source file in the compilation directly. In any case,
it is not recommended to copy the header or source files of the client library
directly into another directory, as they may be changed due to protocol
extensions. Mismatches will be detected at run-time. Listing 6.2 shows a
simple external program. More templates are in $UCESB/hbook/example/.

The following functions are available:

struct ext data client;

Forward declaration of a structure used as handle for a connection.

struct ext data client *ext data connect(const char *server);

Create and return a client context connected to server. Use - for
stdin. Returns NULL on failure.

int ext data setup(struct ext data client *client,

const void *struct layout info,

size t size info,size t size buf);

Validate that the server provides data suitable for the intended struc-
ture (of size size buf) by comparing with information in an ancillary
structure also declared in the generated header. See Listing 6.2 for
more details on usage. Returns 0 on success.

int ext data fetch event(struct ext data client *client,

void *buf,size t size);

Fetch one event into the structure pointed to by buf. Its size is only
given for an extra check. Returns 1 for one fetched event, 0 on end-of-
data and negative on error.

int ext data close(struct ext data client *client);

Close the connection and delete the context. Returns 0 on success.

void ext data rand fill(void *buf,size t size);

To help identify possible bugs in the user-code management of zero-sup-
pressed arrays (reading invalid items), this function can be called to fill
the entire structure with random bits before fetching events, making
use of invalid data more likely to stand out and be noticed.

const char *ext data last error(struct ext data client *client);

Returns a pointer to a string describing the most recent error (if any).
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#include <stdlib.h>
#include <stdio.h>
#include "ext_data_client.h"

/* Change these, here or replace in the code. */

#define EXT_EVENT_STRUCT EXT_STR_h101
#define EXT_EVENT_STRUCT_LAYOUT EXT_STR_h101_layout
#define EXT_EVENT_STRUCT_LAYOUT_INIT EXT_STR_h101_LAYOUT_INIT

#include "ext_h101.h" /* The generated header. */

int main(int argc,char *argv[])
{
struct ext data client *client;

EXT EVENT STRUCT event;
EXT EVENT STRUCT LAYOUT event layout =
EXT EVENT STRUCT LAYOUT INIT;

if (argc < 2) {
fprintf (stderr,"No server name given, usage: %s SERVER\n",argv[0]);
exit(1);

}

client = ext data connect stderr(argv[1]); /* Connect. */

if (client == NULL)
exit(1);

if (ext data setup stderr(client,
&event layout,sizeof(event layout),
sizeof(event)))

{
for ( ; ; ) /* Handle events. */
{

#ifdef BUGGY_CODE
ext data rand fill(&event,sizeof(event));

#endif
/* Fetch the event. */

if (!ext data fetch event stderr(client,&event,sizeof(event)))
break;

/* Do whatever is wanted with the data. */

printf ("%10d: %2d\n",event.EVENTNO,event.TRIGGER);

/* ... */
}

}

ext data close stderr(client);
return 0;

}

Listing 6.2: Example of an external program for processing events fetched
from a struct server.
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The following functions are used when generating data:

struct ext data client *ext data open out();

Create a client context for data output on stdout. To be followed by
a call to ext data setup.

int ext data clear event(struct ext data client *client,

void *buf,size t size,

int clear zzp lists);

This function can be used to clear the structure buf before filling a new
event. With non-zero argument clear zzp lists all items in zero-
suppressed arrays are also cleared — a performance killer.

void ext data clear zzp lists(struct ext data client *client,

void *buf,void *item);

Instead of clearing all zero-suppressed arrays with the previous func-
tion, this routine can be used to clear the valid items of arrays associ-
ated with a controlling item, after having set it, but before (sparsely5)
filling the array members.

int ext data write event(struct ext data client *client,

void *buf,size t size);

Pack the data from the structure buf for transmission.

int ext data flush buffer(struct ext data client *client);

Data is normally sent when the internal transmit buffer becomes full.
Immediate transmission can be forced with this function. Useful if
the producer knows that it will need to wait for further input before
generating the next event.

More detailed documentation is available in hbook/ext data client.h.
These functions return error codes in errno and never litter stderr with
any messages. To simplify writing of external programs where this is not
a problem, easier-to-use wrappers with stderr added to their names are
also available. Those are used in Listing 6.2. The functions are also directly
usable by C++ programs, but wrapper classes do exist, along with shared
library files useful for root scripts.

5If all valid members of a structure or array are set in each event, clearing is not needed.
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6.3 Watcher – the DAQscope

The unpacker provides a way to from a text-terminal quickly see if a bunch
of channels have some data, and where within the range the data lies, see
Figure 6.1. The display is made using the ncurses library and controlled by
a command line option, making it easy to use even from remote locations.
By using it with an on-line data source, it can be used to help approximately
adjust delays and amplifications. Running it off-line, it can show the devel-
opment of the channels during an entire experiment, like a movie, played in
fast forward!

For each selected channel, the value of every processed event is added to
a histogram. When the display condition occurs (usually due to an off-spill
event) the histogram is rendered as one line of numbers representing the
log2 of the counts in each bin, and dots representing empty bins. When the
WATCHER EVENT INFO USER FUNCTION has provided trigger type information,
each bin will be colour coded by the trigger dominating the bin content.

6.3.1 Examples

To invoke the DAQscope, specify some modules or detectors at the unpack

and/or raw level to show:

--watcher=POS,PIN,PSP 2> /dev/null

The redirection 2> /dev/null prevents cluttering of the display by the nor-
mal output of ucesb, including error messages. In case the watcher does not
start at all, remove the redirection to inspect any error messages that may
explain the cause.

To enforce a different sorting of the detectors than their order in the
internal structures, a colon can be used to separate more specific detector
requests:

--watcher=POS1-2 1-4T:POS1-2 1-4E

The histogram can be expanded around a certain interval:

--watcher=MIN=0,MAX=1000,POS1-2 1-4E

To easily adjust the delays of e.g. time calibrator signals, the watcher can help
by showing the currently “illuminated” range (the user code must provide
the event-wise sampled value):

--watcher=RANGE,POS1 1-4T,N1 1-5 1-2T

For cases when no spill synchronisation is available, the maximum number
of events or timeout values can be specified (overriding the large defaults):

--watcher=COUNT=1,TIMEOUT=2,vme adc1
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Figure 6.1: Watcher showing data from the S245 experiment. Channels se-
lected by: --watcher=POS1-2 1-4T:POS1-2 1-4E:PIN1-2 1E:

N1 1-2 1-2T:N1 1-2 1-2E.
To the left, each signal’s name is given. The first column

shows the number of underflow conversions (per different event
type), in the middle the full range of the channel is displayed,
with the colour selected by the dominating contribution, and
overflow is shown in the right column. The rightmost letter, l,
h, a, gives the range in use (low, high, or auto).

The time calibrator (yellow) only generated signals at 11
locations (with 10 ns spacing) as can be seen in the POS time
channels. The cosmics (offspill, magenta) and physics (green)
in LAND (N) are not overlapping in the time range, which will
require a good TDC calibration, as the timing is synchronised
by cosmic muons. Preventing such things from passing un-
noticed during data-taking is one of the watcher’s reasons for
being.
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6.4 Correlation plots

A ucesb correlation plot is a 2-dimensional grey-scale triangular picture
showing how often each pair of channels have signals in the same event.
Each detector channel, times and amplitudes individually, occupy one index
on both the x and y axis. The intensity of every pixel in the upper triangle
shows the number of times the two channels that represent its intersect-
ing indices have had data in the same event — the darker the more often.
The typical use is for detectors where neighbouring channels are expected to
sometimes (or quite often) give a signal for the same particle passing through
the detector.
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Figure 6.2: TFW detector internal
correlations. Each
paddle has two PM
tubes, here ordered
pairwise.

An example is shown in Fig-
ure 6.2, where both the correlations
between the two PM tubes of the
same paddle can be seen as dots near
the diagonal, as well as the correla-
tion between TDC and ADC values
for the same PM tube channel as a
diagonal in the upper right square of
the picture. Even a rough picture
of the hit pattern over the detector
is seen in the horizontal vs. vertical
TDC correlations (tx vs ty).

Figure 6.3 shows an example with
more channels (the entire LAND de-
tector). While often rather easy to
spot when some mapping is wrong
(see inset of Figure 6.3), it is harder
to figure out how to correct it, in
which case the documentation on
how the detector was mounted and
cabled has to be consulted to correct
the problem.

6.4.1 Examples

The TFW correlations in Figure 6.2 were made using:

--corr=TFW1-32 1-2T:TFW1-32 1-2E,tfw.png

and the picture of LAND cosmics in Figure 6.3 was created by:

--corr=N1-10 1-20 1-2T:N1-10 1-20 1-2T,n cosm.png
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Figure 6.3: Coincidences between the read-out channels of the LAND de-
tector for a cosmic muon calibration run. The even numbered
planes have horizontal paddles. The lack of correlated data (di-
agonals) between those planes comes from the fact that such
correlations would require cosmic muons with almost horizontal
tracks, which are rare as they originate in the sky. The missing
vertical and horizontal lines are not printing artefacts — they
represent broken channels.

The smaller picture shows the first four planes with some
intentional channel mapping errors. The first plane has had
two time channels exchanged, the second plane has had two
PM tubes (time and energy) swapped. The first and second
halves of third plane have been exchanged, while the second
half of the fourth plane is reversed.
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6.4.2 Implementation

Each channel to be shown in a plot is given an index, becoming the channel’s
row and column number. For each event, a list with the indices of channels
with non-zero data is constructed. Then, making a double loop with i and
j, j > i, over the list of indices, the counter of correlations of each location,
si,j, is increased.

When all events have been processed, the matrix is converted into a pic-
ture. The intensity of each pixel Ii,j is the logarithm of the counts si,j,
normalised to the total number of hits si and sj in the contributing channels,
and an overall normalisation based on the total number of correlations S,
the number of channels n and the number of events E,

Ii,j = ln

(

si,j√
sisj

)

/ ln

(

S

nE

)

. (6.1)

To prevent the swamping of the real (physical) correlations by background
noise, it is important for energy channels to be properly zero-suppressed, i.e.
not include any pedestal or time calibrator events when creating the plots.
The pictures are generated as a raw bitmap, piped to a forked convert

process, that creates a file in any common graphics file format.
The class handling correlation plots (corr plot dense) can also be used

from user code to make more elaborate selections. A version suitable for
sparse channel occupation (corr plot) is more efficient in cases where the
channel numbers in use are selected from large ranges, but are grouped with
many unused numbers in-between. This is used in the esn program, see
Appendix A.

The correlation plots have been used successfully to verify that the cable
mappings of detectors with several thousand channels are correct. The
biggest being a RICH detector with 4096 channels (64 pixels squared), where
each scan lines gives neighbour correlations, and also between closely neigh-
bouring lines. The plots have also been used with the EuroSuperNova wire
chamber detectors, having a few thousand wires. Here, the sparse mode
came to good use, as the data format itself allowed for 64k wires, out of
which some 4000 are in use, sparsely using some regions of the possible wire
number encodings.

As noted above, obtaining reasonable correlation plots is sometimes dif-
ficult. ADC channels require a reasonable threshold cut value to be usable
in the correlation plots. It could for future development be advantageous to
couple a pedestal determination routine to provide cut values as a pre-filter
to the correlation plot, such that only non-noise readings are counted.
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Internals

Some of the internal workings of the program may not be of general interest,
but some ideas that have been used deserve to be explained. It should be
noted that most of these ideas were not included in the design from the
beginning, but have matured into existence.

The primary goal is to keep the code size down — avoiding code du-
plication at almost any cost — letting the compiler and helper scripts and
programs do the job instead! The second ambition is to use as efficient data
storage schemes (and thereby algorithms) as possible and feasible. That the
program is fast is not by chance — it comes from hard work and discipline.
This fortunately only seldom interferes with the primary goal.

One thing has led to the other. Seemingly random cleanup and consolid-
ation actions have paved the way for entirely new capabilities.

7.1 Input stage

One example of evolving developments is the input buffering stage. The file
format reader originally did its own I/O, even opening the files. An additional
layer was introduced, separating the file handling and I/O, making it possible
to also easily read data from a pipe, filled by a separate decompressor process.
This separation lowered the threshold for implementing readers for more file
formats considerably.

The practice of by default reading data directly from mmapped file buffers
in itself gives a quite noticeable speed boost for some usage cases. Emu-
lating it with internal buffers when necessary1 in addition enabled decoup-
ling of forked decompressor processes2, allowing them to work at full speed

1A pipe (or network socket) cannot be mmapped.
2The fork system call creates a new process, which in turn can execute a decompression
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on multi-processor systems. These buffering mechanisms were then re-used
when implementing TCP transports reading data directly from the DAQ.

7.1.1 Zero copy approach

The analysis processing of experimental data can quite often be rather quick,
such that any I/O overhead will be responsible for a large part of the total
computer time spent.

Instead of reading files with the read() system call, one may directly
map the kernel memory representing (part of) a file into the process virtual
memory with mmap(), in read-only mode. In this case, it will not be necessary
for the kernel to copy the data to user-space, saving one loop over it. This is
particularly useful in cases where events are skipped. The memory-mapped
window of the file is moved as the processing of the data advances3.

7.1.2 Emulating mmap

By using the mmap approach, the individual file format interpreters are sim-
plified, as they no longer have to worry about how to fetch the data into
buffers or deal with errors. They only have to call two functions:

int map range(off t start,off t end,buf chunk chunks[2])

Which ensures that the data in the specified range of the file is available
in memory somewhere, and return a pointer to the start of it. For
mmapable cases, this translates directly.

Since several memory map regions can be active simultaneously or the
circular internal buffer could wrap in the middle of the requested range,
it is not enough to just return one pointer. Instead, map range will fill
out buf chunk entries with each fragment (pointer and length) and
return the number of fragments used, 0 indicating failure. Normally
one fragment is needed, and two are enough in the worst case, since
the mapped regions or the size of the internal circular buffer are much
larger than any individual record requested.

void release to(off t done)

Is called to allow the input subsystem to reclaim (or re-use) any memory
associated with data up to the given point in the input file.

program, passing the data to the original program via a pipe.
3The entire data-files cannot be mapped into virtual memory at once. On a 32-bit

machine, addressable memory is only 4 GB. In cases when several GB large input files are
open simultaneously, e.g. for merging, this would not suffice.
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For the cases when a native mmap is not possible (i.e. all situations except
a direct file:// input), an internal buffer will be employed. Thus any I/O-
related error handling can be located at one place. Reading compressed
files (e.g. .gz or .bz2) is also done once for all different supported data file
formats.

7.1.3 Subevent copying

The subevent unpacking routines use pointers directly into the mmapped areas
or buffers whenever possible. To not have to deal with pointers to subevent
data regions that are ’split’, whenever a subevent is fragmented over several
buffers of the input data, the subevent data will be copied to one contiguous
memory area. As only the fragmented subevent(s) within a fragmented event
are given this treatment, and byte-swapping is made on the fly, much copying
is avoided.

7.2 MBS-like TCP server, stream/transport

The unpacker can not only read, but also propagate raw data to other analysis
clients by using the (simple) MBS stream and transport network protocols.

Although data would usually be read over TCP from a running DAQ and
relayed, the program could equally well serve data from files. The empty pro-
gram (see Appendix B) is especially useful as a data relay, as it does not care
about the contents of the subevents and just passes them along. The major
use of this feature is as an event server during a running experiment. The
program (running on a computer with much network bandwidth) connects
as the only client to the DAQ, and other analysis clients in turn connect to
it, leaving the DAQ alone. The unpacker can also do some event rewriting
or selection if necessary.

By decoupling both the input and output stages in separate threads from
the main event processing, the network can be used optimally (to the limit of
serialisation induced by the protocols in use). The CPU load is small for all
the threads, at least when running as the empty program, i.e. without data
processing.

7.2.1 Server in one thread using select

The data server runs in one separate thread, driven by the select() I/O
multiplexer, and is responsible to accept client connections and serve them
data. New data blocks are provided by the (normal) processing thread. To
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Free block

Allocate block

Transmission to clients

Empty block queue Filled block queue

Server thread

Main processing thread

New events

Figure 7.1: Buffer re-cycling between the server and producer threads. The
main processing thread fills empty buffers with data and in-
serts them into filled block queue. The server thread inserts
the filled buffers into a list, through which each client connec-
tion proceeds individually. Blocks are allocated or freed by the
server thread as the empty block queue becomes empty or full.

avoid reallocations4, old blocks are recirculated, much in the same way as —
and inspired by — the MBS. Figure 7.1 sketches the data flow.

The empty and freshly filled data blocks are transported between the two
threads using two circular queues, and the only blocking5 required between
the two threads occur when the queues become either full or empty. For
simplicity, all memory management, in particular allocation of new blocks is
done within the server. This way, only that thread needs to ensure that the
maximum amount of memory used does not exceed the specified limit. Each
time the processing thread needs a new block, if memory usage is still below
the limit, it will be freshly allocated. If not, the oldest block in the send

4Bad, mostly because for these large sizes memory may easily be returned to the OS,
and then new, freshly zeroes pages are required again, but also since memory management
has to be synchronous between the threads.

5Multiple threads that may execute concurrently must carefully regulate (lock) the
access to shared resources, in this case to not dequeue from an empty queue.
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chain that is currently not used as a source is removed from the chain and
reused. That block of data is then lost for all clients that currently receive
data from even older blocks, but this just constitutes the dropping needed,
to make those (slow) clients catch up.

Each newly filled block is put at the end of the send block list. It remains
on the list until the last client has gotten the data (or it is prematurely
reclaimed due to shortage of blocks). Each client connection only needs to
keep track of which block of the send chain, together with an offset within
that block, it is currently sending from. Each time select tells that an
outgoing socket is ready to accept further data, more is written. As the
network sockets are operated non-blocking, the server thread is never stalled
talking to any client. When a client is done with one block, it moves to
the next in the linked list. If it reaches the front, it will wait until another
block becomes available from the processing thread. Other communication
with the clients (other protocol overhead) is also performed in non-blocking
mode.

When a block is no longer needed by any client, it is recycled onto the
free block queue, for eventual use by the processing thread, or deallocated,
if that queue is full.

Performance considerations: stream vs transport server

The stream and transport server/client protocol has only small differences.
While the stream server always deliver full streams (i.e. a bunch of buffers,
above called blocks), the transport server does the delivery in (non-empty)
buffers. The advantage of only transmitting non-empty buffers would surface
only if periodic flushing would be implemented. However, the protocol for
the stream server also requires a token from the client before each new stream
is sent. Depending on if the client itself sends a request for another stream
before it has consumed the previous or not6, this may incur a serialisation,
such that for each stream delivered, one network packet round-trip time is
lost.

It is recommended to use the transport protocol when reading from the
ucesb data server, as the stream protocol communication offers no advantage.
As a relay server, the ucesb program should however itself read data from
the DAQ using the stream protocol, as that is non-blocking at the DAQ side,
ensuring that a malfunction cannot halt the DAQ.

6The ucesb stream client does not send the request in advance.
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Missing feature: periodic flushing

In cases where the data rate is small, or when the DAQ delivers the data
using delayed event building, i.e. in bunches after each spill, it would be nice
to ensure that no data lingers around for too long in any link of the transport
chain. The MBS can ensure this with data flush timers.

The same could be done in the ucesb data server, i.e. when no buffer has
been emitted for the last n seconds, a flush could be requested. However,
due to the nature of how data is “pushed” from the processing thread to the
server thread, the flush would have to originate in the processing thread. As
that is completely data (event) driven — generally waiting deep down in the
event reading code for new data at times when flushing is needed (i.e. when
no events are arriving) — such a timer would currently not insert cleanly into
the code. Flush functionality should come for free as threaded processing of
events (see Section 7.3.2 below) becomes functional.

7.3 Multi-threaded operation

The use of several threads processing data can speed up the operation, as seen
earlier even on a single-processor CPU by decoupling data in- and output.
The following describes work-in-progress towards making further parallelisa-
tion possible.

7.3.1 Input system

When reading data over the network when a separate read thread is not
employed, the input will be (partially) serialised with the analysis, as the
buffers only will request more data when they become empty. Depending on
the protocols involved, this usually means that at most one partial buffer is
outstanding at a time, waiting in the OS network buffers. The next buffer
will not even start to arrive before the request has propagated through the
network round-trip time. These delays add directly to the execution time.

7.3.2 Event processing

With the advent of general availability of multi-core processors7, it is in some
cases beneficial to make the analysis tools able to process events in parallel.

7Computing power is since a few years growing horizontally — expanding the number
of processing cores — instead of as before vertically — increasing the clock speed of the
processors.
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This line of operation is often far from necessary though. In most cases,
one may just as well run several instances of the program in parallel, each
processing one part of the data, and then combine the results at the end.
The results of analysis, like histograms, are well suited for this.

Minimal impact and memory allocations

The goal is to provide access to (and make use of) the parallel capabilities of
modern processors (more cores but generally lower clock speeds), while not
requiring the user code to be more knowledgeable of how to deal with the
associated constraints than absolutely necessary.

The most important aspect of such a “small-scale” multi-processing ap-
proach is the management of memory. As all threads run in the same process,
and use the same virtual memory space, any memory allocation must by ne-
cessity be locking between the different executing threads. As long as the
occasions to do memory allocations are few, this is no problem. If invok-
ing programming primitives that require process memory allocations several
times per event, the number of usefully executing threads would be few, since
they would spend their time waiting for each other.

The idea is to make it possible to let the various processing stages of
Figure 2.1 operate mostly independently.

Circular memory pools

To prevent memory management from becoming a bottle-neck, each pro-
cessing thread employs a circular memory pool, from which only it can al-
locate memory. When the processing it performs (either unpacking or some
later reconstruction) requires an array of memory that is not part of the
statically allocated parts of an event structure, the memory will be retrieved
from the end of the circular pool. Memory is only returned to the pool by
the event retirement mechanism. As all events are processed in order both
globally (i.e. read from file, and eventually retired) and within each thread,
it is enough for the retirement mechanism to advance the counter that marks
the end of free memory in the pool where it was allocated to release it. When
an event is retired, all pointers to such dynamically allocated pool memory
within it become invalid.

In many ways, this overall scheme of processing events (reading/decoding
the events, performing the actual tasks associated with them, and retiring
them) is similar to how out-of-order processor cores execute instructions, as
found in high-end x86 processors since a decade.
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Current status

With multi-threaded processing enabled, the code compiles and can run the
unpacking stage. Mapping of data to the raw level, as well as ntuple gener-
ation or other analysis is not yet functional. The missing functionality lies
in that with multi-threaded event processing, the program will have many
events “in-flight” simultaneously, which requires several instances of the data
structure holding an event. To cope with that, the numerous companion
structures holding various pointers and offsets to within the event structure
must be equipped with an additional base offset.

The separate threads used for the input stage and output stages (event
server) are fully operational. They handle data before and after it is con-
sidered event-wise, respectively.

7.4 Data multiplexer

By using the various input and output options — controllable directly with
the command-line — a ucesb unpacker is easily used as remote event server
during experiments and for various data stream surgery, on-line as well as off-
line: picking them apart and merging data flows from multiple event builders.
Figure 7.2 shows the available data-paths entering and leaving ucesb. Of
interest during (software) experiment preparations is the emulation of a run-
ning DAQ by the ability to feed data from raw data files into other on-line
analysis tools using the built-in data server8.

Handling of hbook/root/struct writing and reading is implemented as
separate processes. These separate programs, transparently invoked, share
the same source. In addition to the external library glue, they also implement
a light-weight protocol to communicate with ucesb and land02 using a
shared memory segment9 . The biggest advantage is that only this source
needs to be compiled together with either the cernlib or root libraries. The
other advantage is that the bulk of the CPU load due to ntuple writing is
off-loaded to another thread of execution.

8Functionality to limit the delivered data rates in this scenario is still missing. This
would help mimic realistic time-structures of an actual experiment, with spill-pauses etc.

9With transparent fall-back to using pipes when shm setup fails.

79



Internals

gamma1muon1

u
n
p
acker

input

DAQ

post-analyse

any program

any program

(also root)

calib params

(pipe)

(pipe)

.lmd

.lmd

rfiostream/
trans

.ntu
stream/trans

ucesb

land02

root reader

.root (tree)

.root (tree)

struct reader

--output

--ntuple

--server

cosmic1

...

clock

paw ntuple

tcal

phase1

hbook writer

root writer

struct writer

Figure 7.2: Octopus data-hauling routes available with ucesb unpackers.
The DAQ connections (stream and transport protocols) are cur-
rently only available with LMD data formats. (pipe) denotes
the capability to build command-line pipe-lines through stdin

and stdout. The schematic includes land02 as this shares the
code for the ntuple/root/struct output and input stages. It
also serves to show the flow of calibration information when
analysis is performed. The input capability for root/struct
data will currently only be useful for programs doing some sort
of analysis (like land02), but may become interesting once the
unpacking process can be reversed (see note in next Chapter).
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Chapter 8

Outlook

To say that a computer program is finished is only rarely true, as there is
always one more bug to fix, and some new little feature to add.

The ucesb unpacker has reached a point where it spans the gap intended,
that of unpacking data from raw data files and inspect it as well as generating
ntuples.

It supports the creation of various user functions to do preliminary invest-
igations of data collected in an experiment. Although one could even think
of writing an entire analysis (from raw data to physical momenta) within
the unpacker, this would be outside the intended scope. The support for
handling calibration parameters is limited, and none at all is provided for
handling parameters that vary during the course of an experiment.

Nonetheless, the program has successfully been used in LAND experi-
ments1 for monitoring and some on-line data transport. It is also used as a
preprocessor for the raw data of some experiments, in order to avoid having
the real analysis program deal with unnecessarily verbose formats. It has
unpacked data from a few experiments at ISOLDE, as well as assisted the
author in the (mostly private) playing with some data from the beautiful
BBS-ESN detector system at KVI.

The set of items that could be improved is however not empty:

• Support for more file formats. Requests?

• Functional multi-threaded operation.

• Consider changing the command-line option handling to use getopt().

1A heart-warming rumour has reached the author in that something like “What did
we do before this existed?” was expressed during one beam time, probably related to the
watcher functionality.
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• Labelling of (groups of) channels in the correlation plots.

• Option for pedestal/threshold determination (on behalf of the correla-
tion plots).

• Support a limited form of re-cabling during experiment, i.e. time-de-
pendent mappings, unpack specifications and parameters2.

• Work is in progress to allow “reversal” of the unpacking step, i.e. pack
raw data files from simulated data. This would be useful for devel-
opment and testing of analysis software by letting data flow from the
reversed ntuple writer (reader) to the output stage in Figure 2.1.

• With trigger-less DAQ systems beginning to become popular, it would
be interesting to apply the techniques for simple generation of apt and
fast code for unpacking and mapping to the sorting and coincidence-
building needed in on- and off-line event selection routines (software
triggers) eating time-stamped data.

8.1 land02 relationship

Having been developed almost simultaneously with, often in tandem, and
performing many similar tasks, it is not surprising that the ucesb unpacker
uses many similar designs as the more specialised land02 software, as well
as directly sharing some code:

• The ntuple dumper is common. In neither case, land02 nor ucesb, it
knows about the data structures themselves — it instead uses a lot of
pointers, but it does know enough on how to handle the relevant control
variables of zero-suppressed arrays: bit-fields, counts and indices.

• The input stage is inherited from land02, and actually has become
more powerful. As such, it should be adapted for common use again.

• The same applies for the watcher, although it is more dubious if the
watcher functionality inside land02 is needed at all any longer, given
the capabilities of the complementary ucesb based unpackers set up
for DAQ monitoring of each experiment.

2A reasonable limit would be that the structures must stay the same (a superset of the
parts needed for various file sets), but unpack functions and mappings may vary.

82



Glossary

ADC Amplitude-to-digital converter. Measures the maximum amp-
litude of detector signals during a gate. Commonly used for
semiconductor detectors, e.g. silicon diodes.

Channel The word has two ambiguous usages. a) One detector or DAM
channel = a read-out channel. b) The digital channels of one
DAM channel (usually 4096), corresponding to the bins of a his-
togram of that read-out channel.

1 2 3

Signal

Scaler

Signal

Common start

TDC

Signal

Common stop

TDC

Signal

Gate

ADC

Signal

Gate

QDC

Figure 8.1: Basic DAM modules. From left to right on the first line: a
scaler counting the number of logical signals and two TDCs
operating in common start and common stop mode, measuring
time interval between logical signals. On the second line, an
ADC measuring the highest pulse amplitude (negative signal)
during a gate, and a QDC integrating the signal during a gate.
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CVS Concurrent versions system. Revision control system.

DAM Digital acquisition module. See Figure 8.1 for examples.

DAQ Data acquisition. The scoping of this word varies wildly —
between only the program controlling the data read-out, to the
entire read-out electronics, hardware as well as software.

Dead-time Time during which another event cannot be accepted, due to
one or more parts of the DAQ being busy, usually processing a
previous event.

DSSSD Double-sided silicon strip detector.

ESN Eurosupernova, spectrometer detector setup at KVI, among oth-
ers, measuring the (d,2He) reaction on stable targets.

Event The occurrence of each ion passing through a setup (possibly
reacting), together with the data recorded from the detectors, is
an event.

Gate Signal determining when the inputs of a DAM module are open.
Usually derived from the master start signal.

GSI Gesellschaft für Schwerionenforschung.

HADES High Acceptance Di-Electron Spectrometer, experimental setup
at GSI investigating hadron properties inside nuclear matter.

IS430 Experiment to perform elastic and inelastic scattering of 11Be on
deuterium at REX-ISOLDE, CERN, August-September 2005.

IS446 Experiment at REX-ISOLDE, investigating the 8Li(d, p)9Li re-
action, August-September 2006.

ISOL Isotope Separator On-Line. Method for producing exotic isotopes
by bombarding a heavy target, thereby fragmenting it and then
extracting the produced isotopes by diffusion into an ion source.
The low-energy beams of radioactive nuclei are mass separated
by a magnetic spectrometer.

ISOLDE ISOL facility located at CERN, on the Swiss-French border, with
the PS-booster bombarding the exotic isotope production targets
with 1.4 GeV protons.

KVI Kernfysisch Versneller Instituut, research laboratory situated north
of Groningen, the Netherlands.

LAND Large Area Neutron Detector. 2 × 2 × 1 m3 of sandwiched iron
and scintillator, arranged in 10 planes with 20 paddles each, al-
ternatingly oriented vertically and horizontally.

MBS Multi Branch System, a general DAQ framework actively de-
veloped at GSI.
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Parser Function that reads and interprets text input, generating an in-
ternal representation of the contents.

PM tube Photo-multiplier tube. Detects photons (usually produced in a
scintillator) by converting them into electrons and amplifies the
electrical output signal by an avalanche of repeatedly multiplying
the electrons.

QDC Charge-to-digital converter. Integrates and measures the current
of detector signals during a gate. Commonly used for signals
from PM tubes.

REX-ISOLDE Radioactive Beam EXperiment at ISOLDE. Post-accelerates
exotic isotopes after production and separation.

RFIO Remote file input/output. Yet another protocol for accessing files
over a network. Designed to allow for efficient streaming of large
data files.

RICH Ring imaging Čerenkov detector. Uses the effect analogous to
a sonic boom, whereby charged particles traversing a material
faster than the effective speed of light generates a photonic shock
wave. The photons are emitted in a cone, whose opening angle
is determined by the particle velocity.

S287 Experiment at the ALADiN-LAND setup in Cave C at GSI,
April-May 2005, investigating the dipole strength in Ni isotopes.

Scaler Counts the number of pulses. Used to see how often a detector
channel or other signal fires.

Scintillator Organic or inorganic compound which has a high probability
of emitting photons (around the visible spectrum) after being
excited by a passing ion.

Slow control Computer assisted adjustment and recording of the parameters
controlling an experimental setup. Replacement for potentiomet-
ers and screw-drivers.

SPALLADIN Exclusive measurement spallation experiment setup around
ALADiN.

TCP Transmission Control Protocol. Layer in a network communica-
tions protocol stack ensuring correct delivery of data.

TDC Time-to-digital converter. Measures the time between a common
start or stop signal and individual detector signals.

TFW Time of flight wall, a large segmented plastic scintillator detector.
Part of the LAND setup.

Trigger logic Part of the experimental electronics that, based on fast coin-
cidences from the detectors, decide when an event has happened
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and if it should be recorded. It is also assuring the dead-time
blocking.

VME VERSA module eurocard, a databus, commonly used in industry
for computing and control applications.

land02 Suite of programs to calibrate and reconstruct data collected with
the ALADiN-LAND setup.
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Appendix A

Working unpacker examples

Within the source distribution, a few different unpackers can be found. Most
of them were created to make some quick investigation of some aspect of
the data produced by an experiment or test setup. They are not full-fledged
analysis tools, but may serve as examples of the various techniques described
in this report.

empty Any experiment (LMD data).

Minimal unpacker, does no data checking. Useful to setup an event
server.

cros3 LAND setup (proton drift chambers).

Uses a hand-written (external) unpacker and specialised data struc-
tures. The actual unpacking is even performed by wrapped code, in-
tended to run within the DAQ itself to condense the data. Also shows
how to add a subevent to an output data stream (created by the data
condenser).

esn KVI – EuroSuperNova detector.

Full-fledged external unpacker and external data structures, reads from
PAX format files. The detectors contain several thousand channels,
some of them with multi-hit capabilities. Specially crafted data struc-
tures are used to accommodate this. Uses the correlation plot classes in
the user function to check wire map ordering. (Playground for testing
an alternative (unfinished) VDC track recognition code).

hades Only unpacking data from the RICH detector of said setup.
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hacky –

Minimal external unpacker, just keeping data pointers from the un-
packing for later inspection in a user function.

hirich Spalladin RICH detector.

Testing compression of data from the HIRICH detector.

i123 IGISOL decay setup.

Data collected with Daresbury MIDAS, stored in EBYE format.

is430 05 REX-ISOLDE reaction setup.

Experiment was performed with multi-event data collection.

is446 REX-ISOLDE reaction setup.

Correlation plots used in user function. See Appendix D.

labbet1 Test setup with Daresbury MIDAS.

Unpacking of data in EBYE format.

land LAND – S245 experiment.

Use of external functions to control conditional unpacking within the
generated unpacker code. Function to classify events for the watcher.

madrid Some setup at CSIC, Madrid.

Unpacking of data in EBYE format. TDCs with multi-hit capability
in use.

rpc2006 RPC test setup.

siderem01 LAND setup (silicon micro-strip detectors).

Large user function and other routines comprising a test site for learn-
ing how to handle the data from the many-channel (640+384) silicon
micro-strip detectors. Pedestal determination, common-mode noise re-
jection (baseline variation), Huffman compression. . .

dets –

Not an unpacker in itself. The directory contains common code (also
external unpackers) for the cros3 and siderem01 programs, which is
also shared with unpackers created for specific experiments.
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Appendix B

A minimal unpacker: empty

This example shows a minimal unpacker, which only uses the capabilities to
handle the events in raw data files, as no actual unpacking is performed. It
can be useful for creating a simple event relay server, together with merging
capabilities (based on the event numbers in the event headers) — it will not
bother about unpack errors, only file packaging troubles.

The kind of input file format to be handled is declared as a compile option:

Listing B.1: empty/makefile additional.inc

# -*- Makefile -*-

USE LMD INPUT=1

The data format specification is simple, as all subevents are silently ig-
nored:

Listing B.2: empty/empty.spec

// -*- C++ -*-

EVENT
{
ignore unknown subevent;

}

That’s it! Agreed, this was a bit cheating, since this unpacker comes from
within the source tree and is made with the main Makefile. The hacky/

example directory has a Makefile showing what is needed to build outside
the unpacker/ tree.
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Multi-event unpacker: is430 05

This example highlights parts of an unpacker for an experiment using a multi-
event read-out (see [4], Front page and Section 5.5). The experiment used
two telescopes of thin double-sided silicon strip detectors with perpendicular
segmentation at the front and back sides for ∆E and position detection, fol-
lowed by a thicker silicon E-detector. The telescope detectors were located
off the beam axis to detect the light particles from the inverse kinematics re-
actions of 11Be impinging on a deuterated polyethylene target. Furthermore,
three single-channel silicon detectors were used for beam monitoring.

Listing C.1: is 430 05/control.hh

#define UNPACK_EVENT_USER_FUNCTION is430_05_user_function_multi

#define USING_MULTI_EVENTS 1

To make the unpacker cope with multi-event data, the name of the user-
defined function to help associate the data for each physical event must be
defined. This is done in the control.hh file above, which will be included
from the generic sources as needed, according to the -DCONTROL INCLUDE

statement in the makefile additional.inc below. Compilation and inclu-
sion of a user source file is also requested.

Listing C.2: is 430 05/makefile additional.inc

USE LMD INPUT=1

CXXFLAGS += -DCONTROL INCLUDE

OBJS += is430 05 user.o
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Multi-event unpacker: is430 05

C.1 Raw data format – read-out modules

The description of the raw data format is broken down into smaller and smal-
ler entities, until finally the data bits themselves are reached. The structures
are presented here in a top-down approach. To simplify re-use, the various
parts have been declared in smaller files, combined using the C pre-processor
#include directive.

Listing C.3: is 430 05/is 430 05.spec (part I: event structure)

#include "spec/spec.spec"

#include "is430_05_vme.spec"

EVENT
{
vme = IS430 05 VME(type=10,subtype=1);

}

Each multi-event is stored in one subevent, referenced from the EVENT

description.

Listing C.4: is 430 05/is 430 05 vme.spec

#include "spec/land_std_vme.spec"

SUBEVENT(IS430 05 VME)
{
header = LAND STD VME();

select several
{
multi scaler0 = VME CAEN V830(geom=30);

multi tdc[0] = VME CAEN V775(geom=16,crate=129);
multi tdc[1] = VME CAEN V775(geom=17,crate=130);
multi tdc[2] = VME CAEN V775(geom=18,crate=131);

multi adc[0] = VME CAEN V785(geom=0,crate=1);
multi adc[1] = VME CAEN V785(geom=1,crate=2);
multi adc[2] = VME CAEN V785(geom=2,crate=3);
multi adc[3] = VME CAEN V785(geom=3,crate=4);
multi adc[4] = VME CAEN V785(geom=4,crate=5);

}
}

The subevent begins with a header1 shown and described below. The
header is followed by an arbitrary number of data chunks from the various

1This is not the LMD/MBS subevent packaging header.
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modules used in the experiment. As each subevent can contain data from
several physical events, data for the same module may appear many times
(multi).

Listing C.5: spec/land std vme.spec

LAND STD VME()
{
UINT32 failure
{
0: fail general;
1: fail data corrupt;
2: fail data missing;
3: fail data too much;
4: fail event counter mismatch;
5: fail readout error driver;
6: fail unexpected trigger;

27: has no zero suppression;
28: has multi adctdc counter0;
29: has multi scaler counter0;
30: has multi event;
31: has time stamp;

}
if (failure.has time stamp) {
UINT32 time stamp;

}
if (failure.has multi event) {
UINT32 multi events;

}
if (failure.has multi scaler counter0) {
UINT32 multi scaler counter0;

}
if (failure.has multi adctdc counter0) {
UINT32 multi adctdc counter0;

}
}

The general header contains various informations regarding both the
validity of the event and numbers needed for disentangling multi-event data.
It begins with a 32-bit data word. Some bits mark that some failure con-
dition was detected by the DAQ during read-out. (The DAQ would have
taken corrective action, and subsequent events are not affected. The data
event should be handled with proper suspicion or be discarded). Some bits
indicate whether some special features were enabled during digitisation of the
event, e.g. zero-suppression disabled, to allow later pedestal determination.
Other bits denote that further data words will follow the header.

With the DAQ running in multi-event mode, it performs several checks on
the event counter consistency between the modules in use. To allow modules
with no data at all for some events, it is necessary to know the starting values
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of the modules’ event counters for the first physical event of each multi-event.
Furthermore, as the DAQ performs soft-triggering of the scaler for certain
triggers, its event counter may drift relative to the others, and is recorded
separately. The total number of physical events is also stored.

Listing C.6: spec/vme caen v775.spec

#define VME_CAEN_V792 VME_CAEN_V775 // Other modules using the same
#define VME_CAEN_V785 VME_CAEN_V775 // data format

VME CAEN V775(geom,crate)
{
MEMBER(DATA12 OVERFLOW data[32] ZERO SUPPRESS);

UINT32 header NOENCODE
{
8 13: count;
16 23: crate = MATCH(crate);
24 26: 0b010;
27 31: geom = MATCH(geom);

}

list (0 <= index < header.count)
{
UINT32 ch data NOENCODE
{
0 11: value;
12: overflow;
13: underflow;
14: valid;

16 20: channel;

24 26: 0b000;
27 31: geom = CHECK(geom);

ENCODE(data[channel],(value=value,overflow=overflow));
}

}

UINT32 eob
{
0 23: event number;
24 26: 0b100;
27 31: geom = CHECK(geom);

}
}

The unpacker specification for data from a CAEN V775 TDC module,
see Table C.1, is given in Listing C.6. The header data word contains two
numbers, geom and crate, programmable in the module, that are used to
identify data from each particular instance. They are used by the select
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Header
31 - 27 26-24 23 - 16 13 - 8

geom 0 1 0 crate count
Data word

31 - 27 26-24 20 - 16 14 13 12 11 - 0
geom 0 0 0 channel V U O value

End marker
31 - 27 26-24 23 - 0

geom 1 0 0 event number

Table C.1: CAEN V775 data format [11].

several statement in the IS430 05 VME structure. The header also gives the
number of payload data words.

Each payload data word is marked with the channel it corresponds to,
and the actual value, along with overflow, underflow, and valid markers.
The channel is used as an index into the zero-suppressed datamember array,
holding the unpacked data. One may note that this 32-channel TDC module
has two ADC chips, converting the first and second half of the channels
in parallel. The data of non-zero channels will therefore appear intermixed
— a reason for the zero-suppressed data container to allow quick random
insertion. As all of the information from the header and payload data is used
up by the unpacking, they are marked NOENCODE and are not stored in the
module’s unpack level data structure.

Finally, the module may emit an end marker eob, containing the event
number. This is in particular needed by a multi-event-unpacker to be able
to assign each chunk of data to the correct physical event.

C.2 Data mappings – physical detector names

To be able to access the event-wise data by detector name, a mapping
between DAM channels and physical detector names is also given in the
specification file, see Listing C.7. The generated raw level data structure
is shown in Listing C.8. Note that the zero-suppressed containers can hold
structures, not only single items, thereby combining data which is related,
e.g. the time and amplitude measurement of individual detector strips.
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Listing C.7: is 430 05/is 430 05.spec (part II: data mappings)

// Enforce zero suppression at strip level
SIGNAL(ZERO SUPPRESS: DSSSD2 F 32);
SIGNAL(ZERO SUPPRESS: DSSSD2 B 32);

// ADC channels
SIGNAL(BACK1 E, vme.adc[0].data[0], (DATA12, float));
SIGNAL(BACK2 E, vme.adc[0].data[1], (DATA12, float));

SIGNAL(MONE E, vme.adc[0].data[17],(DATA12, float));
SIGNAL(MONDE E, vme.adc[0].data[18],(DATA12, float));
SIGNAL(MONTGT E, vme.adc[0].data[22],(DATA12, float));

SIGNAL(DSSSD1 F 1 E, vme.adc[1].data[0],
DSSSD1 F 32 E,vme.adc[1].data[31],(DATA12, float));

SIGNAL(DSSSD1 B 17 E,vme.adc[2].data[0],
DSSSD1 B 32 E,vme.adc[2].data[15],(DATA12, float));

SIGNAL(DSSSD1 B 1 E, vme.adc[2].data[16],
DSSSD1 B 16 E,vme.adc[2].data[31],(DATA12, float));

SIGNAL(DSSSD2 F 1 E, vme.adc[3].data[0],
DSSSD2 F 32 E,vme.adc[3].data[31],(DATA12, float));

SIGNAL(DSSSD2 B 1 E, vme.adc[4].data[0],
DSSSD2 B 32 E,vme.adc[4].data[31],(DATA12, float));

// TDC channels
SIGNAL(DSSSD1 FT, vme.tdc[0].data[0],(DATA12, float));
SIGNAL(DSSSD1 BT, vme.tdc[0].data[1],(DATA12, float));
SIGNAL(DSSSD2 FT, vme.tdc[0].data[2],(DATA12, float));
SIGNAL(DSSSD2 BT, vme.tdc[0].data[3],(DATA12, float));
SIGNAL(TMON, vme.tdc[0].data[4],(DATA12, float));
SIGNAL(TBACK, vme.tdc[0].data[5],(DATA12, float));

SIGNAL(DSSSD2 B 1 T, vme.tdc[1].data[0],
DSSSD2 B 32 T,vme.tdc[1].data[31],(DATA12, float));

SIGNAL(DSSSD2 F 1 T, vme.tdc[2].data[0],
DSSSD2 F 32 T,vme.tdc[2].data[31],(DATA12, float));

// Scaler channels
SIGNAL(CLOCK, vme.scaler0.data[0],DATA32);
SIGNAL(CNTPROTONS, vme.scaler0.data[1],DATA32);
SIGNAL(CNTEBIS, vme.scaler0.data[2],DATA32);

// Values that will be calculated in the user function
SIGNAL(TEBIS, ,(DATA32, float));
SIGNAL(TSHORT, ,(DATA32, float));

// Value only occurs once, and valid for last multi-event
SIGNAL(LAST EVENT: TIME, vme.header.time stamp,uint32);
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Listing C.8: Generated raw level data structure, edited for readability.

struct raw event BACK { DATA12 E; };
struct raw event MONE { DATA12 E; };
struct raw event MONDE { DATA12 E; };
struct raw event MONTGT { DATA12 E; };
struct raw event DSSSD F
{
DATA12 E;
DATA12 T;

};
struct raw event DSSSD B
{
DATA12 E;
DATA12 T;

};
struct raw event DSSSD
{
raw array zero suppress<raw event DSSSD F,...,32> F;
raw array zero suppress<raw event DSSSD B,...,32> B;
DATA12 FT;
DATA12 BT;

};
struct raw event : public raw event base
{
raw event BACK BACK[2];
raw event MONE MONE;
raw event MONDE MONDE;
raw event MONTGT MONTGT;
raw event DSSSD DSSSD[2];
DATA12 TMON;
DATA12 TBACK;
DATA32 CLOCK;
DATA32 CNTPROTONS;
DATA32 CNTEBIS;
DATA32 TEBIS;
DATA32 TSHORT;
uint32 TIME;

};

C.3 User functions

Many sub-structures (modules) at the unpack level contain data for several
physical events (the multi qualifier used in Listing C.5). Before the event-
wise data mapping of each physical event, it is necessary to determine to
which physical event each chunk of data belongs. After unpacking, a user
defined function, UNPACK EVENT USER FUNCTION, is called. For each unpack-
level data member this function shall assign each contained piece of data,
e.g. using the map multi events helper function, and finally also return the
number of physical events present in the current multi-event.
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Listing C.9: is 430 05/is 430 05 user.cc

#include "structures.hh"
#include "user.hh"

#include "multi_chunk_fcn.hh"

int is430 05 user function multi(unpack event *event)
{
// Since the code is built to handle multi-event, the mapping of the
// modules must be done, even if the event only has 1 physical event!

uint32 multi events, scaler counter0, adctdc counter0;

if (event->vme.header.failure.has multi event)
{
// When running in multi-event mode, the start value for the
// event counters for the modules must be known

if (!event->vme.header.failure.has multi scaler counter0)
ERROR("Event counter for scaler at start unknown.");

if (!event->vme.header.failure.has multi adctdc counter0)
ERROR("Event counter for adc/tdc at start unknown.");

scaler counter0 = event->vme.header.multi scaler counter0;
adctdc counter0 = event->vme.header.multi adctdc counter0;
multi events = event->vme.header.multi events;

}
else // Single-event data
{
// Code to recover the values for scaler_counter0... omitted
multi events = 1;

}

// Loop over all the modules which are multi-event, mapping their
// physical events using the event counters

map multi events(event->vme.multi scaler0,
scaler counter0,multi events);

for (unsigned int i = 0; i < countof(event->vme.multi adc); i++)
map multi events(event->vme.multi adc[i],

adctdc counter0,multi events);

for (unsigned int i = 0; i < countof(event->vme.multi tdc); i++)
map multi events(event->vme.multi tdc[i],

adctdc counter0,multi events);

return multi events;
}

The source also contains a user function called for each physical event
after data mapping, and a function for handling unpacker-specific command-
line options. These are not reproduced here.
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Appendix D

Using a correlation plot to
uncover event mixing

Event mixing is a technique used to get a handle on the uncorrelated back-
ground (from unrelated particles) that can be part of a spectrum when several
particles are combined in the analysis of an outgoing reaction channel. In
this realm it is a powerful tool, which only requires reconstructed particles
from different events to be combined within the analysis when calculating
e.g. invariant mass or angular correlations.

When already the DAQ mixes up data from different events into one
event, it is on the other hand unwanted and very bad. It is usually caused
by an unclean trigger logic in combination with a too näıve programming of
the read-out — with too lax or absent continuous system integrity checks.

Letter to the editor: Debunking cargo-cult1 DAQ rumours

After the author had received a copy of the data from a run at the IS446
experiment and started to unpack it using an ucesb based unpacker, it soon
became clear that something in connection with the digitisation modules’
event counters was strange — sometimes their increment was not synchron-
ous between events. Normally, the event counters in the modules used2

should count each trigger seen. The (limited) information on the trigger
logics obtained also indicated that each module should see each trigger —
once!

1Compare cargo-cult science, see ”Surely you’re joking, Mr. Feynman!”: adventures
of a curious character by Richard P. Feynman as told to Ralph Leighton; ed. by Edward
Hutchings, New York, W.W. Norton, 1985.

2CAEN V775 TDCs and CAEN V785 ADCs.
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Figure D.1: Correlation plots for data from the IS446 experiment. Pic-
ture (a) shows all events. In pictures (b)-(d) (with much
fewer events), the events have been chosen using the modules’
events counters such that some TDC and ADC pair(s) digit-
ising the same channels are desynchronised, marked by circles
with minus signs. Mixed events are then clearly seen as the
diagonal TDC-ADC correlations are missing for those events.
The correlations are present for modules where the event coun-
ters did not necessarily indicate event mixing, as marked with
circles with plus signs.
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Figure D.2: Each module increases its local event counter for each seen
trigger. If any channel has data above threshold (crosses
mark completely zero-suppressed events), the module creates
a data item for the event, which also contains the current event
counter value. The data item is added to the module’s multi-
event output data buffer. Data from spurious triggers will be
read out with the next real trigger, e.g. A4 and A9. Worse,
since the read-out only retrieved data for at most one event
per invocation, event data could pile up in the output buffer,
e.g. A10 belongs to B7.

On further inquires, the claim from the experiment perpetrators was then
that the module event counters are broken and cannot be trusted. . .

That is an interesting allegation, since the modules would then be unus-
able in multi-event scenarios — as in the previous Appendix! If the claim
is correct, the point of this investigation would be moot, but the correlation
plots of Figure D.1 tells another story:

By selecting events suspected to be desynchronised, using only the event
counters, various sets of data could be obtained, each of them completely
lacking the correlation between TDC and ADC channels that digitise signals
for the same detector strips. The correlations are present for all other detector
channels, given enough statistics.

Although the indirect cause of letting the event mixing pass unnoticed is
the incomplete DAQ handling of the modules’ multi-event output buffers, see
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Figure D.2, it should be noted that the direct cause of the spurious triggers
has not been uncovered. Unfortunately, it seems a daunting task to devise a
selection technique whereby all (possibly) affected events can be discarded.
The set of rather complex criteria used in these investigations so far only
finds a smaller set of events that are guaranteed to be out of sync.

102


	Introduction
	Overview
	Intended audience / skills needed
	Quick start

	Data levels
	Data flow
	Data structures
	Zero-suppression
	Multi-event support

	File and event formats
	File buffering
	Endianess

	File formats
	LMD – list mode data (MBS)
	EBYEDATA – Daresbury MIDAS
	PAX – KVI data
	HLD – HADES raw data


	Command line options
	Input data
	Output raw and processed data
	Input data diagnostics
	Error handling
	Processing and monitoring
	Miscellaneous

	Raw data structure specification
	Data format specification
	Item blocks, SUBEVENT
	The EVENT declaration
	Multiple choice: select several
	Constants, variables and expressions
	Data items: UINT8, UINT16, UINT32
	Bit-fields
	Checking bits: MATCH and RANGE
	Data members: MEMBER
	Encoding data members: ENCODE
	Counted number of data words: list
	Conditional unpacking: if
	Checking word counts

	Data mappings: SIGNAL
	Calibration parameters: raw to cal level conversions

	Unit and prefix handling

	Compilation and user code
	Sources
	Compilation
	Compile options
	Code generation
	The ucesb unpacker generator
	The psdc reflector creator

	User functions
	External (hand-written) unpackers
	Custom user event and calibration structures


	Output and Monitoring
	Ntuple generation
	Examples

	External structure server
	Example
	Implementation notes
	Interface library for the external program

	Watcher – the DAQscope
	Examples

	Correlation plots
	Examples
	Implementation


	Internals
	Input stage
	Zero copy approach
	Emulating mmap
	Subevent copying

	MBS-like TCP server, stream/transport
	Server in one thread using select

	Multi-threaded operation
	Input system
	Event processing

	Data multiplexer

	Outlook
	land02 relationship

	Glossary
	Bibliography
	Working unpacker examples
	A minimal unpacker: empty
	Multi-event unpacker: is430_05
	Raw data format – read-out modules
	Data mappings – physical detector names
	User functions

	Using a correlation plot to uncover event mixing

