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1 Dynamical systems

Teachers
Kristian Gustafsson, kristian.gustafsson@physics.gu.se
Jan Meibohm (problem sessions)
Course page http://fy.chalmers.se/~f99krgu/dynsys/
Literature Nonlinear Dynamics and Chaos, by Steven Strogatz
Examination
Four sets of hand-in problems + Written exam on Monday, Jan 14
(All students must sign up before Dec. 20)
To pass the course a pass grade on both the problem sets and the
exam are required (see home page).
Piazza
Forum for questions about homework or lectures. Questions should
be asked here rather than in emails to the teachers. This allows other
students to answer questions and to see answers to the questions.
Anonymous posts are possible.
Lectures are interrupted by quiz questions:
Login to b.socrative.com/login/student/
Room number: DYNSYS

1.1 What are dynamical systems?

Dynamical system = Set of quantities (system) + Rule how these
change with time (dynamical)
Linear dynamical systems
Most systems encountered in introductory courses.
Often exact solutions using methods based on linear superposition.
Two examples: Small-amplitude oscillations of simple pendulum (θ =
A cosωt) and double pendulum.
Non-linear dynamical systems
Most real-world systems are (at least to some degree) non-linear
Allows for new types of solutions (compared to linear systems).
Examples: Large-amplitude oscillations of simple pendulum and dou-
ble pendulum.
Angle of single pendulum no longer well approximated by A cos(ωt).
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Motion of double pendulum becomes chaotic:

• Unpredictable (appears to be random although system is deter-
ministic).

• Sensitive dependence on initial conditions, Two arbitrarily closeby
initial conditions will show different trajectories after some time.

Non-linear systems often show chaotic behaviour.

Examples where dynamical systems are encountered -
Example Typical variables
Classical Mechanics Positions and momenta
Electrical circuits Currents
Population dynamics Number of individuals of different species
Chemical reactions Concentrations of chemicals

Plus everywhere else you encounter ODEs or recurrence equations
(such as processes in living organisms, control theory, economics, etc.)

1.1.1 Mathematical description of dynamical system

Continuous dynamical systems can be written as systems of cou-
pled ordinary differential equations:

ẋ1 = f1(x1, . . . , xn)

ẋ2 = f2(x1, . . . , xn)
...

ẋn = fn(x1, . . . , xn)

Time-dependent variables x1, x2, . . .xn span the phase space of di-
mensionality n.
ẋ denotes total time derivative: ẋ ≡ d

dt
x.

Using vector notation x = (x1, . . . , xn) and f = (f1, . . . , fn) we write
more compactly

ẋ = f (x)

The vector field f is called flow and the solutionx(t) is called trajectory.
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Concept test 1.1: Dynamical systems

Discrete dynamical systems can be written as coupled recurrence
equations (on vector form):

xi+1 = F (xi)

xi ≡ x1,i, . . . , xn,i denotes n phase-space variables at discrete times
i = 0, 1, . . . .
The functions F = (F1, . . . , Fn) are called a map (from xi to xi+1)
and the solution xi is called orbit.

Discrete dynamical systems appear upon discretisation of continu-
ous dynamical systems, or by themselves, for example xi could denote
the population of some species a given year i.

In this course we focus on continuous dynamical systems. Discrete
dynamical systems are treated in Computational Biology A (FFR110).

1.2 Example: Derivation of a dynamical system;
the rigid pendulum in a viscous medium

Consider a bead of mass m attached to a massless rod of length l that
swings in a vertical plane with angle θ:

Three forces act on the bead:
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1. Force from rod acting in negative r̂ direction, F rod.

2. Downward force from gravity: F g = −mgŷ.
Component in radial direction r̂: Fg,r = mg cos θ is balanced
by force from rod, Fg,rr̂ = −F rod

Component in angular direction θ̂ (tangential to pendulum mo-
tion): Fg,θ = −mg sin θ

3. Drag force (due to friction with the viscous medium, e.g. air),
assumed to be proportional to instantaneous velocity in the an-
gular direction: Fd,θ = − γ︸︷︷︸

damping coefficient

· lθ̇︸︷︷︸
tangential velocity

Newton’s second law for angular component of forces:

ma = Ftot,θ = Fg,θ + Fd,θ = −mg sin θ − γθ̇l

Tangential acceleration a = lθ̈ ⇒

θ̈ = −g
l

sin θ − γ

m
θ̇ (1)

Eq. (1) and variations thereof will be studied later in the course.

We use dimensionless units to simplify the analysis (dedimensional-
isation). Make time dimensionless: t = t0t

′, with dimensionless time
t′ and a dimensional constant t0. Using

θ̇ =
1

t0

dθ

dt′
and θ̈ =

1

t20

d2θ

dt′2

Eq. (1) becomes

d2θ

dt′2
= −t20

g

l
sin θ − t0

γ

m

dθ

dt′
= t0

γ

m

[
−t0

mg

lγ
sin θ − dθ

dt′

]
Choose t0 = lγ/(mg) to remove one of the parameter groups

d2θ

dt′2
=

lγ2

m2g

[
− sin θ − dθ

dt′

]
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To simplify the notation we replace t′ with t from now on. Use di-
mensionless parameter ε ≡ m2g/(lγ2) and multiply equation by ε

εθ̈ = − sin θ − θ̇ (2)

Assume large damping (ε→ 0) to obtain a one-dimensional dynamical
system (c.f. Section 2.1 in Strogatz)

θ̇ = − sin θ . (3)

This equation is non-linear but solvable by separation of variables:

1

sin θ
dθ = −dt

Integrate from t = 0 to T and from θ(0) ≡ θ0 to θ(T ) ≡ θT

I =

∫ θT

θ0

1

sin θ
dθ = −

∫ T

0

dt = −T

I =

∫ θT

θ0

2i

eiθ − e−iθ
dθ =

∫ θT

θ0

2ieiθ

e2iθ − 1
dθ =

[
z = eiθ , dz = ieiθdθ

]
=

∫
2

z2 − 1
dz = [partial fraction decomposition]

=

∫ (
1

z − 1
− 1

z + 1

)
dz =

[
ln

(
eiθ − 1

eiθ + 1

)]θT
θ0

= [ln (tan(θ/2))]
θT
θ0

In conclusion

ln

(
tan(θT/2)

tan(θ0/2)

)
= −T ⇒ θ(t) = 2atan(e−t tan(θ0/2))

Trajectories starting with −π < θ0 < π converge to θ = 0 as
t→∞.
Trajectories starting at θ0 = ±π remain at ±π.
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Solution using a dynamical systems approach It is easier to
solve the system geometrically. Plot θ̇ = f (θ) against θ:

Arrows denote the directions of trajectories along the line (c.f. exact
trajectories in previous figure).
Points with no flow (θ̇ = 0): fixed points (also called: equilibrium
points or steady states) correspond to constant solutions of the ODE.
 Stable fixed point (attractor/sink). Surrounding flow is directed
towards the fixed point ⇒ dynamics is stable to small perturbations.
# Unstable fixed point (repeller/source). Surrounding flow is directed
away from the fixed point ⇒ small deviations from the fixed point
grow with time, the fixed point is unstable to small perturbations.
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The geometric solution gives the qualitative picture: all trajectories
end up at θ = 0 (or multiples of 2π), unless they start exactly at an
unstable fixed point. Some details are missing but often it is enough
to have qualitative information about the solution. More examples in
Strogatz 2.2 and 2.3

Remark on validity of Eq. (3) Eq. (3) was derived as the limit
ε→ 0 in Eq. (2). But since Eq. (2) depends on two initial conditions
θ0 and θ̇0 and Eq. (3) only depend on one initial condition θ0, the
solutions are only identical if θ̇0 = − sin θ0. For the case θ̇0 6= − sin θ0
trajectories are quickly damped (on the time scale ε) to the condition
θ̇ = − sin θ, and the solution to Eq. (3) is a good approximation to
the actual solution for times larger than ε (c.f. Strogatz 3.5).

1.3 Reduction of dimensionality

In Section 1.2 we analyzed a system of dimensionality n = 1, Eq. (3).
The possible behaviors a dynamical system can show depends on its
dimensionality. Low-dimensional systems are often easier to analyze
than high-dimensional systems. The only type of dynamical systems
that can be solved in general is flows on the line (continuous dynam-
ical systems with n = 1), by separation of variables: dx

f(x)
= dt (c.f.

example in Section 1.2)
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Some methods to reduce the dimensionality of a dynamical system:

• Taking snapshots of a continuous dynamical system when its tra-
jectory intersects a chosen lower-dimensional subspace (Poincaré
map) result in a discrete system of lower dimensionality.

• Using limiting behaviours, one example being the limit of large
damping in Section 1.2 that reduced the dimensionality of the
system from n = 2, Eq. (1), to n = 1, Eq. (3).

• By finding conservation laws. A conservation law implies that
some combination of phase-space variables is independent of
time (a conserved quantity)⇒ One of the constituting variables
can be eliminated, reducing the problem dimensionality.

• Symmetries can also be used to decouple variables we are not in-
terested in. For example, spherical symmetry in a three-dimensional
system allows us to write the time evolution of the radial coor-
dinate independently from the angular coordinates ⇒ 3 to 1
dimension.

Motivated by the above-mentioned methods, we start the general anal-
ysis of dynamical systems with the simplest case n = 1.
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1.4 Flows on the line

Dynamical systems of phase-space dimensionality n = 1

ẋ = f (x)

f is smooth and real-valued. x takes any real value. No explicit time
dependence in f . One example is given by the overdamped pendulum
[Eq. (3) in Section 1.2].

Concept test: 1.2 Flow on the line

1.4.1 Types of fixed points

Assume x∗ is an isolated fixed point on the line, f (x∗) = 0. The
possible types are summarized as follows:

Type Unstable # Stable  Half stable/semi stable G#, H#
Slope f ′(x∗) > 0 f ′(x∗) < 0 f ′(x∗) = 0 f ′(x∗) = 0

Example f (x) = x f (x) = −x f (x) = x2 f (x) = −x2

Half-stable fixed points:
G# Dynamics attracted to the left of fixed point, repelled to the right.
H# Repelled to the left, attracted to the right.
The case f ′(x∗) = 0 is called marginal.
Note that f ′(x∗) = 0 is not a sufficient condition for a fixed point to
be half-stable, for example f (x) = x3 is unstable:
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1.4.2 Potential problems: (Strogatz 2.5)

• If the flow is not smooth, solutions from a given initial condition
are not necessarily unique.

• If the solution reaches infinity in a finite time and no solution
exists for later times (blow-up).

Most flows encountered in this course are smooth, implying that there
exist unique solutions starting from any initial condition.

1.4.3 No periodic solutions

The trajectories resulting from a smooth flow on a line can not cross
(c.f. the resulting trajectories in the overdamped limit of the example
in Section 1.2). The reason is that for each point in space the solution
moves in a unique direction determined by the flow. As a result:

• Trajectories move monotonically towards fixed points or towards
plus|minus infinity

• No oscillatory motion is possible.
Note however: by introducing periodic boundaries (for example
at θ = 0 and θ = 2π) to a one-dimensional dynamical system,
we obtain a flow on the circle (Strogatz 4). Such flow behaves
as the flow on the line, with the additional property that it
allows for periodic solutions, one example being θ̇ = const. with
periodicity 2π.
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