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10 Chaos and Lyapunov exponents

10.1 Chaotic systems

Chaotic dynamics exhibit the following properties

• Trajectories have a finite probability to show aperiodic long-term
behaviour. However, a subset of trajectories may still be asymp-
totically periodic or quasiperiodic in a chaotic system.

• System is deterministic, the irregular behavior is due to non-
linearity of system and not due to stochastic forcing.

• Trajectories show sensitive dependence on initial condition (the
‘butterfly effect’): Quantified by a positive Lyapunov exponent
(this lecture).

10.1.1 Illustrative example: Convex billiards

10.1.2 More examples of chaotic systems

It is more a rule than an exception that systems exhibit chaos (often in
the form of a mixture between chaotic and regular motion). Examples:

• Biology Population dynamics, Arrythmia (hearth), Epilepsy
(brain).
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• Physics Double pendulum, helium atom, three-body gravita-
tional problem, celestial mechanics, mixing of fluids, meteoro-
logical systems.

• Computer science Pseudo-random number generators, to
send secret messages (Strogatz 9.6).

10.2 The maximal Lyaponov exponent

Consider separation δ ≡ x′ − x between two trajectories x(t) and
x′(t):

Assume that small distance δ(t) ≡ |δ(t)| changes smoothly as δ → 0
(δ̇ approaches zero linearly as δ approaches zero) and neglect higher-
order terms in δ(t) (assume that δ(0) is small enough so that δ(t) is
small for all times of consideration):

δ̇(t) = h(t)δ(t) ⇒ δ(t) = δ(0) exp

[∫ t

0

dt′h(t′)

]
.
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Define maximal Lyapunov exponent λ1 as the long-time average of h:

λ1 = lim
t→∞

1

t

∫ t

0

dt′h(t′)

and consider large t:

δ(t) ∼ eλ1tδ(0) ⇒ λ1 ≡ lim
t→∞

1

t
ln
|δ(t)|
|δ(0)|

.

Here δ(0) is made small enough so that the trajectories remain close-
by at all times of interest. λ1 describes whether a system is sensitive
to small deviations in initial conditions. Depending on the sign of λ1,
a small deviation between two trajectories either decreases (λ1 < 0)
or increases (λ1 > 0) exponentially fast for large times.

10.2.1 Physical interpretation of λ1

A positive λ1 (and mixing) implies chaotic dynamics.
Magnitude of 1/λ1 is the Lyapunov time: when λ1 > 0 it determines
time horizon for which system is predictable. Examples:

• Motion of planets in our solar system is chaotic, but there is no
problem in predicting planet motion on time scales of observa-
tion [Lyapunov time ∼ 50 million years for our solar system].

• Weather system: Lyapunov time (days) of same order as typical
relevant time scale.

• Chaotic electric circuits (milliseconds)

Strogatz Example 9.3.1 An increase in the precision of initial
condition δ0 by factor 106 ⇒ system only predictable for 2.5 times
longer (assuming a tolerance which is 104 · δ0) .
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10.3 Deformation matrix

As before, consider a general flow ẋ = f (x) and a small separation
δ = x′−x with |δ| � 1 between two trajectories x(t) and x′(t). For
the maximal Lyapunov exponent we only considered the distance |δ|,
now we consider the full dynamics of δ. Linearized dynamics

δ̇ = f (x′)− f (x) = [δ small ⇒ expand f (x′) around x]

≈ [f (x) + J(x)(x′ − x)]− f (x) = J(x)δ

with stability matrix J(x) ≡ ∂f/∂x evaluated along x(t).
The deformation matrix (deformation gradient tensor, Lyapunov

matrix) M is defined such that

δ(t) = M(t)δ(0)

with small initial separation |δ(0)| � 1. For a given trajectory x(t),
M(t) transforms an initial separation δ(0) to the separation δ(t):

To derive an equation for the evolution of M, differentiate δ w.r.t. t

δ̇(t) = Ṁ(t)δ(0)

But we also have from the linearisation

δ̇(t) = J(x)δ(t) = J(x)M(t)δ(0)
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and consequently

Ṁ(t)δ(0) = J(x)M(t)δ(0) .

This equation is true for any initial separation δ(0) ⇒

Ṁ(t) = J(x)M(t) .

In summary, to find M(t) we need to integrate the joint equations

ẋ = f (x)

Ṁ(t) = J(x)M(t) ,
(1)

with initial condition x(0) = x0 and M(0) = I (identity matrix) for a
time long enough that the initial conditions are ‘forgotten’.

The eigenvalues mi of M define stability exponents of trajectory
separations σ̃i ≡ limt→∞ t

−1 lnmi.

Comparison to linearisation around fixed point The linearisa-
tion between closeby trajectories above, closely resembles the lineari-
sation around a fixed point in Lecture 4:
Stability analysis of fixed point trajectory separation
Separation δ = x− x∗ δ = x′ − x
Dynamics δ̇ = Jδ J(x∗) const. J(x(t)) along x(t)
Solution δ(t) = M(t)δ(0) M(t) = exp[J(x∗)t] M implicit from Eq. (1)

As a consequence, trajectories in the basin of attraction of a fixed-point
attractor x∗ have x(t) → x∗ for large times and M → exp[J(x∗)t].
Diagonalisation of J(x∗) = VDV−1 implies diagonalisation of M: M =
VeDtV−1 ⇒ the eigenvectors of M and J are the same. In this limit
the the stability exponents of separations are equal to the eigenvalues
σ1, σ2, . . . , σn of J(x∗) (stability exponents), σ̃i = σi.

In general, the eigenvalues and eigenvectors of M are different from
the eigenvalues and eigenvectors of J (eigensystem of J requires only
local knowledge of system while eigensystem of M is influenced by all
stability matrices along a trajectory). It is in general hard to solve
the equations for M analytically, and one needs to use a numerical
method (Section 10.5 below).
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10.4 Lyapunov spectrum

Using the deformation matrix M it is possible to generalize the maxi-
mal Lyapunov exponent in Section 10.2 describing stretching rates of
small separations to stretching rates of small areas or volumes between
groups of closeby trajectories.

Consider a small spherical shell, |δ(0)|2 = δ20 = const., of initial
separations around a test trajectory x(t). At time t, the separations
have deformed to δ(t) = M(t)δ(0). Inverting this relation we obtain

1 =
δ(0)Tδ(0)

δ20
= δ(t)T

[M(t)−1]TM(t)−1

δ20︸ ︷︷ ︸
≡B

δ(t) .

Here B is a positive definite matrix which implies that the equation

δTBδ = 1

forms the surface of an ellipsoid with principal axes equal to the eigen-
vectors of B and with lengths of semi-axes equal to 1/

√
bi, where bi

are eigenvalues of B.
Using a singular value decomposition M = USVT, where U and V

are orthogonal matrices, UUT = VVT = I, and S is diagonal with
entries si, we find

MTM = VS2VT , MMT = US2UT .

Thus MTM and MMT have the same set of eigenvalues s2i , and

B = δ−20 [M−1]TM−1 = δ−20 [MMT]−1 = δ−20 [US2UT]−1 = δ−20 US−2UT

has eigenvalues bi = δ−20 s−2i . As a conclusion, M maps the spherical
shell of radius δ0 into an ellipsoid with lengths of semi-axes equal to
1/
√
bi = δ0si.

The eigenvalues s2i of MTM define a spectrum of Lyapunov exponents

λi ≡ lim
t→∞

1

t
ln |si| , (2)
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ordered such that λ1 ≥ λ2 ≥ . . . λn. They characterise exponential
growth|decay rates in a cloud of close-by particles.
Example Consider a 2D system with λ1 > 0, λ2 < 0 and corre-

sponding eigendirections û1 and û2 from U. A disk of initial separa-
tions around the test trajectory x(t) grows exponentially fast along
û1 with rate λ1 and shrinks exponentially fast along û2 with rate λ2:

10.4.1 Physical interpretation of the Lyapunov spectrum

Consider the quantity

lim
t→∞

1

t
ln
|δ(t)|
|δ(0)|

= lim
t→∞

1

2t
ln
(
δ̂(0)TMTMδ̂(0)

)
.

Denote by vi the eigendirections of V corresponding to λi. If δ̂(0)
has a component in the direction v1, the limit above approaches the
maximal Lyapunov exponent λ1, describing the stretching rate of a
typical separation in accordance with Section 10.2. For the atypical
case that δ̂(0) is perpendicular to v1 but has a component along v2,
the limit approaches λ2, i.e. λ2 describes stretching of separations in
the subspace perpendicular to v1. Similarly, higher-order Lyapunov
exponents describe stretching in yet lower-dimensional subspaces.
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Another viewpoint is to consider partial sums of the largest Lya-
punov exponents:

• λ1 determines exponential growth rate (λ1 > 0) or contraction
rate (λ1 < 0) of small separations between two trajectories.

• λ1 + λ2 determines exponential growth rate (λ1 + λ2 > 0) or
contraction rate (λ1 + λ2 < 0) of small areas between three
trajectories.

• λ1 + λ2 + λ3 determines exponential growth/contraction rate of
small volumes between four trajectories

and so on for sums over increasing number of Lyapunov exponents.

10.5 Numerical evaluation of Lyapunov exponents

The Lyapunov exponents are hard to calculate in general and one
needs to rely on numerical methods.

10.5.1 Naive numerical evaluation of λ1

A naive approach is to solve the dynamical system

ẋ = f (x)

numerically for two trajectories starting at x(0) and x(0) + δ(0).
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At regular time intervals T , rescale separation vector to original length

δ(nT )→ 1

αn
δ(nT ) , αn =

|δ(nT )|
|δ(0)|

and use scaling factors αn to evaluate

λ1 =
1

t
ln
|δ(t)|
|δ(0)|

=
1

NT

N∑
n=1

lnαn

with the total number of rescalings, N , large.
This often works! But it is unreliable: what is a good value for |δ(0)|

and the regularisation time T ? Also, it does not give the stretching
rate in directions other than the maximal, needed to calculate λ2,. . . ,
λn. In order to calculate these, one would need to follow n+ 1 trajec-
tories and rescale and reorthonormalize the volume spanned between
the trajectories. This is quite complicated.

10.5.2 Evaluation using the deformation matrix

In principle, the Lyapunov exponents can be obtained from the eigen-
values of the matrix MTM following Eq. (1). However, direct evalu-
ation of Eq. (1) is in general numerically problematic (the elements
in M blow up exponentially with increasing t). As a workaround,
discretize time t→ tn ≡ nδt (n integer and δt small time step):

M(tn)−M(tn−1)

δt
= J(x(tn−1))M(tn−1)

⇒ M(tn) = [I + J(x(tn−1))δt]M(tn−1)

= [I + J(x(tn−1))δt][I + J(x(tn−2))δt]M(tn−2)

= [I + J(x(tn−1))δt][I + J(x(tn−2))δt] . . . [I + J(x(t0))δt]M(t0)︸ ︷︷ ︸
I

i.e. M(tn) consists of product of nmatrices M(tn) = M(n−1)M(n−2) · · ·M(0)

where M(i) ≡ I + J(x(ti))δt.
The time evolution of the deformation matrix M driven by stability
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matrices J(x(tn)) along a trajectory x(t):

Arrows show eigensystems of M (green) and J (red). At each time
step, the eigendirections of M strives against the maximal direction
of J and becomes longer if maximal eigenvalue of J is positive. ⇒
eigenvectors of M (and MTM) tend to become very long and almost
aligned. ⇒ hard numerics

QR-trick Use QR-decomposition to evaluate the eigenvalues of the
product M(tn) = M(n−1) · · ·M(0) without numerical overflow.
OBS: QRDecomposition[M] in Mathematica gives matrices named
Q and R, but M = QTR, i.e. one must transpose Q.

A QR-decomposition of a general matrix P factorizes P = QR,
where QQT = I and R is upper triangular.

General principle (not identical to what you should implement):

• Before first time step,QR-decompose M(0) = Q(0)R(0), i.e. Q(0) =
R(0) = I because M(0) = I.

• After first time step, rewrite M(1)M(0) = M(1)Q(0)︸ ︷︷ ︸
Q(1)R(1)

R(0) = Q(1)R(1)R(0)

• After second time step, rewrite M(2)M(1)M(0) = M(2)Q(1)︸ ︷︷ ︸
Q(2)R(2)

R(1)R(0) =
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Q(2)R(2)R(1)R(0)

• Repeat for each time step: M(n−1) = Q(n−1)R(n−1) · · ·R(1)R(0)

The Lyapunov spectrum can be evaluated for large N , correspond-
ing to a final time tN = Nδt, using the limit in Section 10.4.1:

λi = lim
N→∞

1

2Nδt
ln
(
δ̂
T

i [M(N−1)]TM(N−1)δ̂i
)

= lim
N→∞

1

Nδt
ln
∣∣∣Rδ̂i∣∣∣ .

Here QTQ = I was used, R = R(n−1) · · ·R(1)R(0) is an upper diago-
nal matrix and δ̂i with i = 1, 2, . . . , d denotes an orthonormal set of
vectors such that δ̂i lies in the subspace excluding the directions cor-
responding to λ1, . . . , λi−1 (Oseledets theorem ensures this limit exist
for almost all initial conditions).

It is possible to show that the elements of R typically order such that
different Lyapunov exponents are given by different diagonal entries
of R:

λi = lim
N→∞

1

Nδt
ln[Rii] = lim

N→∞

1

Nδt

N−1∑
n=0

ln |R(n)
ii | . (3)

The ln |R(n)
ii | can be added one at a time to avoid overflow.

What you should implement:

1. Solve the equation ẋ = f (x) for some time to end up close to
the fractal attractor (Lorenz system in Problem 3.2).

2. Start with matrix Q = I and zero-valued variables λi for the
sums in Eq. (3)

3. At each time step you get a new matrix M (n) = I + J(x(tn))δt
where x(tn) is taken from solution of the ẋ = f (x) equation.

4. At each time step QR-decompose M(n)Qold = QnewRnew

5. At each time step add the diagonal elements of Rnew to λi in
Eq. (3)

6. Repeat from step 3 with Q = Qnew (total of N iterations)
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10.6 Coordinate transform of the deformation
matrix for closed orbits

At multiples of the period time of a closed orbit, the deformation
matrix M is (similarity-) invariant under general coordinate transfor-
mations. This property can sometimes be useful for analytical calcu-
lations of eigenvalues of the deformation matrix (Problem set 3.1).

Start from the equation defining M (subscripts denote original co-
ordinates x)

δx(t) = Mx(t)δx(0)

Make a coordinate transform x = G(y)

For small separations δx and δy we have

δx(t) =
∂x

∂y
δy(t) ≡ JG(y(t))δy(t)

and

δx(0) = JG(y(0))δy(0)

where JG is the gradient matrix of the transformation G. Conse-
quently

δy(t) = J−1G (y(t)) δx(t)︸ ︷︷ ︸
Mx(t)δx(0)

= J−1G (y(t))Mx(t)JG(y(0))δy(0) .
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But from the definition of the deformation matrix My(t) in the y-
system we also have δy(t) = My(t)δy(0).

⇒ My(t) = J−1G (y(t))Mx(t)JG(y(0))

For a closed orbit at multiples of the period time (so that y(t) =
y(0)), eigenvalues of My = eigenvalues of Mx. This can be seen by di-
agonalisation Mx(t) = P−1DP⇒My(t) = [PJ−1G (y(0))]−1D[PJG(y(0))],
i.e. also My(t) is diagonalized with the same diagonal matrix D.
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