# 10 Chaos and Lyapunov exponents

# 10.1 Chaotic systems

Chaotic dynamics exhibit the following properties

- Trajectories have a finite probability to show <u>aperiodic long-term</u> <u>behaviour</u>. However, a subset of trajectories may still be asymptotically periodic or quasiperiodic in a chaotic system.
- System is <u>deterministic</u>, the irregular behavior is due to nonlinearity of system and not due to stochastic forcing.
- Trajectories show <u>sensitive dependence on initial condition</u> (the 'butterfly effect'): Quantified by a positive Lyapunov exponent (this lecture).

#### 10.1.1 Illustrative example: Convex billiards



#### 10.1.2 More examples of chaotic systems

It is more a rule than an exception that systems exhibit chaos (often in the form of a mixture between chaotic and regular motion). Examples:

• **Biology** Population dynamics, Arrythmia (hearth), Epilepsy (brain).

- **Physics** Double pendulum, helium atom, three-body gravitational problem, celestial mechanics, mixing of fluids, meteorological systems.
- **Computer science** Pseudo-random number generators, to send secret messages (Strogatz 9.6).

#### 10.2 The maximal Lyaponov exponent

Consider separation  $\boldsymbol{\delta} \equiv \boldsymbol{x}' - \boldsymbol{x}$  between two trajectories  $\boldsymbol{x}(t)$  and  $\boldsymbol{x}'(t)$ :



Assume that small distance  $\delta(t) \equiv |\boldsymbol{\delta}(t)|$  changes smoothly as  $\delta \to 0$ ( $\dot{\delta}$  approaches zero linearly as  $\delta$  approaches zero) and neglect higherorder terms in  $\delta(t)$  (assume that  $\delta(0)$  is small enough so that  $\delta(t)$  is small for all times of consideration):

$$\dot{\delta}(t) = h(t)\delta(t) \implies \delta(t) = \delta(0) \exp\left[\int_0^t \mathrm{d}t' h(t')\right]$$

Define maximal Lyapunov exponent  $\lambda_1$  as the long-time average of h:

$$\lambda_1 = \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathrm{d}t' h(t')$$

and consider large t:

$$\delta(t) \sim e^{\lambda_1 t} \delta(0) \qquad \Rightarrow \qquad \lambda_1 \equiv \lim_{t \to \infty} \frac{1}{t} \ln \frac{|\boldsymbol{\delta}(t)|}{|\boldsymbol{\delta}(0)|}.$$

Here  $\delta(0)$  is made small enough so that the trajectories remain closeby at all times of interest.  $\lambda_1$  describes whether a system is sensitive to small deviations in initial conditions. Depending on the sign of  $\lambda_1$ , a small deviation between two trajectories either decreases ( $\lambda_1 < 0$ ) or increases ( $\lambda_1 > 0$ ) exponentially fast for large times.

#### **10.2.1** Physical interpretation of $\lambda_1$

A positive  $\lambda_1$  (and mixing) implies chaotic dynamics. Magnitude of  $1/\lambda_1$  is the <u>Lyapunov time</u>: when  $\lambda_1 > 0$  it determines time horizon for which system is predictable. Examples:

- Motion of planets in our solar system is chaotic, but there is no problem in predicting planet motion on time scales of observation [Lyapunov time  $\sim 50$  million years for our solar system].
- Weather system: Lyapunov time (days) of same order as typical relevant time scale.
- Chaotic electric circuits (milliseconds)

**Strogatz Example 9.3.1** An increase in the precision of initial condition  $\delta_0$  by factor  $10^6 \Rightarrow$  system only predictable for 2.5 times longer (assuming a tolerance which is  $10^4 \cdot \delta_0$ ).

### **10.3 Deformation matrix**

As before, consider a general flow  $\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x})$  and a small separation  $\boldsymbol{\delta} = \boldsymbol{x}' - \boldsymbol{x}$  with  $|\boldsymbol{\delta}| \ll 1$  between two trajectories  $\boldsymbol{x}(t)$  and  $\boldsymbol{x}'(t)$ . For the maximal Lyapunov exponent we only considered the distance  $|\boldsymbol{\delta}|$ , now we consider the full dynamics of  $\boldsymbol{\delta}$ . Linearized dynamics

$$\dot{\boldsymbol{\delta}} = \boldsymbol{f}(\boldsymbol{x}') - \boldsymbol{f}(\boldsymbol{x}) = [\boldsymbol{\delta} \text{ small} \Rightarrow \text{expand } \boldsymbol{f}(\boldsymbol{x}') \text{ around } \boldsymbol{x}]$$
  
  $\approx [\boldsymbol{f}(\boldsymbol{x}) + \mathbb{J}(\boldsymbol{x})(\boldsymbol{x}' - \boldsymbol{x})] - \boldsymbol{f}(\boldsymbol{x}) = \mathbb{J}(\boldsymbol{x})\boldsymbol{\delta}$ 

with stability matrix  $\mathbb{J}(\boldsymbol{x}) \equiv \partial \boldsymbol{f} / \partial \boldsymbol{x}$  evaluated along  $\boldsymbol{x}(t)$ .

The deformation matrix (deformation gradient tensor, Lyapunov matrix)  $\mathbb{M}$  is defined such that

$$\boldsymbol{\delta}(t) = \mathbb{M}(t)\boldsymbol{\delta}(0)$$

with small initial separation  $|\boldsymbol{\delta}(0)| \ll 1$ . For a given trajectory  $\boldsymbol{x}(t)$ ,  $\mathbb{M}(t)$  transforms an initial separation  $\boldsymbol{\delta}(0)$  to the separation  $\boldsymbol{\delta}(t)$ :



To derive an equation for the evolution of M, differentiate  $\boldsymbol{\delta}$  w.r.t. t

$$\dot{\boldsymbol{\delta}}(t) = \dot{\mathbb{M}}(t)\boldsymbol{\delta}(0)$$

But we also have from the linearisation

$$\dot{\boldsymbol{\delta}}(t) = \mathbb{J}(\boldsymbol{x})\boldsymbol{\delta}(t) = \mathbb{J}(\boldsymbol{x})\mathbb{M}(t)\boldsymbol{\delta}(0)$$

and consequently

$$\dot{\mathbb{M}}(t)\boldsymbol{\delta}(0) = \mathbb{J}(\boldsymbol{x})\mathbb{M}(t)\boldsymbol{\delta}(0)$$
.

This equation is true for any initial separation  $\boldsymbol{\delta}(0) \Rightarrow$ 

$$\dot{\mathbb{M}}(t) = \mathbb{J}(\boldsymbol{x})\mathbb{M}(t)$$
 .

In summary, to find  $\mathbb{M}(t)$  we need to integrate the joint equations

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x})$$
  
$$\dot{\mathbb{M}}(t) = \mathbb{J}(\boldsymbol{x})\mathbb{M}(t), \qquad (1)$$

with initial condition  $\boldsymbol{x}(0) = \boldsymbol{x}_0$  and  $\mathbb{M}(0) = \mathbb{I}$  (identity matrix) for a time long enough that the initial conditions are 'forgotten'.

The eigenvalues  $m_i$  of  $\mathbb{M}$  define stability exponents of trajectory separations  $\tilde{\sigma}_i \equiv \lim_{t \to \infty} t^{-1} \ln m_i$ .

**Comparison to linearisation around fixed point** The linearisation between closeby trajectories above, closely resembles the linearisation around a fixed point in Lecture 4:

Stability analysis of fixed point trajectory separation  $oldsymbol{\delta} = oldsymbol{x}^{-} - oldsymbol{x}^{*}$  $oldsymbol{\delta} = x' - x$ Separation Dynamics  $\delta = \mathbb{J}\delta$  $\mathbb{J}(\boldsymbol{x}^*)$  const.  $\mathbb{J}(\boldsymbol{x}(t))$  along  $\boldsymbol{x}(t)$ Solution  $\boldsymbol{\delta}(t) = \mathbb{M}(t)\boldsymbol{\delta}(0) \quad \mathbb{M}(t) = \exp[\mathbb{J}(\boldsymbol{x}^*)t] \quad \mathbb{M}$  implicit from Eq. (1) As a consequence, trajectories in the basin of attraction of a fixed-point attractor  $\boldsymbol{x}^*$  have  $\boldsymbol{x}(t) \to \boldsymbol{x}^*$  for large times and  $\mathbb{M} \to \exp[\mathbb{J}(\boldsymbol{x}^*)t]$ . Diagonalisation of  $\mathbb{J}(\mathbf{x}^*) = \mathbb{V}\mathbb{D}\mathbb{V}^{-1}$  implies diagonalisation of  $\mathbb{M}$ :  $\mathbb{M} =$  $\mathbb{V}e^{\mathbb{D}t}\mathbb{V}^{-1} \Rightarrow$  the eigenvectors of  $\mathbb{M}$  and  $\mathbb{J}$  are the same. In this limit the the stability exponents of separations are equal to the eigenvalues  $\sigma_1, \sigma_2, \ldots, \sigma_n$  of  $\mathbb{J}(\boldsymbol{x}^*)$  (stability exponents),  $\tilde{\sigma}_i = \sigma_i$ .

In general, the eigenvalues and eigenvectors of  $\mathbb{M}$  are different from the eigenvalues and eigenvectors of  $\mathbb{J}$  (eigensystem of  $\mathbb{J}$  requires only local knowledge of system while eigensystem of  $\mathbb{M}$  is influenced by all stability matrices along a trajectory). It is in general hard to solve the equations for  $\mathbb{M}$  analytically, and one needs to use a numerical method (Section 10.5 below).

#### 10.4 Lyapunov spectrum

Using the deformation matrix  $\mathbb{M}$  it is possible to generalize the maximal Lyapunov exponent in Section 10.2 describing stretching rates of small separations to stretching rates of small areas or volumes between groups of closeby trajectories.

Consider a small spherical shell,  $|\boldsymbol{\delta}(0)|^2 = \delta_0^2 = \text{const.}$ , of initial separations around a test trajectory  $\boldsymbol{x}(t)$ . At time t, the separations have deformed to  $\boldsymbol{\delta}(t) = \mathbb{M}(t)\boldsymbol{\delta}(0)$ . Inverting this relation we obtain

$$1 = \frac{\boldsymbol{\delta}(0)^{\mathrm{T}}\boldsymbol{\delta}(0)}{\delta_{0}^{2}} = \boldsymbol{\delta}(t)^{\mathrm{T}} \underbrace{\underbrace{[\mathbb{M}(t)^{-1}]^{\mathrm{T}}\mathbb{M}(t)^{-1}}_{\equiv \mathbb{B}}}_{\equiv \mathbb{B}} \boldsymbol{\delta}(t) \,.$$

Here  $\mathbb B$  is a positive definite matrix which implies that the equation

$$\boldsymbol{\delta}^{\mathrm{T}} \mathbb{B} \boldsymbol{\delta} = 1$$

forms the surface of an ellipsoid with principal axes equal to the eigenvectors of  $\mathbb{B}$  and with lengths of semi-axes equal to  $1/\sqrt{b_i}$ , where  $b_i$  are eigenvalues of  $\mathbb{B}$ .

Using a singular value decomposition  $\mathbb{M} = \mathbb{U}\mathbb{S}\mathbb{V}^{\mathrm{T}}$ , where  $\mathbb{U}$  and  $\mathbb{V}$  are orthogonal matrices,  $\mathbb{U}\mathbb{U}^{\mathrm{T}} = \mathbb{V}\mathbb{V}^{\mathrm{T}} = \mathbb{I}$ , and  $\mathbb{S}$  is diagonal with entries  $s_i$ , we find

$$\mathbb{M}^{\mathrm{T}}\mathbb{M} = \mathbb{V}\mathbb{S}^{2}\mathbb{V}^{\mathrm{T}}$$
,  $\mathbb{M}\mathbb{M}^{\mathrm{T}} = \mathbb{U}\mathbb{S}^{2}\mathbb{U}^{\mathrm{T}}$ .

Thus  $\mathbb{M}^{\mathrm{T}}\mathbb{M}$  and  $\mathbb{M}\mathbb{M}^{\mathrm{T}}$  have the same set of eigenvalues  $s_{i}^{2}$ , and

$$\mathbb{B} = \delta_0^{-2} [\mathbb{M}^{-1}]^{\mathrm{T}} \mathbb{M}^{-1} = \delta_0^{-2} [\mathbb{M}\mathbb{M}^{\mathrm{T}}]^{-1} = \delta_0^{-2} [\mathbb{U}\mathbb{S}^2\mathbb{U}^{\mathrm{T}}]^{-1} = \delta_0^{-2}\mathbb{U}\mathbb{S}^{-2}\mathbb{U}^{\mathrm{T}}$$

has eigenvalues  $b_i = \delta_0^{-2} s_i^{-2}$ . As a conclusion,  $\mathbb{M}$  maps the spherical shell of radius  $\delta_0$  into an ellipsoid with lengths of semi-axes equal to  $1/\sqrt{b_i} = \delta_0 s_i$ .

The eigenvalues  $s_i^2$  of  $\mathbb{M}^T \mathbb{M}$  define a spectrum of Lyapunov exponents

$$\lambda_i \equiv \lim_{t \to \infty} \frac{1}{t} \ln |s_i| , \qquad (2)$$

ordered such that  $\lambda_1 \geq \lambda_2 \geq \ldots \lambda_n$ . They characterise exponential growth decay rates in a cloud of close-by particles.

**Example** Consider a 2D system with  $\lambda_1 > 0$ ,  $\lambda_2 < 0$  and corresponding eigendirections  $\hat{\boldsymbol{u}}_1$  and  $\hat{\boldsymbol{u}}_2$  from U. A disk of initial separations around the test trajectory  $\boldsymbol{x}(t)$  grows exponentially fast along  $\hat{\boldsymbol{u}}_1$  with rate  $\lambda_1$  and shrinks exponentially fast along  $\hat{\boldsymbol{u}}_2$  with rate  $\lambda_2$ :



#### 10.4.1 Physical interpretation of the Lyapunov spectrum

Consider the quantity

$$\lim_{t \to \infty} \frac{1}{t} \ln \frac{|\boldsymbol{\delta}(t)|}{|\boldsymbol{\delta}(0)|} = \lim_{t \to \infty} \frac{1}{2t} \ln \left( \hat{\boldsymbol{\delta}}(0)^{\mathrm{T}} \mathbb{M}^{\mathrm{T}} \mathbb{M} \hat{\boldsymbol{\delta}}(0) \right)$$

Denote by  $\boldsymbol{v}_i$  the eigendirections of  $\mathbb{V}$  corresponding to  $\lambda_i$ . If  $\hat{\boldsymbol{\delta}}(0)$  has a component in the direction  $\boldsymbol{v}_1$ , the limit above approaches the maximal Lyapunov exponent  $\lambda_1$ , describing the stretching rate of a typical separation in accordance with Section 10.2. For the atypical case that  $\hat{\boldsymbol{\delta}}(0)$  is perpendicular to  $\boldsymbol{v}_1$  but has a component along  $\boldsymbol{v}_2$ , the limit approaches  $\lambda_2$ , i.e.  $\lambda_2$  describes stretching of separations in the subspace perpendicular to  $\boldsymbol{v}_1$ . Similarly, higher-order Lyapunov exponents describe stretching in yet lower-dimensional subspaces.

Another viewpoint is to consider partial sums of the largest Lyapunov exponents:

- $\lambda_1$  determines exponential growth rate ( $\lambda_1 > 0$ ) or contraction rate ( $\lambda_1 < 0$ ) of small separations between two trajectories.
- $\lambda_1 + \lambda_2$  determines exponential growth rate  $(\lambda_1 + \lambda_2 > 0)$  or contraction rate  $(\lambda_1 + \lambda_2 < 0)$  of small areas between three trajectories.
- $\lambda_1 + \lambda_2 + \lambda_3$  determines exponential growth/contraction rate of small volumes between four trajectories

and so on for sums over increasing number of Lyapunov exponents.

## 10.5 Numerical evaluation of Lyapunov exponents

The Lyapunov exponents are hard to calculate in general and one needs to rely on numerical methods.

#### **10.5.1** Naive numerical evaluation of $\lambda_1$

A naive approach is to solve the dynamical system

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x})$$

numerically for two trajectories starting at  $\boldsymbol{x}(0)$  and  $\boldsymbol{x}(0) + \boldsymbol{\delta}(0)$ .



At regular time intervals T, rescale separation vector to original length

$$\boldsymbol{\delta}(nT) \to \frac{1}{\alpha_n} \boldsymbol{\delta}(nT), \qquad \alpha_n = \frac{|\boldsymbol{\delta}(nT)|}{|\boldsymbol{\delta}(0)|}$$

and use scaling factors  $\alpha_n$  to evaluate

$$\lambda_1 = \frac{1}{t} \ln \frac{|\boldsymbol{\delta}(t)|}{|\boldsymbol{\delta}(0)|} = \frac{1}{NT} \sum_{n=1}^N \ln \alpha_n$$

with the total number of rescalings, N, large.

This often works! But it is unreliable: what is a good value for  $|\delta(0)|$  and the regularisation time T? Also, it does not give the stretching rate in directions other than the maximal, needed to calculate  $\lambda_2, \ldots$ ,  $\lambda_n$ . In order to calculate these, one would need to follow n + 1 trajectories and rescale and reorthonormalize the volume spanned between the trajectories. This is quite complicated.

#### 10.5.2 Evaluation using the deformation matrix

In principle, the Lyapunov exponents can be obtained from the eigenvalues of the matrix  $\mathbb{M}^{T}\mathbb{M}$  following Eq. (1). However, direct evaluation of Eq. (1) is in general numerically problematic (the elements in  $\mathbb{M}$  blow up exponentially with increasing t). As a workaround, discretize time  $t \to t_n \equiv n\delta t$  (n integer and  $\delta t$  small time step):

$$\begin{split} \frac{\mathbb{M}(t_n) - \mathbb{M}(t_{n-1})}{\delta t} &= \mathbb{J}(\boldsymbol{x}(t_{n-1}))\mathbb{M}(t_{n-1}) \\ \Rightarrow \mathbb{M}(t_n) &= [\mathbb{I} + \mathbb{J}(\boldsymbol{x}(t_{n-1}))\delta t]\mathbb{M}(t_{n-1}) \\ &= [\mathbb{I} + \mathbb{J}(\boldsymbol{x}(t_{n-1}))\delta t][\mathbb{I} + \mathbb{J}(\boldsymbol{x}(t_{n-2}))\delta t]\mathbb{M}(t_{n-2}) \\ &= [\mathbb{I} + \mathbb{J}(\boldsymbol{x}(t_{n-1}))\delta t][\mathbb{I} + \mathbb{J}(\boldsymbol{x}(t_{n-2}))\delta t] \dots [\mathbb{I} + \mathbb{J}(\boldsymbol{x}(t_0))\delta t] \underbrace{\mathbb{M}(t_0)}_{\mathbb{I}} \end{split}$$

i.e.  $\mathbb{M}(t_n)$  consists of product of n matrices  $\mathbb{M}(t_n) = \mathbb{M}^{(n-1)}\mathbb{M}^{(n-2)}\cdots\mathbb{M}^{(0)}$ where  $\mathbb{M}^{(i)} \equiv \mathbb{I} + \mathbb{J}(\boldsymbol{x}(t_i))\delta t$ .

The time evolution of the deformation matrix  $\mathbb{M}$  driven by stability

matrices  $\mathbb{J}(\boldsymbol{x}(t_n))$  along a trajectory  $\boldsymbol{x}(t)$ :



Arrows show eigensystems of  $\mathbb{M}$  (green) and  $\mathbb{J}$  (red). At each time step, the eigendirections of  $\mathbb{M}$  strives against the maximal direction of  $\mathbb{J}$  and becomes longer if maximal eigenvalue of  $\mathbb{J}$  is positive.  $\Rightarrow$ eigenvectors of  $\mathbb{M}$  (and  $\mathbb{M}^{T}\mathbb{M}$ ) tend to become very long and almost aligned.  $\Rightarrow$  hard numerics

**QR-trick** Use QR-decomposition to evaluate the eigenvalues of the product  $\mathbb{M}(t_n) = \mathbb{M}^{(n-1)} \cdots \mathbb{M}^{(0)}$  without numerical overflow. *OBS:* QRDecomposition[M] in Mathematica gives matrices named Q and R, but  $\mathbb{M} = \mathbb{Q}^{\mathrm{T}}\mathbb{R}$ , *i.e. one must transpose*  $\mathbb{Q}$ .

A QR-decomposition of a general matrix  $\mathbb{P}$  factorizes  $\mathbb{P} = \mathbb{Q}\mathbb{R}$ , where  $\mathbb{Q}\mathbb{Q}^{\mathrm{T}} = \mathbb{I}$  and  $\mathbb{R}$  is upper triangular.

General principle (not identical to what you should implement):

- Before first time step, QR-decompose  $\mathbb{M}^{(0)} = \mathbb{Q}^{(0)}\mathbb{R}^{(0)}$ , i.e.  $\mathbb{Q}^{(0)} = \mathbb{R}^{(0)} = \mathbb{I}$  because  $\mathbb{M}^{(0)} = \mathbb{I}$ .
- After first time step, rewrite  $\mathbb{M}^{(1)}\mathbb{M}^{(0)} = \underbrace{\mathbb{M}^{(1)}\mathbb{Q}^{(0)}}_{\mathbb{Q}^{(1)}\mathbb{R}^{(1)}} \mathbb{R}^{(0)} = \mathbb{Q}^{(1)}\mathbb{R}^{(1)}\mathbb{R}^{(0)}$
- After second time step, rewrite  $\mathbb{M}^{(2)}\mathbb{M}^{(1)}\mathbb{M}^{(0)} = \underbrace{\mathbb{M}^{(2)}\mathbb{Q}^{(1)}}_{\mathbb{Q}^{(2)}\mathbb{R}^{(2)}}\mathbb{R}^{(1)}\mathbb{R}^{(0)} =$

 $\mathbb{Q}^{(2)}\mathbb{R}^{(2)}\mathbb{R}^{(1)}\mathbb{R}^{(0)}$ 

• Repeat for each time step:  $\mathbb{M}^{(n-1)} = \mathbb{Q}^{(n-1)} \mathbb{R}^{(n-1)} \cdots \mathbb{R}^{(1)} \mathbb{R}^{(0)}$ 

The Lyapunov spectrum can be evaluated for large N, corresponding to a final time  $t_N = N\delta t$ , using the limit in Section 10.4.1:

$$\lambda_i = \lim_{N \to \infty} \frac{1}{2N\delta t} \ln \left( \hat{\boldsymbol{\delta}}_i^{\mathrm{T}} [\mathbb{M}^{(N-1)}]^{\mathrm{T}} \mathbb{M}^{(N-1)} \hat{\boldsymbol{\delta}}_i \right) = \lim_{N \to \infty} \frac{1}{N\delta t} \ln \left| \mathbb{R} \hat{\boldsymbol{\delta}}_i \right| \,.$$

Here  $\mathbb{Q}^{T}\mathbb{Q} = \mathbb{I}$  was used,  $\mathbb{R} = \mathbb{R}^{(n-1)} \cdots \mathbb{R}^{(1)}\mathbb{R}^{(0)}$  is an upper diagonal matrix and  $\hat{\delta}_{i}$  with  $i = 1, 2, \ldots, d$  denotes an orthonormal set of vectors such that  $\hat{\delta}_{i}$  lies in the subspace excluding the directions corresponding to  $\lambda_{1}, \ldots, \lambda_{i-1}$  (Oseledets theorem ensures this limit exist for almost all initial conditions).

It is possible to show that the elements of  $\mathbb{R}$  typically order such that different Lyapunov exponents are given by different diagonal entries of  $\mathbb{R}$ :

$$\lambda_{i} = \lim_{N \to \infty} \frac{1}{N\delta t} \ln[R_{ii}] = \lim_{N \to \infty} \frac{1}{N\delta t} \sum_{n=0}^{N-1} \ln|R_{ii}^{(n)}|.$$
(3)

The  $\ln |R_{ii}^{(n)}|$  can be added one at a time to avoid overflow. What you should implement:

- 1. Solve the equation  $\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x})$  for some time to end up close to the fractal attractor (Lorenz system in Problem 3.2).
- 2. Start with matrix  $\mathbb{Q} = \mathbb{I}$  and zero-valued variables  $\lambda_i$  for the sums in Eq. (3)
- 3. At each time step you get a new matrix  $M^{(n)} = \mathbb{I} + \mathbb{J}(\boldsymbol{x}(t_n))\delta t$ where  $\boldsymbol{x}(t_n)$  is taken from solution of the  $\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x})$  equation.
- 4. At each time step QR-decompose  $\mathbb{M}^{(n)}\mathbb{Q}_{\text{old}} = \mathbb{Q}_{\text{new}}\mathbb{R}_{\text{new}}$
- 5. At each time step add the diagonal elements of  $\mathbb{R}_{new}$  to  $\lambda_i$  in Eq. (3)
- 6. Repeat from step 3 with  $\mathbb{Q} = \mathbb{Q}_{new}$  (total of N iterations)

# 10.6 Coordinate transform of the deformation matrix for closed orbits

At multiples of the period time of a closed orbit, the deformation matrix M is (similarity-) invariant under general coordinate transformations. This property can sometimes be useful for analytical calculations of eigenvalues of the deformation matrix (Problem set 3.1).

Start from the equation defining M (subscripts denote original coordinates  $\boldsymbol{x}$ )

$$\boldsymbol{\delta}_{\boldsymbol{x}}(t) = \mathbb{M}_{\boldsymbol{x}}(t)\boldsymbol{\delta}_{\boldsymbol{x}}(0)$$

Make a coordinate transform  $\boldsymbol{x} = \boldsymbol{G}(\boldsymbol{y})$ 



For small separations  $\boldsymbol{\delta_{\mathcal{X}}}$  and  $\boldsymbol{\delta_{\mathcal{Y}}}$  we have

$$\boldsymbol{\delta}_{\boldsymbol{x}}(t) = \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{y}} \boldsymbol{\delta}_{\boldsymbol{y}}(t) \equiv \mathbb{J}_{G}(\boldsymbol{y}(t)) \boldsymbol{\delta}_{\boldsymbol{y}}(t)$$

and

$$\boldsymbol{\delta_{\mathcal{X}}}(0) = \mathbb{J}_{G}(\boldsymbol{y}(0))\boldsymbol{\delta_{\mathcal{Y}}}(0)$$

where  $\mathbb{J}_G$  is the gradient matrix of the transformation G. Consequently

$$\boldsymbol{\delta y}(t) = \mathbb{J}_{G}^{-1}(\boldsymbol{y}(t)) \underbrace{\boldsymbol{\delta x}(t)}_{\mathbb{M}\boldsymbol{x}^{(t)}\boldsymbol{\delta x}^{(0)}} = \mathbb{J}_{G}^{-1}(\boldsymbol{y}(t))\mathbb{M}\boldsymbol{x}(t)\mathbb{J}_{G}(\boldsymbol{y}(0))\boldsymbol{\delta y}(0).$$

But from the definition of the deformation matrix  $\mathbb{M}_{\boldsymbol{y}}(t)$  in the *y*-system we also have  $\boldsymbol{\delta}_{\boldsymbol{y}}(t) = \mathbb{M}_{\boldsymbol{y}}(t) \boldsymbol{\delta}_{\boldsymbol{y}}(0)$ .

$$\Rightarrow \mathbb{M}\boldsymbol{y}(t) = \mathbb{J}_{G}^{-1}(\boldsymbol{y}(t))\mathbb{M}_{\boldsymbol{x}}(t)\mathbb{J}_{G}(\boldsymbol{y}(0))$$

For a closed orbit at multiples of the period time (so that  $\boldsymbol{y}(t) = \boldsymbol{y}(0)$ ), eigenvalues of  $\mathbb{M}_{\boldsymbol{y}}$  = eigenvalues of  $\mathbb{M}_{\boldsymbol{x}}$ . This can be seen by diagonalisation  $\mathbb{M}_{\boldsymbol{x}}(t) = \mathbb{P}^{-1}\mathbb{D}\mathbb{P} \Rightarrow \mathbb{M}_{\boldsymbol{y}}(t) = [\mathbb{P}\mathbb{J}_{G}^{-1}(\boldsymbol{y}(0))]^{-1}\mathbb{D}[\mathbb{P}\mathbb{J}_{G}(\boldsymbol{y}(0))]$ , i.e. also  $\mathbb{M}_{\boldsymbol{y}}(t)$  is diagonalized with the same diagonal matrix  $\mathbb{D}$ .