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11 Strange attractors and Lyapunov
dimension

11.1 Attractors

In previous lectures we have discussed a number of attractors as sets
towards which closeby trajectories converge, for example stable fixed
points and stable limit cycles. An attractor is defined as

1. an invariant set: trajectories starting on the attractor can not
leave it.

2. attracting: there exists a set of initial conditions (basin of at-
traction) whose trajectories reach the attractor as t→∞.

3. minimal: No subset on the attractor satisfies conditions 1 and 2.

Example 1 Heteroclinic trajectory Γ1 between (and including) a
saddle and a stable node:

Γ1 satisfies condition 1 (trajectories starting on Γ1 remains on Γ1) and
Γ1 is attractive. But it is not minimal, there is a subset (the node)
that satisfies 1 and 2 ⇒ the node is the attractor.

Example 2 Cycle of heteroclinic trajectories between two saddle
points, Γ2, surrounding an unstable spiral is an attractor. Which sad-
dle a trajectory starting inside the cycle ends up at as t→∞ can not
be determined (for any large t we can make t even larger in order to
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closely follow a heteroclinic trajectory to the opposite saddle). This
implies, to satisfy condition 2, that both saddles and the interconnect-
ing heteroclinic trajectories constitute the attractor.

11.2 Lyapunov exponents of attractors

For the attractors discussed previously in the course (stable fixed
points, limit cycles, homoclinic orbits, cycles of heteroclinic trajec-
tories), we expect that all Lyapunov exponents are non-positive.

11.2.1 Attracting fixed point

For trajectories in the basin of attraction of an attracting fixed point,
Reσi < 0, separations must in the long run shrink in all directions
because, as shown in Lecture 10, for this case the stability exponents of
separations σ̃i = σi, and hence all Lyapunov exponents are negative,
λi < 0, in a system with globally attracting fixed points.

11.2.2 Attracting limit cycle

For any bounded, autonomous (time-independent) flow f without
attracting fixed points, one Lyapunov exponent is zero. This follows
from (fi are components of f )

ḟi = ∂tfi︸︷︷︸
=0

+
∑
j

ẋj︸︷︷︸
fj

∂jfi︸︷︷︸
Jij

=
∑
j

Jijfj ,

i.e. the phase-space velocity ẋ = f satisfies the same time evolution
as M and δ (tangent equations). For an initial separation δ(0) =
f (0) the separation grows to δ(t) = f (t) at a later time t and the
corresponding stretching rate is

λ = lim
t→∞

1

t
ln |ẋ| .

This is zero unless ẋ depends exponentially on t for large t, which
would happen close to a stable fixed point or if infinity is approached
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exponentially fast. But, in the bounded system considered here, reg-
ular trajectories do not diverge exponentially with time and λ must
vanish. The vanishing λ = 0 must be equal to one of the Lyapunov
exponents (by the decomposition in terms of eigenvectors vi of MTM,
f =

∑
j ajvj, λ approaches the largest Lyapunov exponent λi with

non-zero ai).
As a consequence, two trajectories starting close-by on a closed orbit

(i.e. their separation points along the direction of velocity) does not
on average separate or contract. ⇒ attracting limit cycles have λ1 = 0
and the remaining Lyapunov exponents are non-positive.
Similarly: Attracting m-frequency quasiperiodic orbit (motion on m-
torus) has λ1 = λ2 = · · · = λm = 0 and the remaining Lyapunov
exponents are negative.

11.2.3 Volume conserving systems (no attractors)

The evolution of a small volume element in a flow is given by (lecture
5 or Strogatz Sec. 9.2):

V̇ =

∫
V

dV∇ · f =

∫
V

dV trJ .

If the dissipation rate trJ is constant, the equation simplifies to V̇ =
VtrJ, giving

V = V0etrJt ,

i.e. volumes shrink exponentially fast in dissipative systems (trJ < 0)
and remain constant in volume-conserving systems (trJ = 0).

But in lecture 10 we found that an initially spherical shell around a
test particle transforms into an ellipsoid with axes ∼ eλit, i.e.

V ∼ V0eλ1teλ2t · · · eλnt = V0e(λ1+λ2+...λn)t

Thus the sum λ1 + . . . λn is zero in volume conserving systems.
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11.3 Strange attractors

Summarizing the previous section for dimensionality n = 3:
Attractor λ1 λ2 λ3 Dimension
Fixed point < 0 < 0 < 0 0
Limit cycle 0 < 0 < 0 1
Limit torus 0 0 < 0 2
Volume conserving (no attractor) 0 0 0 3

Now consider the case of a chaotic system (λ1 > 0) with trajectories
bounded in a finite region:

• If λ1 + λ2 + λ3 = 0 (volume conserving chaotic system) then
aperiodic chaotic trajectories fill out space uniformly. This is
similar to the chaotic systems encountered for billiards, double
pendulum, chaotic advection, . . . .

• If instead λ1 + λ2 + λ3 < 0 (dissipative chaotic system) then
phase-space volumes shrink.

For the case of dissipative chaotic dynamics, one Lyapunov exponent
must be zero, λ2 = 0 (see Section 11.2.2), and consequently λ3 < 0.
Now, since λ1 > 0 and therefore λ1 + λ2 > 0, we expect small areas
to grow and small volumes to shrink. What kind of attractor can we
have? It cannot be a limit cycle|torus (because these have λ1 = 0).
The resolution is a new kind of attractor, strange attractor (fractal at-
tractor), that takes on a fractional dimensionality, somewhere between
2 and 3.
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11.3.1 Properties of strange attractors

Illustration of a strange attractor:

Some properties:

• Strange attractors show sensitive dependence of initial condi-
tions. Close-by trajectories end up at different places on the
attractor.

• The strange attractor is bounded but aperiodic (if it were peri-
odic it would be a limit cycle)

• Strange attractors require a phase-space dimensionality of at
least 3. In lower dimensions trajectories cannot pass and ape-
riodic motion is ruled out by the Poincaré-Bendixson theorem
(Lecture 5).

• The strange attractor has structure at all scales (since it outlines
an infinitely long aperiodic trajectory in a confined region).

• Strange attractors cannot be plotted (there is always more struc-
ture if you zoom). Curves lying arbitrarily close to the attractor
are obtained by choosing an initial point in the basin of attrac-
tion, solving the flow equations for some time to get close to the
attractor, and then plot the aperiodic dynamics for a long time.
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• A system may have one or several regular/strange attractors
with different basins of attraction (the basin of attraction can
itself be a fractal) .

11.3.2 Lyapunov dimension

There are several ways to define the fractal dimension of a strange
attractor (next lecture). One estimate of the dimensionality of the
strange attractor is the Lyapunov dimension DL. It is defined as
the number of ordered Lyapunov exponents that sum to zero. For
the attractors listed in the table above, DL becomes 0 for the fixed
point, 1 for the limit cycle, 2 for the limit torus and 3 for the volume
conserving system. For the strange attractor above λ1 + λ2 > 0 and
λ1 + λ2 + λ3 < 0 sum to non-zero numbers:

DL is then determined by
a linear interpolation DL(λ1 + λ2) = A+B(λ1 + λ2) where A and B
are determined by DL(0) = 2 and DL(−λ3) = 3, i.e.

DL = 2− λ1 + λ2

λ3

.

This is a number between 2 and 3 as desired (seen from the constrains
λ1 + λ2 > 0 and λ1 + λ2 + λ3 < 0 ⇒ λ3 < −(λ1 + λ2)).

Similarly, the Lyapunov dimension can be generalized to other di-
mensionalities.
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11.3.3 Example of strange attractor: Lorenz attractor

The standard example of system with a fractal attractor

ẋ = σ(y − x)

ẏ = rx− y − xz
ż = xy − bz

This is a toy model for convection rolls in the atmosphere It also de-
scribes the motion of a particular water wheel (Strogatz 9.1).
Attracting fixed points exist for small r, but system jumps to a strange
attractor after a subcritical Hopf Bifurcation rH ≈ 24.74.

11.4 Formation of strange attractors

Typical behaviour in chaotic systems:

We typically have a strange attractor if the system is also dissipative.

Geometric illustration: Simple horseshoe map Repeated map-
ping of a rectangle into itself.

7



Dynamical systems 2018 kristian.gustafsson@physics.gu.se

• Map rectangle abcd into a horseshoe a′b′c′d′ by stretching and
folding as above. Area of horseshoe smaller than original image
⇒ dissipation.

• Iterate the map. Stretch gives a rotated ’u’-shape which is
folded.

• Iterate to get thinner and thinner filaments

After infinite iterations, a vertical cut through the middle resembles
a fractal (a topological deformation of the Cantor set, next lecture).

This is a typical situation: locally the strange attractor consists of
a bundle of a large (infinite) number of close-to parallel filaments. By
putting a n − 1-dimensional cross-section through the bundle some
(fractal) pattern emerges.
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