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12 Fractals and fractal dimensions

A limit set is the state a dynamical system reaches after a long (infi-
nite) time. The limit set can be fixed points or non-local structures.
Some typical non-local limit sets in volume-conserving (∇ · f = 0
everywhere) systems (left) and dissipative systems (right) are:

Volume-conserving systems do not have attractors, the initial condi-
tion determines which periodic orbit, chaotic trajectory, etc is chosen.

Dissipative chaotic systems may have a strange attractor, i.e. a min-
imal, attracting, invariant set that is aperiodic with chaotic dynamics.
Strange attractors show self-similar structure at arbitrary small scales.
It is common to quantify scale-invariant structures using some fractal
(non-integer) dimension D (for example Dq below).

Example Successive zoom of particles on surface of turbulent flow:
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In general D must be calculated numerically. As seen in Lecture 11,
strange attractors form in a stretching+folding process and show small-
scale filamentary structure. A simple estimate of D of a strange at-
tractor is unity (for the dimension along the filaments) plus the fractal
dimension of the pattern on a cross section orthogonal to the filaments.
Some mathematical idealisations of such cross-section patterns (e.g.
Cantor sets) have analytical expressions for the fractal dimension.

12.1 Box-counting dimension

One way to define the fractal dimensionD is the box-counting dimension.
It describes how space-filling a fractal is.

12.1.1 Regular shapes

Consider three sets in d = 2 dimensions.
Cover space by d-dimensional boxes with side length ε = 2−k.

Two points

Nbox(
1
2
) = 2 Nbox(ε) = 2

Nbox(
1
4
) = 2 independent of ε

Nbox(
1
8
) = 2 D0 = 0

...

Curve of length L

Nbox(
1
2
) = 4 Nbox(ε) ∼ L

ε

Nbox(
1
4
) = 8 for small ε

Nbox(
1
8
) = 14 D0 = 1
...

Area A

Nbox(
1
2
) = 6 Nbox(ε) ∼ A

ε2

Nbox(
1
4
) = 14 for small ε

Nbox(
1
8
) = 37 D0 = 2
...
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Let Nbox(ε) = number of boxes with side length ε required to cover
the set. Then

Nbox(ε) ∼ A0ε
−D0 for small ε

where A0 is some constant and D0 is the dimension of the object.
Equivalently

lnNbox(ε) ∼ lnA0 + D0 ln(1/ε)

⇒ D0 = lim
ε→0

lnNbox(ε)− lnA0

ln(1/ε)
= lim

ε→0

lnNbox(ε)

ln(1/ε)
(1)

D0 is the box-counting dimension of a set.
For the three cases above D0 equals the dimensionality of the sets.

12.1.2 Example: Middle-third Cantor set

Construction by successive generations Sn:

Iterate to get generation n. The Cantor set is the geometrical object
with generation n = ∞. The total length of generation n is (2/3)n,
which goes to zero as n → ∞, the set has zero (Lebesgue) measure.
At the same time, it is possible to show that the set consists of an
uncountably infinite amount of points (Strogatz 11.2).
Now calculate the box-counting dimension using boxes (sticks) of
length εn = 3−n to cover the set.
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The number of boxes needed to cover the set is: Nbox(εn) = 2n. The
box-counting dimension becomes

D0 = lim
ε→0

lnNbox(ε)

ln(1/ε)
= lim

n→∞

ln 2n

ln 3n
=

ln 2

ln 3
≈ 0.6309

The dimension lies somewhere between 0 and 1 (fatter than points,
thinner than a line). This result is independent of the choice of
gridding (ε = 3−n), other choices give the same dimension. A set
with non-integer dimension is called a fractal. The cantor set is
self-similar: magnification of small pieces reproduce the original set
excatly. Fractals are scale-invariant: successive magnifications reveal
more and more structure that is statistically self-similar without res-
olution limit.
Fractals (but with some small-scale limit) are common in nature:
Brownian motion, particle aggregation, networks of rivers and tree
branches, coastlines, etc. and they are also common in scale-free net-
works: WWW, social networks, human brain, metabolic network, pro-
tein interaction network, etc. Fractals have applications in for example
data compression, pattern generation, and fractal antenna.
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12.1.3 Example: Koch curve

Length of curve: (4/3)n →∞ as n→∞ (infinite length between any
two points on curve).
Use sticks of length εn = 3−n ⇒ Nbox(ε) = 4n. Dimension

D0 = lim
n→∞

ln 4n

ln 3n
= ln 4/ ln 3 ≈ 1.2619

12.1.4 Asymmetric Cantor set

Construct Cantor set by removing second quarter (instead of mid
third)

Use εn = 4−n. From the symmetric Cantor set one could assume
Nbox(εn) = 3n, BUT we need to iterate until largest connected inter-
val is smaller than εn = 4−n (the set is defined as n→∞).
To show that Nbox(εn) 6= 3n, cover successive generations of the asym-
metric Cantor set.
Case n = 1:
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⇒ Nbox(ε = 1/4) = 3.
Case n = 2:

⇒ Nbox(ε = 1/42) = 8, i.e. Nbox(ε = 1/42) 6= 3n = 9.
This is a new type of fractal: The asymmetric Cantor set is con-
structed from two relative length scales λa = 1/4 and λb = 1/2

Let

Nbox(ε) = Na(ε) + Nb(ε)

Na(ε) = Number of boxes of size ε needed to cover λa
Nb(ε) = Number of boxes of size ε needed to cover λb

Self-similarity ⇒

N(ε/λa) = Na(ε)

N(ε/λb) = Nb(ε)

- ‘To cover strip λa with boxes of size ε is like covering full unit interval
with boxes of size ε/λa’
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D0 is defined as the scaling exponent N(ε) = Aε−D0. ⇒

N(ε)︸ ︷︷ ︸
Aε−D0

= Na(ε)︸ ︷︷ ︸
N(ε/λa)

+Nb(ε)︸ ︷︷ ︸
N(ε/λb)

⇒ Aε−D0 = A(ε/λa)
−D0 + A(ε/λb)

−D0

⇒ 1 = (1/λa)
−D0 + (1/λb)

−D0

⇒ 1 = λD0
a + λD0

b

Here λa = 1/4 and λb = 1/2

1 =

(
1

4

)D0

+

(
1

2

)D0

=

(
1

2D0

)2

+
1

2D0

[Quadratic equation in x = 1/2D0]

1

2D0
=
−1 +

(−)

√
5

2

D0 = −
ln
(
−1+

√
5

2

)
ln 2

≈ 0.69

c.f. the naive result ln 3/ ln 4 ≈ 0.79.
Also c.f. symmetric middle-third case λa = λb = 1/3:

1 = (1/3)D0 + (1/3)D0 = 2(1/3)D0

⇒ D0 =
ln(1/2)

ln(1/3)
=

ln 2

ln 3

as before.

12.1.5 Numerical evaluation of D0

In order to numerically evaluate D0 for a set of numerically evaluated
points on a fractal, it is not enough to simply evaluate Eq. (1) for a
small value of ε:

• We do not know if we have enough points in our data to resolve
the chosen value of ε.
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• Even if ε is small, there is an unknown coefficient in the scaling
law:

Nbox(ε) = A0︸︷︷︸
Unknown

ε−D0

⇒ lnNbox(ε) = lnA0 + D0 ln(1/ε)→ D0 ln(1/ε) as ε→ 0

The limit ε → 0 is slow because of the logarithm. Since we do
not know beforehand how large A0 is, we do not know how small
ε needs to be to be able to neglect the contribution lnA0.

Instead, use slope of curve lnNbox(ε) against ln ε (A0 drops out):

D0 = −∆ lnNbox(ε)

∆ ln ε

12.1.6 Additional comments

• Box-counting dimension quantifies how space-filling a fractal is

• Straightforward implementation, but limited by memory to store
number of visits to each box.

• A minimal cover is in general hard to find, but a uniform grid
gives the same dimension
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12.2 Generalized dimension sprectrum

The box-counting dimension weighs all boxes equal. This is fine for
ideal mathematical fractals (Cantor set, Koch curve, etc.). But many
strange attractors show fluctuations in the occupation number of the
boxes: often a small percentage of boxes are visited frequently, while
most boxes are only sparsely visited. Depending on our purpose we
may be interested in boxes where trajectories spend more or less time.
We therefore introduce a generalized dimension Dq which weigh boxes
differently depending on how large fraction of points they contain.

Let Npoint be a large number of points, ideally Npoint → ∞, on a
fractal set or fractal attractor. Label ε-sized boxes that contain at
least one point by k = 1, . . . , Nbox(ε). Let Nk(ε) be the number of
points in (point-containing) box k. Let pk(ε) = Nk(ε)/Npoint be the
fraction of points in box k. Check normalisation:

Nbox∑
k=1

pk =
1

Npoint

Nbox∑
k=1

Nk =
1

Npoint

Npoint = 1 .

Generalized dimension Dq (Rényi dimension spectrum)

Dq ≡
1

1− q
lim
ε→0

ln I(q, ε)

ln(1/ε)
(2)

with a real parameter q and

I(q, ε) =
Nbox∑
k=1

pqk(ε) .

It is possible to show that Dq is a non-growing function with q, i.e.
Dq ≥ Dq′ if q < q′. Typical picture:
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The difference between D−∞ and D∞ determines how large the vari-
ations of the fractal dimension are on the strange attractor.

• If D−∞ = D∞, i.e. a flat Dq spectrum we have a monofractal.

• If Dq is not constant with respect to q we have a multifractal,
i.e. points are non-uniformly distributed on the fractal.

The significance of q can be summarized as:

• If q > 0 contributions to I(q, ε) from regions of high density
on the attractor are amplified compared to low-density regions.
Dq with large q therefore characterises clustering of high-density
regions.

• When q < 0 the opposite is true: low-density regions dominate
contributions to I(q, ε) and Dq

• When q = 0 density variations are neglected. In this limit we
recover the box-counting dimension (Eq. (1)):

D0 =
1

1
lim
ε→0

ln I(0, ε)

ln(1/ε)
= lim

ε→0

ln
(∑Nbox

k=1 pk(ε)
0
)

ln(1/ε)
= lim

ε→0

ln(Nbox)

ln(1/ε)
.

Monofractal Every point on attractor is equally likely ⇒ Dq =
D0 = const. Check:

Dq =
1

1− q
lim
ε→0

ln
(∑Nbox

k=1 p
q
k

)
ln(1/ε)

=

‘Every point equally likely’ ⇒ pk ∼ 1/Nbox︸ ︷︷ ︸
if ε→0

and
∑Nbox

k=1 = Nbox


=

1

1− q
lim
ε→0

ln(Nbox(1/Nbox)
q)

ln(1/ε)

=
1

1− q
lim
ε→0

ln(N 1−q
box )

ln(1/ε)
= lim

ε→0

ln(Nbox)

ln(1/ε)
= D0
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12.3 Information dimension

Special case q = 1 in Eq. (2): Expression for D1 diverges ⇒ take
limit. First expand ln I(q, ε) around q = 1

ln I(q, ε) = ln

(
Nbox∑
k=1

pqk

)
[
Use: pqk = pkp

q−1
k = pk exp((q − 1) ln pk) ≈ pk(1 + (q − 1) ln pk) for q ≈ 1

]
= ln

(
Nbox∑
k=1

pk +
Nbox∑
k=1

pk(q − 1) ln pk)

)
[

Use norm:
Nbox∑
k=1

pk = 1 and expand ln(1 + (q − 1)A) ≈ (q − 1)A for q ≈ 1

]

= (q − 1)
Nbox∑
k=1

pk ln pk .

We get

lim
q→1

Dq = lim
q→1

lim
ε→0

1

1− q
ln (I(q, ε))

ln(1/ε)

= lim
q→1

lim
ε→0

1

1− q
(q − 1)

∑Nbox

k=1 pk ln pk
ln(1/ε)

= lim
ε→0

∑Nbox

k=1 pk ln pk
ln(ε)

.

D1 is referred to as the information dimension.

12.3.1 Shannon entropy

The quantity S = −
∑

k pk(ε) ln pk(ε) = −〈ln p(ε)〉 is the Shannon
entropy. Given an experiment with r possible outcomes, with prob-
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abilities p1, p2, . . . , pr,
∑r

k=1 pk = 1, the Shannon entropy is

S = −
r∑

k=1

pk ln pk ,

with pk ln pk = 0 if pk = 0.
Simplest case: pi = 1 if k = i and 0 otherwise ⇒ S = 0.
Case of maximum uncertainty: pk = 1/r ⇒ S = ln r.
In general 0 ≤ S ≤ ln r, the closer S is to ln r the more uncertain
the outcome of an experiment is. For the information dimension: r =
Nbox and S quantifies the amount of (Shannon) information needed
to describe the content of the boxes for a given accuracy ε. The
information dimension tells how this amount of information scales
with resolution ε, S(ε) ∼ −D1 ln ε.

12.3.2 Kaplan-Yorke conjecture

It can be shown that almost generally the Lyapunov dimension DL

(Lecture 11) is equal to D1 in Eq. (2), DL = D1 (but it is possible to
construct counterexamples ).
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12.4 Correlation dimension

Special case q = 2 is called the ‘correlation dimension’. Rewrite

I(q = 2, ε) =
Nbox∑
k=1

p2k =
Nbox∑
k=1

(
Nk

Npoint

)2

=
1

N 2
point

Nbox∑
k=1

N 2
k

=
1

N 2
point

Nbox∑
k=1

Nk

Npoint∑
α=1

{
1 if xα ∈ k:th box
0 otherwise

=
1

N 2
point

Nbox∑
k=1

Npoint∑
β=1

Npoint∑
α=1

{
1 if xα &xβ ∈ k:th box
0 otherwise

[α and β runs over all particles ⇒ redundant to sum over boxes]

=
1

N 2
point

Npoint∑
β=1

Npoint∑
α=1

{
1 if xα &xβ ∈ same box
0 otherwise

∼ 1

N 2
point

Npoint∑
β=1

Npoint∑
α=1

{
1 if xβwithin distance ε from xα
0 otherwise

=
1

N 2
point

Npoint∑
β=1

Npoint∑
α=1

Θ(ε− |xα − xβ|)

This is the correlation sum. It describes the probability P (|x1−x2| <
ε) to find two points x1 and x2 on the attractor within distance ε.
The correlation dimension DC can be defined as

D2 =
1

1− 2
lim
ε→0

ln (I(q = 2, ε))

ln(1/ε)

= lim
ε→0

ln (P (|x1 − x2| < ε))

ln ε
≡ DC

i.e. DC is defined from the scaling P (|x1 − x2| < ε) ∼ εDC.
N.B. D2 is often easier to evaluate using the correlation sum than from
box-counting. It is also what you typically measure in experiments.

Similarly Dn with n = 2, 3, 4, . . . describes scaling of probability to
find n particles within separation ε.
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