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13 Transitions from order to chaos

This lecture is mainly based on the books From simple models to
complex systems by M. Cencini et al. and Chaos In Dynamical
Systems by E. Ott, and on Chapter 10 in Stogatz.

There are several ways in which regular dynamics (stable fixed
points or periodic/quasiperiodic motion) transforms into chaos as some
system parameter r is changed. The transition is very different in dis-
sipative systems and in Hamiltonian systems.

13.1 Transition to chaos in dissipative systems

In numerical simulations and in experiments it is observed that the
transition from regular motion to chaos in dissipative systems always
pass through a strange attractor of low fractal dimension, before po-
tential attractors of higher fractal dimension are reached. Below a
few mechanisms for the transition from regular dynamics to strange
attractors of low dimension are summarized.

13.1.1 Intermittency transition (Pomeau-Manneville)

Fixed point or periodic orbit becomes unstable at a single bifurcation
r1, leading to chaos characterized by intermittency.

Intermittency Nearly regular motion interrupted by occasional short
irregular outbursts at irregular time intervals. As control parameter
is increased, the bursts become more and more frequent until system
becomes fully chaotic.
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Explanation Just after the bifurcation (r > r1 but r ≈ r1) the
system has bottlenecks where the dynamics is regular (ghost of fixed
point, or weakly unstable periodic orbit or fixed point). After leaving
a bottleneck the dynamics becomes irregular (intermittent outburst)
until a new bottleneck is reached.

This often occurs in systems with saddle-node bifurcations between
cycles: as the stable periodic orbit disappears in a saddle-node bifur-
cation a bottleneck is formed due to the slow dynamics close to the
former limit cycle. In these systems the average time of regular mo-
tion is of order 1/

√
r (the time to pass the ghost of a saddle-node, see

Lecture 2).
The intermittency bifurcation is classified in three types depending

on how the stable attractor becomes unstable:
Type I Saddle-node bifurcation
Type II Subcritical Hopf bifurcation (stable fixed point and unstable
periodic orbit merge into an unstable spiral)
Type III Subcritical pitchfork bifurcation

The intermittency transition can for example be found in Lorentz
equations and some examples where it is found experimentally are in
fluid flows, BZ-reaction, and driven non-linear semiconductors.

13.1.2 Ruelle-Takens

Typical example Transition from laminar to turbulent flow as the
Reynolds number r (dimensionless flow speed) is increased, for exam-
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ple the water stream from a faucet flows regularly at small flow speeds
and irregular (turbulent) for larger speeds.

Transition to chaos by a sequence of three bifurcations r1, r2, r3:

r1: Fixed point (constant flow velocity) to limit cycle with single fre-
quency (supercritical Hopf bifurcation)
r2: The limit cycle obtains two frequencies (periodic|quasiperiodic)
r3: Chaos with strange attractor (Ruelle-Takens showed that periodic
orbits with three frequencies are structurally unstable, i.e. extremely
unlikely to be observed in real-world systems)

The Ruelle-Takens transition are experimentally found in various
fluid systems.

13.1.3 Period-doubling bifurcation (Feigenbaum)

Example: Periodically driven pendulum Consider a pendulum
with a periodic torque in dimensionless units (c.f. Lecture 9)

θ̈ = − αθ̇︸︷︷︸
damping

− sin θ︸︷︷︸
gravity

+ I cos(ωFt)︸ ︷︷ ︸
periodic forcing, angular frequency ωF

Write as an autonomous dynamical system with y = θ̇ and τ = t

θ̇ = y

ẏ = −αy − sin θ + I cos(ωFτ )

τ̇ = 1
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Trajectories with α = 1/2, ωF = 2/3 (period time TF = 2π/ωF) for
some values of I projected on the θ-y plane for large times (neglecting
an initial transient):

I = 0 I = 0.2 I = 0.9

I = 1.07 I = 1.08 I = 1.15

I = 1.35 I = 1.47 I = 1.5

Note that the dynamics is three-dimensional:

• Trajectories are allowed to cross in the projection.

• Stable, periodic trajectories in the projection are not limit cycles
in the three-dimensional dynamics (the time coordinate is not
periodic).

Upon changing I , keeping α and ωF fixed, we observe the following:
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• When I = 0 trajectories are attracted to the stable fixed point
at θ = y = 0.

• When I = 0.2, linearisation theory applies and the system can
be solved analytically: For large times the solution takes the
form θ(t) = A(ωF) cos(ωFt+φ(ωF)), i.e. the pendulum oscillates
with the frequency of the applied forcing. The amplitude A
and phase shift φ depend on the applied frequency ωF and the
eigenfrequency ω0 (imaginary part of the eigenvalue at θ = y = 0
when I = 0) of the pendulum. Period time TF.

• When I = 0.9 oscillations are larger and the linearized theory
no longer applies. Period time TF.

• When I = 1.07 a period-doubling bifurcation has occurred and
the pendulum oscillates with double period time 2TF.

• When I = 1.08 another period-doubling bifurcation has oc-
curred (see inset for zoom-in), pendulum oscillates with quadru-
ple period time 4TF.

• As I increases to around I = 1.15 period-doubling bifurcations
happens at closer and closer values of the bifurcation parameter
I . Eventually, the period becomes infinitely long at a finite
bifurcation value (close to I = 1.15). The projected trajectory
has an infinite period, i.e. it is aperiodic and the motion is
chaotic. If we let t → ∞ the projection plot would become
uniformly black within the reachable part of phase space.

• When I = 1.35 a stable window appears. Period time TF.

• When I = 1.45 period-doubling bifurcation in the stable win-
dow. Period time 2TF.

• When I = 1.47 period-doubling bifurcation in the stable win-
dow. Period time 4TF.

• When I = 1.5 close to chaotic again
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The behavior observed for the driven pendulum outlines a general
period-doubling transition to chaos of periodic orbits (to have a period-
doubling requires d > 2, otherwise trajectories cross).
The period-doubling cascade consists of an infinite sequence of bifur-
cations r1, r2, . . . , r∞ where period time doubles. Assume the system
has a periodic orbit in the form of a loop for r < r1.
At r = r1 this bifurcates to a double loop (periodic orbit of period 2).
At r = r2 the periodic orbit bifurcates to a periodic orbit of period 4.
At subsequent, increasingly denser values of ri, the periodic orbit bi-
furcates into periodic orbits of growing period 2i.
Finally, as r → r∞ (r∞ can be finite because bifurcation values ri
becomes denser with increasing i) the dynamics becomes aperiodic
(chaotic).

For values of r larger than r∞ the system typically exhibit chaos
with ‘windows’ of periodic motion (c.f. the behaviour of the driven
pendulum with I > 1.15 and I ≈ 1.35).

The period-doubling bifurcation has been observed experimentally
in for example lasers, plasmas, BZ reaction, and in fluid dynamics.

Universality It is possible to show that for certain subclasses of
systems (systems that can be projected on a unimodal one-dimensional
map) the period-doubling is universal. For example, for ri with large
i the difference between bifurcations shrinks with a constant factor
(Feigenbaum constant)

δ = lim
n→∞

rn − rn−1
rn+1 − rn

= 4.669 . . .

This is a constant of nature, it is independent of the form of the system.
This universality is easier to discuss in one-dimensional maps, and

is discussed further in Computational Biology 1.
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13.2 Transition to chaos in Hamiltonian systems

Hamiltonian systems were introduced in Lecture 5: Newtons law F =
mẍ without friction written on dynamical-system form:

ẋ =
∂H

∂p

ṗ = −∂H
∂x

.

(1)

with position x, momentum p = mẋ, and energy function

H(x,p) =
|p|2

2m︸︷︷︸
kinetic energy

+ V (x)︸ ︷︷ ︸
potential energy

.

In Lecture 5 it was shown that Hamiltonian systems (1) are volume
conserving, ∇ · f = 0, and that energy E = H(x,p) is conserved.

The Hamiltonian flow can be written more compactly

ξ̇ = S
∂H

∂ξ
≡ f , (2)

with

ξ ≡ (x,p) , S ≡
(
ON×N IN×N
−IN×N ON×N

)
,

where S is a ‘symplectic matrix’.

13.2.1 Integrable systems

Since no attractors can exist in volume-conserving systems, trajecto-
ries are either periodic|quasiperiodic (integrable systems) or aperiodic
(non-integrable, chaotic systems). The periodic|quasiperiodic motion
in integrable systems becomes apparent in ‘action-angle coordinates’.
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13.2.2 Action-angle coordinates

Consider the case of one spatial dimensionH(x, p). Bounded trajecto-
ries are periodic orbits (isolines of constant energy). Make a canonical
(preserves the form in Eq. (2), and thus area conservation) change of
coordinates to ‘action’ variable I

I =
1

2π

∮
dx p

and a so far unspecified angle variable φ. The integral runs over
a periodic orbit. Energy conservation H(x, p) = E ⇒ p can be
rewritten in terms of x and E ⇒ I depends on E only. Consequently
I(t) = I(0) = const.

Another consequence: Since I = f (E) we have H = E = f−1(I),
i.e. H is a function of I only (not φ) in the new coordinates.

To preserve the form Eq. (2) we have (these equations define φ)

φ̇ =
∂H(I)

∂I
≡ ω(I)

İ = −∂H(I)

∂φ
= 0

with solution I(t) = I(0) and φ(t) = φ(0) + ω(I(0))t.
I selects a periodic trajectory with angular frequency ω. Angle

variables φ are useful for finding frequencies of rotations or librations
without solving the equations of motion.

Example: Harmonic oscillator HamiltonianH(x, p) = p2/(2m)+
mω2

0x
2/2 = E. This is an equation for elliptic orbits with axes of mag-

nitude
√

2mE and
√

2E/(mω2
0). The action coordinate becomes

I =
1

2π

∮
C

dx p
[
Green’s theorem:

∮
C(Ldx + Mdp) =

∫ ∫
S(∂M

∂x
− ∂L

∂p
)dxdp

]
= − 1

2π

∫ ∫
S

dxdp [Harmonic oscillator has clockwise C ⇒ sign(S) = −1]

=
Area of ellipse

2π
=

1

2

√
2mE

√
2E

mω2
0

=
E

ω0

.
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I is a function of E only as expected. It follows that H = E = ω0I
and φ̇ = H ′(I) = ω0 is the angular frequency.

Higher dimension Hamiltonian systems in one spatial dimension
are examples of integrable systems. The dynamics can be solved for-
mally for all times in terms of I and φ (while the integral in I is not
always possible to evaluate explicitly).

The notion of integrability is generalised to higher dimensions d if
there exists d constants of motion C(x,p) such that

Ċ = ẋ
∂C

∂x
+ ṗ

∂C

∂p

=
∂H

∂p

∂C

∂x
− ∂H

∂x

∂C

∂p
≡ {C,H} = 0 .

If the Hamiltonian system has d independent constants of motion
(such as energy, momentum in each coordinate, angular momentum
etc.) it is integrable. Solutions are constrained to a d-dimensional
hypersurface defined by Ci(x,p) = const., i = 1, . . . , d. The solu-
tions are d-dimensional non-intersecting tori . In terms of action-angle
coordinates, the equations of motion are

φ̇ =
∂H(I)

∂I
≡ ω(I) = constant vector

İ = 0 .

When d = 2 the dynamics of the angle variables is identical to that
of uncoupled oscillators on a torus (discussed in Lecture 9).

Using the constant action variables Ii as the torus radii, non-intersecting
solutions for all initial conditions can be visualized:
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The motion show periodicity or quasiperiodicity depending on whether
the ratio ω1(I)/ω2(I) is rational or not, i.e. if there exists integers k
and l such that kω1 + lω2 = 0, then trajectories close into periodic
orbits. In the illustration above, trajectory (b) is periodic (rational
torus) and trajectories (a) and (c) are quasiperiodic (irrational torus).

13.2.3 Perturbation of a system that remains integrable

In few exceptional cases the dynamics of an integrable Hamiltonian
system remains integrable after a small perturbation.

Example: Circular billiards Consider a circular billiard (dimen-
sionality n = 4, i.e. two spatial dimensions). As we discussed in
Lecture 9, this is an example of an integrable system because it has
two constants of motion: energy E = p2/(2m) and angular momen-
tum with respect to the circle center.

Conservation of angular momentum The angular momen-
tum w.r.t. the center is: L = |r||p| sinα, where α is the angle between
r and p. For the circular billiard, the reflection angle χ is the same
for any collision.

Before the collision with the boundary, the angle between r and pi
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equals the reflection angle, α = χ, and after the collision the angle
between r and pf are related by α = π−χ. Since sinχ = sin(π−χ)
the angular momentum is conserved at collisions. In addition, uniform
motion has constant angular momentum and angular momentum is
therefore a conserved quantity.

One example of a periodic orbit in the circular billiard is shown
below (left):

To visualize the dynamics, it is convenient to sample the angle ϕ
and angular momentum L(ϕ) at collisions, neglecting the intermedi-
ate motion. To the right, the dynamics is illustrated by plotting ϕ
and L(ϕ) upon collisions with the boundary. Thin lines show irra-
tional tori and the thick line shows the rational tori corresponding to
the periodic motion in the left panel (for each initial condition α we
obtain a discrete set of two points, averaging over initial conditions
we obtain the continuous line). Due to circular symmetry, there is a
continuous family of periodic orbits, determined by parameter α (left).

After a small perturbation as shown below (left), only two isolated
periodic orbits remain:
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Thus, a small perturbation breaks up the rational torus into one
(marginally) stable (small perturbations do not grow) and one un-
stable (small perturbations grow) periodic orbit. Mathematically, the
system in the vicinity of the new fixed points can be described by the
Hamiltonian of an ideal pendulum. The system is integrable because
there exists two sets of constants of motion, one inside the separatri-
ces (heteroclinic orbits between saddle points) and one outside. This
follows from the fact that the stable and unstable manifolds of the
saddle points join smoothly. As we shall see in the next section, this
is not the generic case,

If the system is perturbed slightly more, other rational tori break
up, possibly one of those created around the new stable periodic or-
bit. In the latter case a chain of integrable islands (which locally look
like phase-space pictures of the pendulum) is created (secondary res-
onance):

Under stronger perturbations, higher-order resonances appear, cre-
ating a hierarchy of island chains (nested tori).
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Two important observations

1. KAM theorem Tori with rational ω1/ω2 breaks up first. Tori
with strongly irrational ω1/ω2 break up last (KAM tori). Any
real quotient ω1/ω2 can be approximated by a continued fraction

ω1

ω2

= a1 +
1

a2 + 1
a3+

1
a4+...

with a sequence an with n = 1, 2, . . . . The continued fraction
converge quicker the faster the coefficients in the sequence an
grow. Strongly irrational ω1/ω2 have sequences an that grow
slowly. The limiting case of a non-growing (constant) sequence
an with an = 1 for all n gives the golden ratio G = (

√
5 + 1)/2.

Tori with ω1/ω2 = G± k with k an integer are the last ones to
break up (KAM tori).

2. Poincaré-Birchoff theorem When a torus of rational ω1/ω2

breaks up, an equal number of (marginally) stable and unsta-
ble fixed points appear. Around the (marginally) stable fixed
points, new resonant tori are formed that generates a new se-
quence of (marginally) stable and unstable fixed points appear.
Iterating gives a self-similar structure of fixed points around each
(marginally) stable fixed point (regular isalnds).

13.2.4 Transition to chaos

In the example for the circular billiard above, chains of integrable is-
lands are generated when rational tori break up. Locally the dynamics
can be described by the Hamiltonian of a pendulum. This is a special
case, more generally integrability is destroyed by small perturbations
of Hamiltonian systems. Typically the manifolds of the newly created
unstable fixed points do not join smoothly in heteroclinic trajecto-
ries as for the circular billiard (left), but rather intersect transversally
(right):
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Note that the plotted dynamics is projected (e.g. by plotting one com-
ponent of position and momentum at regular time intervals), allowing
the manifolds to cross. It is possible to show that, under quite gen-
eral conditions, the manifolds of the projected dynamics will intersect
an infinite number of times if they intersect once, similar to the right
panel above. This means that he manifolds become more and more in-
tricate closer to the saddle and a thin band of chaotic motion is formed:

The band is bounded by KAM tori that are more resistent to pertur-
bations. If the perturbation is increased, an infinite hierarchy of bands
of chaotic motion is created (similar to the hierarchy of islands for the
circular billiard). When perturbation is strong enough also KAM tori
break up and global chaotic motion is obtained (close inspection on
small scales often reveals tiny integrable islands).

The transition to chaos outlined above is valid in two spatial di-
mensions. In higher dimensions the chaotic regions are no longer
sandwiched between remaining KAM tori, allowing chaotic trajecto-
ries of slightly perturbed systems to wander off in phase space (Arnold
diffusion).
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