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2 Bifurcations and catastrophes
(Strogatz 3)

A bifurcation is a qualitative change in the dynamics (for example
creation/annihilation or change in stability of fixed points) as a system
parameter is varied. A bifurcation point is the value of the parameter
where the bifurcation occurs.

2.1 Saddle-node bifurcation

Consider the system

ẋ = r + x2

for negative, zero, and positive values of r:

r < 0 r = 0 r > 0
As the bifurcation parameter r passes the bifurcation point rc, two
fixed points (one unstable and one stable) merge and disappear:

This is a bifurcation diagram, i.e. a plot of fixed points against the
bifurcation parameter (often plotted without the blue flow). In bi-
furcation diagrams, solid lines denote stable fixed points and dashed
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lines denote unstable ones. The bifurcation at r = 0 is a saddle-node
bifurcation (this name is explained in the lecture on bifurcations in
higher dimensions). Saddle-node bifurcations is the typical mecha-
nism for creation|annihilation of fixed points.

2.2 Analytical analysis

The geometrical approach considered so far gives the qualitative be-
haviour of the dynamics. To get more quantitative predictions, we
consider analytical approaches.

2.2.1 Linear stability analysis

Consider general flow, ẋ = f (x), with a fixed point x = x∗: f (x∗) = 0.
A small deviation η(t) = x(t) − x∗ from the fixed point x∗ evolves
according to

η̇ = ẋ− d

dt
x∗ = ẋ = f (x)

Series expand the flow around the fixed point:

η̇ = f (x) = f (x∗)︸ ︷︷ ︸
=0

+f ′(x∗) (x− x∗)︸ ︷︷ ︸
=η

+
1

2
f ′′(x∗) (x− x∗)2︸ ︷︷ ︸

=η2

+ . . .

≈ f ′(x∗)η

Solution:

η = η0e
f ′(x∗)t

This is the general form of the solution close to an isolated fixed point.
λ = f ′(x∗) is the stability exponent (a constant number);
1/|λ| is the characteristic time scale of the solution close to x∗ (stability
time). Note that when λ < 0 the deviation from the fixed point
decreases exponentially fast, but the fixed point is not reached (η = 0)
in a finite time.
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For the saddle-node bifurcation above we have f (x) = r + x2 and
f ′(x) = 2x:
Parameter range Fixed points Stability exponents

r < 0
x∗1 = −

√
−r λ1 = −2

√
−r (stable)

x∗2 =
√
−r λ2 = 2

√
−r (unstable)

r = 0 x∗ = 0 λ = 0 (marginal)
r > 0 — —

Note: The direction of a flow on the line is uniquely determined every-
where by its fixed points. Bifurcations only occur when fixed points are
created, destroyed, or change stability. All these require f ′(x∗) = 0,
which is a necessary condition for bifurcations in flows on the line.

2.2.2 Normal form of saddle-node bifurcation

Consider a general flow with parameter r, ẋ(t) = f (x(t), r), undergo-
ing a saddle-node bifurcation at x = x∗ and r = rc:

For the saddle-node bifurcation to occur, f (x, r) must have two close-
by roots in x:
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f (x, r) always looks parabolic in x close to the bifurcation (universal
behavior).

At r = rc, x
∗ is a double root: f (x∗, rc) = ∂f

∂x
(x∗, rc) = 0.

Expand f around x∗ and rc to lowest contributing orders:

f (x, r) = f (x∗, rc)︸ ︷︷ ︸
=0

+
∂f

∂x
(x∗, rc)︸ ︷︷ ︸
=0

(x− x∗) +
∂f

∂r
(x∗, rc)(r − rc)

+
1

2

∂2f

∂2x
(x∗, rc)(x− x∗)2 + . . .

Introduce rescaled coordinates X = a(x− x∗) and R = b(r − rc)

Ẋ = aẋ =
a

b

∂f

∂r
(x∗, rc)R +

1

2a

∂2f

∂2x
(x∗, rc)X

2 + . . .

Choose a = 1
2
∂2f
∂2x

(x∗, rc), b = a∂f
∂r

(x∗, rc)

Ẋ = R + X2 + . . . (1)

i.e. a generic saddle-node bifurcation can be put on the form ẋ =
r + x2 close to the bifurcation point (provided ∂2f

∂2x
(x∗, rc) 6= 0 and

∂f
∂r

(x∗, rc) 6= 0).

Concept test 2.1: Normal form of saddle-node bifurcation
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2.2.3 Dynamics close to a saddle-node bifurcation

The normal forms of bifurcations are very useful in order to study
the dynamics close to a generic bifurcation of a given type. As an
example, we can use the universal dynamics in Eq. (1), ẋ = r + x2,
to study the behaviour close to any saddle-node bifurcation, r ≈ 0:

r < 0 r = 0 r > 0

Critical slowing down No fixed points exists after the saddle-node
bifurcation (r > 0), but the flow velocity must be small if r is small
and positive ⇒ Passage is slow. The time T it takes to pass the
bottleneck is obtained from:

dt =
dx

r + x2
⇒ T =

∫ T

0

dt =

∫ xT

x0

dx

r + x2
=

1√
r

[
atan

(
x√
r

)]xT
x0

Plotting T against xT with large negative x0 (to the left of the bot-
tleneck) gives:

For small values of r the time of passage is completely dominated by
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the contribution close to x = 0. If x0 < 0 and xT > 0 (on opposite
sides of the bottleneck) then T denotes the time of passage. For small
r we have T ∼ π

2
√
r

[sign(x)]
xT
x0

= π√
r
.

In conclusion, as r → 0 the time to pass the fixed point approaches
infinity as T ∼ 1/

√
r.

What about the case r < 0 (two fixed points)? Fixed points
at x∗ = ±

√
−r. Stability exponents

λ =
∂

∂x
[r + x2]

∣∣∣∣
x∗

= 2x∗ = ±2
√
−r

also become smaller as the bifurcation point r = 0 is approached, i.e.
the dynamics in the vicinity of the fixed points is slow with a time
scale ∼ 1/

√
−r.

Concept test 2.2 What about x→∞?

Final case, r = 0

ẋ = x2 .

x∗ = 0 is a marginal fixed point (f ′(x∗) = 0) ⇒ linear stability
analysis is not enough to determine stability. Geometric approach:

Exact solution by separation of variables:

1

x2
dx = dt

Integrate from t = 0 to t (x goes from x(0) = x0 to x(t))

1

x0

− 1

x(t)
= t ⇒ x(t) =

1
1
x0
− t

=
x0

1− x0t
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• Starting at x0 > 0, it takes a finite time, t = 1/x0, to reach
x = +∞.

• When t > 1/x0 the trajectory reappears from x = −∞ and
eventually approaches x = 0 from the left.

• It takes infinite time to reach x = 0.

The jump from +∞ to −∞ we could not have been predicted by
the geometrical approach alone! (Note: We need to be careful in the
interpretation of this result: depending on the physical system we
want to model, the behaviour after +∞ has been reached may be
undefined.)

2.3 Transcritical bifurcation

A transcritical bifurcation occurs when a fixed point exists for all val-
ues of a bifurcation parameter r surrounding rc, but changes stability
as r passes rc. As for the saddle-node bifurcation, it is possible to
derive a normal form valid close to any transcritical bifurcation:

ẋ = x(r − x) (2)

r < 0 r = 0 r > 0
The normal form has a fixed point at x∗ = 0 for all values of r, but
stability changes as r passes the bifurcation point rc = 0:
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2.3.1 Example: Logistic growth

Let N(t) be the population size of a species at time t. Assume that
N changes due to births or deaths (no migration). Linear model
(Malthus 1798):

Ṅ = bN︸︷︷︸
b=per capita birth rate (b > 0)

− dN︸︷︷︸
d=per capita death rate (d > 0)

Solution: N(t) = N(0)ert, with per capita growth rate r ≡ b − d.
If r > 0 the population grows without bound. This is unrealistic,
we expect population sizes to be limited due to a finite amount of
resources and space. One way to model this limitation is to modify
the per capita growth rate to decrease linearly with population size,

r → r(1−N/K) ,

with a positive carrying capacity K. This gives a non-linear growth
model

Ṅ = Nr(1−N/K) .

This is the Logistic equation (Verhulst 1836). The system has two
fixed points N ∗1 = 0 and N ∗2 = K.
Introducing the rescaled variable x = rN/K we obtain the normal
form for transcritical bifurcations (2):

ẋ =
dx

dN
Ṅ =

r

K
Nr(1−N/K) = x(r − x) .

Following the corresponding bifurcation diagram above, we have:
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• For r < rc = 0 the birth rate is smaller than the death rate and
the population goes extinct for any initial population size (the
fixed point x∗1 = 0 is stable and x∗2 = r is negative (unphysical)).

• For r > rc = 0 the population approaches the maximal sustain-
able limit for any initial population size (the fixed point x∗1 = 0
is unstable and x∗2 = r is positive and stable).

2.4 Pitchfork bifurcation

In a pitchfork bifurcation one fixed point splits into three.
The pitchfork bifurcation can be either supercritical or subcritical.

2.4.1 Supercritical pitchfork bifurcation

Normal form of supercritical pitchfork bifurcations:

ẋ = x(r − x2)

r < 0 r = 0 r > 0
Bifurcation diagram:
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Example: Buckling of elastic ruler It may seem unlikely that
three fixed points join at one point, but this often happens in systems
with mirror symmetry (equations invariant under x→ −x).

As an example, consider an up-standing perfectly mirror symmetric
elastic ruler with a weight applied from above. Let r be the the mass
of the weight and let x be the ‘buckling angle’:

The ruler can sustain a small weight r without deformation. If r is
increased above a threshold (the bifurcation point rc), the slightest
asymmetry in the applied mass causes the ruler to buckle in the direc-
tion determined by the asymmetry. When the mass is lightened, the
ruler moves back to its original state (x∗ = 0).

2.4.2 Imperfect bifurcation and catastrophes

If the symmetry of the ruler in the example above is not perfect, we
may obtain an imperfect bifurcation.

Here small initial buckling angles in either direction makes the ruler
buckle towards positive x. However, a large enough negative initial
buckling angle makes the ruler buckle in the opposite direction (lower
branch on the saddle-node bifurcation). Note that if the mass is slowly
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decreased from this state, the ruler makes a sudden switch to positive
x as r becomes smaller than the saddle-node bifurcation point. This
jump in the state of the system is a catastrophe (sudden change in
state). If r is once again increased, the ruler does not flip back to
negative x (hysteresis).

Cusp catastrophe Imperfect bifurcations are often described by
addition of an imperfection parameter h to the normal form. For the
supercritical pitchfork bifurcation we obtain:

ẋ = x(r − x2) + h .

This is a two-parameter problem. When the perturbation h is zero, the
normal form is reobtained. As discussed earlier, a necessary condition
for bifurcations of fixed points is that both f (x∗) = 0 and f ′(x∗) = 0.
The condition f ′(x∗) = 0 gives

0 =
∂

∂x
[x(r − x2) + h]|x=x∗ = r − 3(x∗)2

Inserting the solution x∗ = ±
√
r/3 into the condition f (x∗) = 0 gives

0 = ±
√
r

3

(
r −

[
±
√
r

3

]2)
+ h ⇒ h = ∓2

3
r

√
r

3

Thus, bifurcations involving at least two fixed points occur at curves
h = ∓2

3
r
√

r
3
:
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These curves separates regions with one fixed point from regions with
three fixed points. For the bifurcation to involve three fixed points
we must have a triple root, i.e. 0 = f ′′(x∗) = −6x∗. This condition
is only satisfied when r = h = 0. We can therefore conclude that
the bifurcations occurring along h = ∓2

3
r
√

r
3

with h 6= 0 involves two
fixed points that are created out of the blue (saddle-node bifurcations),
just as in the figure illustrating an imperfect bifurcation in example
with the ruler above.

The bifurcation curve above is an example of a cusp catastrophe
(named so because the two branches of saddle-node bifurcations meet
tangentially in a cusp (peak) at the origin). The bifurcation diagram
along constant r > 0 in the figure above is:

Assume that the system starts at the top fixed point with a large
value of h. When h is decreased, the system eventually moves over
the left saddle-node bifurcation point, hs, and makes a big jump to a
fixed point far away (a catastrophe). After the jump the system does
not revert back to the original fixed point by a small increase in h
(hysteresis). To move back to the original fixed point (remaining at
constant r) we must increase h beyond the right saddle point, where
a new jump occurs (forming a hysteresis loop).

Some examples on catastrophes:

• A sudden change in equilibrium could be catastrophic for build-
ings and other constructions.

• The problem of hysteresis could be catastrophic for ecological
systems: if the system makes a big jump to a new equilibrium
(for example due to human influence), it may be very hard to
restore the system to its original state due to hysteresis.
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• Models in behavioural sciences [Scientific American article by
Zeeman (1976)]

2.4.3 Subcritical pitchfork bifurcation

Normal form of subcritical pitchfork bifurcations:

ẋ = x(r + x2)

r < 0 r = 0 r > 0
Bifurcation diagram:

As for the supercritical case, we have a stable fixed point at x∗ = 0
for r < rc. When r passes rc there are no stable fixed points and a
small deviation from x = 0 grows to infinity in a finite time (blow-up
due to the cubic dynamics). Most physical systems have higher-order
non-linear corrections that counteract the blow-up (the pitchfork bi-
furcation happens locally at small x and the system may have other
fixed points at larger values of |x|). However, the system must make
a jump to the new fixed points making subcritical pitchfork bifurca-
tions potentially dangerous, similar to the catastrophes discussed in
Section 2.4.2.
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