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3 Linear 2D flows (Strogatz 5)

3.1 Example: Rigid pendulum in a viscous
medium

From Lecture 1:

θ̈ = −g
l

sin θ − γ

m
θ̇ . (1)

Consider small oscillations, sin θ ≈ θ and write as a dynamical system
with x = θ, y = θ̇

ẋ = y

ẏ = −g
l
x− γ

m
y

This is an example of a linear flow. It has a fixed point at x∗ = y∗ = 0.
As for the one-dimensional systems we do a geometrical visualisation
of a few representative trajectories (phase portrait) to understand the
dynamics close to the fixed point. The trajectories are obtained by
integration of the dynamical system starting from a suitable set of
initial positions (x0, y0) (or by using StreamPlot[] in Mathematica):
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γ = 0 γ > 0
Case γ = 0: the fixed point is surrounded by closed orbits in the
form of ellipses of infinite density (which orbit is chosen depends on
the initial condition). The fixed point is a center: nearby trajectories
neither approach nor depart from it.
Physical interpretation: The fixed point x∗ = y∗ = 0 corresponds to
the pendulum at rest, θ = θ̇ = 0. Non-zero initial conditions give
closed orbits, corresponding to oscillations in the underlying dynam-
ics [c.f. the ellipses formed by the explicit solution (x, y) = (θ, θ̇) =
A0(cosω0t + φ0,−ω0 sin(ω0t) + φ0) with ω0 =

√
g/l].

Case γ > 0: the fixed point is a stable spiral: trajectories spiral
inward towards the fixed point.
Physical interpretation: Due to the viscous damping (γ > 0) the
magnitude of oscillations decreases with time.

3.2 Classification of linear flows

Two-dimensional flows have several additional types of fixed points
compared to one-dimensional flows.
To find all possible types, consider a general linear flow (neglect con-
stant terms, since they correspond to constant shifts in x and y):

ẋ = ax + by

ẏ = cx + dy
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On matrix form:

ẋ = Ax , A =

(
a b
c d

)
. (2)

Assume A is diagonalizable, A = PDP−1 with eigenvalue matrix

D =

(
λ1 0
0 λ2

)
and P is a matrix spanned by the eigenvectors of A. Then Eq. (2) can
be written as

ẋ = PDP−1x

⇒ d

dt
[P−1x] = DP−1x︸ ︷︷ ︸

ξ

⇒ξ̇ = Dξ
⇒ξ(t) = (eλ1tξ1(0), eλ2tξ2(0))

The solution ξ(t) shows the prototypic behaviour of trajectories in
linear systems and is quantified by λ1 and λ2.
In the solution of the original problem, x(t) = Pξ(t), directions are
rotated and rescaled compared to ξ, but the topological properties
of the system are the same (structure of trajectories is rotated and
stretched but the relative order between trajectories remain intact).

The eigenvalues are determined by the characteristic equation 0 =
det(A− λI). For an n-dimensional matrix the characteristic equation
can be expressed in terms of its invariants trA, tr(A2), . . . , tr(An)
(Cayley-Hamilton).
For n = 2:

0 = det(A− λI) = λ2 − τλ + ∆

with

τ = trA

∆ =
(trA)2 − tr(A2)

2
= detA .
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The solutions of the characteristic equation are:

λ1 =
τ +
√
τ 2 − 4∆

2
, λ2 =

τ −
√
τ 2 − 4∆

2
(3)

Example: Rigid pendulum in a viscous medium

A =

(
0 1
−g

l
− γ

m

)
We have τ = − γ

m
, ∆ = g

l
. Case γ = 0:

λ1 = i

√
g

l

λ2 = −i

√
g

l

As we saw in Section 3.1 this fixed point is a center. The eigenvalues
are imaginary and the values correspond to the angular frequency
ω0 =

√
g/l.

Case γ > 0 but small:

λ1 =
−γ/m + i

√
4g/l− (γ/m)2

2
= − γ

2m
+ i

√
g

l
− γ2

2m2

λ2 =
−γ/m− i

√
4g/l− (γ/m)2

2
= − γ

2m
− i

√
g

l
− γ2

2m2

As we saw in Section 3.1 this fixed point is a stable spiral. It shows
oscillating behaviour with angular frequency

√
g/l − γ2/(2m2). The

negative real part of the eigenvalues decreases the magnitude of the
oscillations exponentially with time.

3.2.1 Different possibilities (the ’Zoo’ of fixed points)

The type of fixed point depends on the relative sign of Re[λ1] and
Re[λ2] and on whether Im[λ1,2] vanishes or not.
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All fixed points can be classified in five major types plus a number of
boundary cases.
Parameterizing the eigenvalues by ∆ and τ as in Eq. (3) we have (Fig.
5.2.8 in Strogatz):

3.2.2 Major types

Stable fixed points If Re[λ1] < 0 and Re[λ2] < 0 the fixed point is
stable: trajectories from all initial conditions move towards it. More-
over, if Im[λ] = 0 we have a stable node, otherwise a stable spiral.

Stable node Stable spiral
τ < 0 , 0 < ∆ < τ 2/4 τ < 0 , τ 2/4 < ∆

Unstable fixed points If Re[λ1] > 0 and Re[λ2] > 0 the fixed point
is unstable: trajectories from all initial conditions move away from it.
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Unstable node Unstable spiral
τ > 0 , 0 < ∆ < τ 2/4 τ > 0 , τ 2/4 < ∆

Saddle points (unstable) If Re[λ1] > 0 and Re[λ2] < 0 the fixed
point is a saddle point: it attracts in one direction and repels in an-
other.

Saddle point
∆ < 0

Side remark: the name of the fixed point is ‘saddle point’ or simply
‘saddle’. Not ‘saddle node’ as is common notation of the inexperienced
student. Saddle-node bifurcations refer to the bifurcation between two
fixed points: a saddle and a node.

Concept test 3.1: On the zoo

3.2.3 Boundary types

Centers When Re[λ1] = Re[λ2] = 0 and Im[λ 6= 0] we have a center
(encountered for the undamped pendulum).
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Center
τ = 0 , ∆ > 0

Degenerate case 1 When one eigenvalue, say λ1, is zero the system

ξ̇1 = 0

ξ̇2 = λ2ξ2

has a line of fixed points at ξ2 = 0.

Line of stable fixed points Line of unstable fixed points
∆ = 0 , τ < 0 ∆ = 0 , τ > 0

Degenerate case 2 When λ1 = λ2 (i.e. when τ 2 = 4∆) there are
two possibilities:

1. A is a multiple of the unit matrix, two (arbitrary) independent
eigenvectors exists. The fixed point is then a star
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Stable star Unstable star

A =

(
−|µ| 0

0 −|µ|

)
A =

(
|µ| 0
0 |µ|

)
2. A is not diagonalizable (there is no transformation P such that

D = P−1AP is diagonal). It is always possible to find a transfor-
mation to Jordan normal form:

P−1AP =

(
λ 1
0 λ

)

Eigenvalues λ1,2 =
2λ±
√

(2λ)2−4λ2

2
= λ. The matrix has only one

eigenvector: (
λ 1
0 λ

)(
1
0

)
=

(
λ
0

)
(
λ 1
0 λ

)(
0
1

)
=

(
1
0

)
The fixed point is then a degenerate node (borderline between
spiral and node)
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Stable degenerate node Unstable degenerate node
τ < 0, τ 2 = 4∆ τ > 0, τ 2 = 4∆

The non-diagonalizable case has a special solution:

ξ̇ =

(
λ 1
0 λ

)
ξ

⇒ ξ(t) = exp

[(
λ 1
0 λ

)
t

]
ξ(0) =

∞∑
i=0

1

i!

[(
λ 1
0 λ

)
t

]i
ξ(0) = . . .

where the sum can be evaluated by brute force. A more elegant
solution is to write(

λ 1
0 λ

)
= B + C , with B =

(
λ 0
0 λ

)
, C =

(
0 1
0 0

)
and use that B and C commute because B is a multiple of the
unit matrix:

[B,C] = BC− CB = λIC− λCI = λ(C− C) = 0 .

For commuting matrices we have eBeC = eB+C ⇒

ξ(t) = exp

[(
λ 0
0 λ

)
t +

(
0 1
0 0

)
t

]
ξ(0)

= exp

[(
λ 0
0 λ

)
t

]
exp

[(
0 1
0 0

)
t

]
ξ(0)

= eλt
(

1 t
0 1

)
ξ(0)
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where in the last step we used that

(
0 t
0 0

)i
=



(
1 0
0 1

)
if i = 0(

0 t
0 0

)
if i = 1(

0 0
0 0

)
if i = 2, 3, . . .

In conclusion, the solution of diagonalizable matrices can be
written on the form

ξ(t) =

(
eλ1t 0
0 eλ2t

)
ξ(0)

and the solution for non-diagonaliozable matrices can be written
on the form

ξ(t) = eλt
(

1 t
0 1

)
ξ(0)

under a suitable choice of basis.
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