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5 Closed orbits and limit cycles

In Lecture 4 we connected the local dynamics close to fixed points
in non-linear flows to the dynamics observed in linear flows. In this
lecture we consider non-local properties of the flow, such as closed
orbits and limit cycles.

As shown in the last lecture, non-linear terms may destroy the
structurally unstable closed orbits around centers. But in systems
with symmetry (conservative, volume conserving, inversion symmetry,
time-reversal symmetry) closed orbits around centers often become
structurally stable (insensitive to small perturbations of the flow).

5.1 Conservative systems

5.1.1 Hamiltonian systems

Newton’s law

F = ma = mẍ

If the force F is conservative (no friction), it can be written as the
negative gradient of a scalar potential V (x):

F = −∂V
∂x

.

Then Newton’s law can be written as the following dynamical system
(introduce momentum p ≡ mẋ):

ẋ =
p

m

ṗ = −∂V
∂x

.
(1)

A Hamiltonian dynamical system takes the form

ẋ =
∂H

∂p

ṗ = −∂H
∂x
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for some function H . In the case of Newton’s law above, choose H to
be the Hamiltonian (energy function)

H ≡ p2

2m
+ V (x)

to get

ẋ =
∂H

∂p
=
p

m

ṗ = −∂H
∂x

= −∂V
∂x

.

In conclusion, Newton’s law with a conservative force, Eq. (1), is one
example of a Hamiltonian dynamical system.

In Hamiltonian systems, the energy E = H(x, p) is conserved since

Ḣ =
∂H

∂x
ẋ︸︷︷︸
∂H
∂p

+
∂H

∂p
ṗ︸︷︷︸
−∂H

∂x

= 0 .

Systems with at least one conserved quantity (integral of motion)
are called conservative systems. Remark: An integral of motion is
a combination of phase space coordinates that are constant along a
trajectory. A ‘constant of motion’ may in addition depend explicitly
on time. In classical mechanics continuous symmetries imply conser-
vation laws (Noether’s theorem):
Symmetry Integral of motion
Time independence Energy
Space independence Momentum
Rotational symmetry Angular momentum

5.1.2 General conservative systems

More generally: Given a dynamical system ẋ = f (x) a function E(x)
is a conserved quantity if

E(x(t)) = constant ⇔ Ė = 0
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along trajectories and E(x(t)) is non-constant on every open set in
phase space. The latter condition implies that E(x(t)) cannot be
a trivial constant. For example E(x(t)) = x2

1 + x2
2 is constant when

evaluated along a circular trajectory and it is thus a conserved quantity
if the system has circular trajectories, while E(x(t)) = 7 (or any other
constant) is constant everywhere in phase space and is therefore not
a conserved quantity.

5.1.3 Volume-conserving systems

A dynamical system ẋ = f (x) is volume conserving in phase-space if

∇ · f (x) = 0 (2)

everywhere. Consider a phase-space volume V(t):

In a volume-conserving system a phase-space element changes shape
D(t), but the volume V(t) is constant. To show this, take a small
time step δt. Positions evolve according to

x(δt) = x(0) + δtf (x(0)) .

The coordinate transformation y ≡ x(δt) transforms all coordinates
x0 ∈ D(0) into the coordinates y ∈ D(δt)

V(δt) =

∫
D(δt)

dny =

∫
D(0)

dnx0

∣∣∣∣det

(
∂y

∂x0

)∣∣∣∣
=

∫
D(0)

dnx0 |det (1 + δtJ(x0))|︸ ︷︷ ︸
≈1+δt trJ(x0)

= V(0) + δt

∫
D(0)

dnx0 trJ(x0)︸ ︷︷ ︸
∇·f (x0)

⇒ dV
dt

=

∫
D(t)

dnx∇ · f (x) = 0 , if ∇ · f (x) = 0 everywhere.
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A system that has ∇ · f (x) < 0 somewhere is called dissipative.
Dissipative systems have attractors, while volume-conserving systems
cannot have attractors or repellers.

Example Hamiltonian dynamical systems

f =

(
∂H
∂p

−∂H
∂x

)
preserves phase-space volumes:

∇ · f =
(
∂
∂x

∂
∂p

)( ∂H
∂p

−∂H
∂x

)
=
∂2H

∂x∂p
− ∂2H

∂p∂x
= 0 .

5.1.4 Fixed points in conservative systems

A conservative system cannot have any attracting fixed points:
If x∗ was an attractive fixed point, then all points in the basin of
attraction move towards the fixed point and must therefore have the
same value of E (the value at the fixed point). This implies that E is
constant on an open set in phase space and the flow is therefore not
conservative by definition.

Find which fixed points can occur in a Hamiltonian system:

ẋ = ∂H
∂p

ṗ = −∂H
∂x

with H ≡ p2

2m
+ V (x) .

Linearize

J =

(
∂2H
∂x∂p

∂2H
∂p2

−∂2H
∂x2
− ∂2H

∂p∂x

)
=

(
0 1

m

−∂2V
∂x2

0

)
.

At any fixed point we have τ ≡ trJ = 0 and ∆ ≡ det J(x∗) =
V ′′(x∗)/m, i.e. λ1,2 = ±

√
− det J:

If V ′′(x∗) < 0 then λ1,2 = ±
√
|V ′′(x∗)|/m (saddle)

If V ′′(x∗) > 0 then λ1,2 = ±i
√
|V ′′(x∗)|/m (center)
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Fixed points are located at ẋ = p = 0 and ṗ = −V ′(x) = 0 ⇒
Centers at potential minima and saddles at potential maxima.

Example: Double-well potential

V (x) = −x
2

2
+
x4

4

The paths in the phase plane are contours of constant H(x) = p2

2
−

x2

2
+ x4

4
= E:

A and C are centers (potential minima) and B is a saddle (potential
maximum). Isolated centers in Hamiltonian systems are robust to
non-linear perturbations (non-linear centers). They are surrounded
by a band of closed orbits despite the non-linear terms. The closed
orbits around the centers correspond to small oscillations around the
potential minima. The stable and unstable manifold of the saddle
point connect at the fixed point and form a homoclinic orbit (this
trajectory is not strictly periodic because it takes an infinite amount
of time to reach the fixed point). The homoclinic orbit serves as a
separatrix: outside of it, the system has high enough energy to make
large-amplitude oscillations over both potential minima.

Closed orbits in conservative systems More generally, the fol-
lowing holds for two-dimensional conservative systems ẋ = f (x) with
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smooth f : If x∗ is an isolated fixed point and E(x) is a local mini-
mum of E, then the paths in the vicinity of x∗ are closed (Strogatz
Theorem 6.5.1).

How to find conserved quantities There is no general method
to find conserved quantities in a given system. As seen above, a
system that can be written as ẍ = −V ′(x) has a conserved quantity
E = y2/2 + V (x) with y = ẋ.
Another method is to search for an explicit relation between y and x
by dividing ẏ by ẋ. For example

ẋ = y

ẏ = y2 + x

gives

ẏ

ẋ
=

dy

dx
=
y2 + x

y

Let ỹ = e−xy to get

dỹ

dx
= −e−xy + e−x

dy

dx
= e−x

x

y
= e−2x

x

ỹ

Solve by separation of variables

ỹdỹ = e−2xxdx ⇒ ỹ2

2
= −1

4
e−2x(1 + 2x) + E

with an integration constant E. In conclusion

E(x, y) = e−2x
y2

2
+

1

4
e−2x(1 + 2x)

is a conserved quantity.
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5.2 Reversible systems (Strogatz 6.6)

Another mechanism to form closed orbits is invariance under the si-
multaneous transformation t→ −t and y → −y (reversible system).
This transformation mirrors trajectories in the upper half-plane on
the lower half-plane.
Special case: time-reversible system if reversible and ẋ = y.

Example Consider the system

ẋ = y − y3

ẏ = −x− y2

The system has three fixed points: (x∗1, y
∗
1) = (−1,−1), (x∗2, y

∗
2) =

(0, 0), and (x∗3, y
∗
3) = (−1, 1).

Linear stability analysis

J =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
=

(
0 1− 3y2

−1 −2y

)
Classification of fixed points:

Fixed point (x∗1, y
∗
1) = (−1,−1) (x∗2, y

∗
2) = (0, 0) (x∗3, y

∗
3) = (−1, 1)

Eigenvalues 1±
√

3 ±i −1±
√

3
Type Saddle Center Saddle

Stable direction (1+
√
3,1)√

5+2
√
3

- (−1+
√
3,1)√

5−2
√
3

Unstable direction (1−
√
3,1)√

5−2
√
3

- (−1−
√
3,1)√

5+2
√
3

Linear stability analysis shows that the origin is a center, but the non-
linear terms could destabilise, there is no conservation law as for the
conservative systems. However, the system is reversible: invariant un-
der the simultaneous transform t→ −t and y → −y

Close to the origin, the center causes swirl for positive values of y.
Time reversibility mirrors the solution in the line y = 0 and trajecto-
ries must close (this rules out spirals):
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To sketch the full phase portrait, start with the nullclines and lin-
earized dynamics around the saddle points (need to evaluate the di-
rection of the stable and unstable manifolds of the saddle points.)

The unstable trajectory going up from the lower saddle point must
continue upwards (ẏ > 0) until y = 0 is reached with vertical slope
(ẋ = 0 at y = 0).
Due to the reversibility there must be a mirrored trajectory coming
from the upper saddle. The joint trajectory joins two fixed points
heteroclinic trajectory.
Likewise, the unstable trajectory down from the upper saddle point
must move down and meet the y = 0 line at some x > 0. At the
crossing point it joins with a mirrored trajectory from the lower sad-
dle point, forming a second heteroclinic trajectory. The heteroclinic
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orbits surrounds a region of closed orbits.

Reversible or conservative systems tend to have trajectories connect-
ing one fixed point with itself (homoclinic orbits, c.f. the double-well
potential in Section 5.1.4) or with another fixed point (heteroclinic
trajectory).
Note that the homoclinic orbit is not a periodic orbit: it takes an
infinite amount of time to reach the fixed point.
Homoclinic orbits and heteroclinic cycles (several heteroclinic trajec-
tories forming a loop) can act as attractors (or repellers) for other
trajectories, or as divisors between regions of separated dynamics
(separatrices): In our case between bands of closed orbits and other
trajectories (as in the example above).
It is also possible that isolated closed orbits, not containing fixed
points, act as attractors|repellers. Such orbits are limit cycles.

5.3 Limit cycles (Strogatz 7)

Systems with limit cycles are useful in order to model self-sustained
oscillations (oscillations without external periodic forcing), such as the
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firing of a pacemaker, cycles in the body , oscillating chemical reac-
tions, unwanted or dangerous self-excitations in mechanical systems.

Simplest construction using uncoupled polar coordinates

ṙ = f (r)

θ̇ = ω

where f (r) has zeroes for r > 0. r describes a one-dimensional system
whose fixed points determines the stability of the limit cycles. Exam-
ples of stable, unstable, and half-stable limit cycles:

Note that the system above is given in terms of polar coordinates and
that the limit cycle appears after changing to Cartesian coordinates.

Limit cycles (in the Cartesian coordinates) can not be found using
linear-stability analysis ⇒ non-local effect, non-linear terms are nec-
essary. They can be stable, unstable and half-stable (it is also possible
to have a limit cycle from outside|inside, while band of closed orbits
on the inside|outside).
More non-trivial examples of limit cycles will be discussed later in the
course (van der Pol oscillators).
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5.4 To prove that closed orbits exist

Poincaré-Bendixson theorem Assume a smooth flow in a bounded
domain D of the plane. Assume further that D does not contain any
fixed point and that there exists a trajectory that is confined in D
for all times. Then at least one periodic orbit exists in D. This is
a consequence of the fact that trajectories for smooth flows cannot
intersect in two dimensions.

To satisfy the condition that a confined trajectory exists, one can
construct a trapping region, i.e. choose D such that the flow points
inward everywhere. If it is possible to construct a trapping region,
then the Poincaré-Bendixon theorem ensures that at least one closed
orbit exists in D.

Trapping region D
Periodic orbit

As a consequence in two dimensions: possible attractors are fixed
points, periodic orbits, or union of fixed points and homo|hetero-clinic
orbits. In higher dimensions: infinite wandering of trajectories is pos-
sible (trajectories never repeats).

5.5 To rule out closed orbits or limit cycles

• If system is a gradient system: ẋ = −∇V (x) with potential
function V . During one revolution of a supposed periodic orbit
with period time T the potential changes by ∆V ≡ V (xT ) −
V (x0)

∆V =

∫ T

0

dt V̇ =

∫ T

0

dt ẋ ·∇V = −
∫ T

0

dt |ẋ|2 < 0

But ∆V bust be 0 because x(T ) = x(0) for the periodic orbit.
Hence, our assumed periodic orbit cannot exist.
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This criterion rules out limit cycles in one-dimensional systems,
(f (x) can be written as ∇V ). When d > 1 gradient systems
are atypical.

• Construct a function V (x) (Lyapunov function) that

– is positive everywhere except at a fixed point x∗ where it
is zero

– decreases along any trajectory (V̇ ≡ ẋ ·∇V < 0).

If a Lyapunov function can be constructed, the fixed point x∗ is
globally attracting and no closed orbits can exist.

• Dulac’s criterion: consider a differentiable function g(x) such
that ∇ · (gẋ) does not change sign in some domain. If such
function exists, there are no closed orbits in the domain (Green’s
theorem).

Concept test 5.1: Closed orbits
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