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7 Two-dimensional bifurcations

As in one-dimensional systems: fixed points may be created, de-
stroyed, or change stability as parameters are varied (change of ’topo-
logical equivalence’). In addition closed orbits may undergo these
changes.

7.1 Saddle-node, transcritical, and pitchfork
bifurcations

Assume that a saddle point and an attracting node collide as a pa-
rameter µ is varied. The mechanism of why the collision occurs at
all (instead of the fixed points moving past each other): Fixed points
are formed at intersections of nullclines. As µ is varied, the nullclines
deform continuously. If they slip through each other the fixed points
collide:

Change coordinates to the local eigenframe of the saddle point. Let
the unstable direction of the saddle be v̂u = (1, 0) and the stable
direction v̂s = (0, 1). When the node comes closeby, it must merge
along the unstable manifold of the saddle [otherwise trajectories could
not remain continuous and linear as the fixed points merge].
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• The bifurcation is essentially one-dimensional (in any dimen-
sion). Normal form (in unstable/stable directions of saddle):

ẋ = µ− x2 (same as 1D)

ẏ = −y

• Along the interconnecting manifold, the eigenvalues have oppo-
site signs⇒ at bifurcation (at least) one eigenvalue must vanish.

• After bifurcation a slow region remains (ghost of fixed points)
[before bifurcation tpass = ∞ (along interconnecting manifold),
this time is reduced smoothly after bifurcation: Tpass ∼ 1/

√
µ]

(Strogatz Sec. 4.3 and Lecture 2).

• Repelling node? ⇒ reverse the arrows!

• The sum of all indices of the fixed points involved in a two-
dimensional bifurcation in a smooth flow must be conserved (as-
suming that no value of the bifurcation parameter gives rise to a
line of fixed points). After the saddle-node bifurcation no fixed
points remain and the index must be zero. ⇒ only fixed-points
with opposite signs may annihilate. Nodes, degenerate nodes,
spirals, centers, stars: I = +1, Saddles: I = −1⇒ bifurcations
where two fixed points merge and annihilate consist of one sad-
dle and one fixed point with I = +1. Moreover, since one of
the eigenvalues smoothly crosses zero at the bifurcation (⇔ ∆
crosses zero) the second fixed point is typically a node (unless
also τ passes zero), hence the name saddle-node bifurcation.
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Similarly, the other bifurcations discussed in Lecture 2 (transcritical,
subcritical pitchfork, supercritical pitchfork), occur in one-dimensional
subspaces in higher-dimensional systems. Transversal directions are
simply attracting or repelling. The bifurcations are summarized in
the Table on the last page. The dynamics along the x-axis is that of
1D flows (x-component of flow plotted as black) and blue shows flow
in 2D. The bifurcation diagrams show that the index is preserved.

7.2 Hopf bifurcation

A stable fixed point has Re[λ1,2] < 0. A bifurcation to an unstable
fixed point occurs if the maximal eigenvalue crosses zero. Consider the
three possible bifurcations from stable to unstable in a linear system:

a b c

a

b c

Cases a and b have Im[λ1,2] = 0, while case c has Im[λ1,2] 6= 0. Case
a corresponds to saddle-node, transcritical, and pitchfork bifurcations
above. Case b is marginal and therefore not so interesting. Case c
is a Hopf bifurcation: a new type of bifurcation that does not exist in
1D systems. Consider the transition with Im[λ1,2] 6= 0:
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Hopf bifurcations often lead to the formation of limit cycles. The
bifurcation can be either supercritical or subcritical.

7.2.1 Supercritical Hopf bifurcation

If a small-amplitude limit cycle is formed to ’catch’ the unstable tra-
jectories after the bifurcation, the bifurcation is supercritical.

Example

ṙ = r(µ− r2)
θ̇ = ω

Radial equation is on the form of a supercritical pitchfork.
When µ < 0 the radial equation has a stable fixed point at r∗ = 0
(stable spiral in x,y-space).
When µ > 0 the origin becomes unstable spiral, but trajectories are
caught at r∗ =

√
µ, i.e. limit cycle of radius r =

√
µ. ⇒ stable

small-amplitude oscillations.
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To verify that the eigenvalues cross Re[λi] = 0 with nonzero Im[λi]
we need to convert to cartesian coordinates x = r cos θ, y = r sin θ.
Some algebra gives

ẋ = µx− ωy + cubic terms

ẏ = ωx + µy + cubic terms .

Stability matrix at fixed point in origin

J =

(
µ −ω
ω µ

)
Eigenvalues λ = µ± iω, become unstable as µ becomes positive.

7.2.2 Subcritical Hopf bifurcation

If no stable limit cycle is formed when the fixed point becomes un-
stable, trajectories must run away to a distant attractor: fixed point,
limit cycle, infinity (or strange attractor for d > 2).

Example

ṙ = µr + r3 − r5

θ̇ = ω
(1)

Non-negative zeroes at r∗0 = 0 for all µ, [r∗±]2 = (1 ±
√

1 + 4µ)/2
if −1/4 ≤ µ ≤ 0. When µ passes 0: r∗0, r

∗
− and −r∗− merge in a

subcritical pitchfork bifurcation. System settles in the distant limit
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cycle at r = r∗+.

This jump is similar to the catastrophes in lecture 3. The system
exhibits hysteresis, when µ becomes positive, the system jumps to the
distant attractor r = r∗+. To go back to the original stable spiral, it
is not enough to reduce µ below zero, it must be reduced below the
saddle-node bifurcation at µ = −1/4. The bifurcation at µ = −1/4
is an example of a global bifurcation, to be discussed in Section 7.3.1.

Whether one obtains a stable limit cycle after a subcritical Hopf
bifurcation depends on the global properties of the flow. Before the
bifurcation the system always has an unstable limit cycle.

7.3 Global bifurcations

The bifurcations mentioned above are local, they happen locally as
fixed points collide or change stability. It is also possible to cre-
ate/destroy limit cycles in non-local regions of flow.

7.3.1 Bifurcations of cycles

Consider once again Eq. (1)

ṙ = µr + r3 − r5

θ̇ = ω

This time, consider the bifurcation as µ passes µc = −1/4. The
one-dimensional system for r undergoes a saddle-node bifurcation at
a non-zero value of r ⇒ limit cycles in the two-dimensional system
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bifurcate:

7.3.2 Infinite-period bifurcation

Example: Saddle-node bifurcation on existing limit cycle.

ṙ = r(1− r2)
θ̇ = µ− sin θ

Uncoupled equations.
r-equation ’usual’ equation for attracting limit cycle at r = 1.

• When µ > 1 we have a stable limit cycle with a bottleneck (slow
velocity) at θ = π/2.

• When µ = 1 a half-stable fixed point appears at (r, θ) = (1, π/2)
⇒ it takes an infinite time to pass θ = π/2 along the homoclinic
orbit (former limit cycle). At θ = π/2 the flow must be vertical
towards r = 1.

7



Dynamical systems 2018 kristian.gustafsson@physics.gu.se

• When µ < 1 a saddle-node pair is formed, joined by heteroclinic
trajectories.

As shown in lecture 2 the dynamics is slow close to the saddle-node
bifurcation (the time scale along the limit cycles scales as 1/

√
µ− 1

for both sides of the bifurcation).
The scaling of the period with the control parameter µ is important
in order to investigate oscillating systems in numerical or real-life ex-
periments. Observing amplitude and period time as µ is varied allows
to identify or rule out what kind of system we have.
Another infinite-time bifurcation (with another scaling in period time,
T ∼ lnµ, see Problem set 2) is the Homoclinic bifurcation.

7.3.3 Bifurcation of heteroclinic trajectory

Consider the dynamical system

ẋ = µ + x2 − xy
ẏ = y2 − x2 − 1

This system has two saddle points (det J = −2(x − y)2 < 0) at:
(x∗±, y

∗
±) = ±(µ, 1 − µ)/

√
1− 2µ. When µ = 0, they lie on the y-

axis, (x∗±, y
∗
±) = (0,±1), and since ẋ = 0 along the y-axis, they must
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be connected by a heteroclinic trajectory. When |µ| is small but
non-zero, the fixed points move to either side of the y-axis, (x∗±, y

∗
±) ≈

±(µ, 1). Since ẋ = µ along the y-axis, the connection between the
stable and unstable manifolds must be broken as seen in the following
phase portrait:

Purple trajectories shows that for µ < 0 there ar solutions in x from
+∞ to −∞, while after the bifurcation the system has solutions in x
from −∞ to +∞.

7.3.4 Bifurcation of homoclinic orbit

Similar to the heteroclinic trajectory above, one may obtain a bifurca-
tion for the homoclinic orbit of a single saddle point. For example, a
symmetric system (as considered in Lecture 6) with a homoclinic orbit
at the bifurcation point µc. A small deviation from µc may break the
symmetry and the homoclinic orbit breaks differently depending on
the sign of the deviation.

Another example is the collision between a limit cycle and a saddle
point to form a homoclinic orbit.

ẋ = y

ẏ = µy + x− x2 + xy

Non-local bifurcation ⇒ need to use computer! The result for some
values of µ:
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For µ < µrmc ≈ −0.8645 a saddle point and a limit cycle are isolated.
As µ is increased, the limit cycle expands until it eventually collides
with the saddle point at µ = µc, forming a homoclinic orbit.
When µ > µrmc the homoclinic orbit breaks.

An example is a Josephson junction which is equivalent to a forced
pendulum with friction (Lecture 9).

The homoclinic bifurcation is another example of an infinite-period
bifurcation (the homoclinic orbit has an infinite period time). The
upper right unstable manifold lies inside of stable manifold when µ <
µc and lies outside when µ > µc.
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ẋ
=
µ

+
x
2

ẋ
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