
Solutions/answers to selected problems of the exam 9:th

of January in Dynamical Systems 2017

2. Imperfect bifurcation [2.5 points] Consider the system

ẋ = rx− x2 + hx3 (1)

where h and r are real parameters.

a) When h = 0 a bifurcation occurs when r passes zero. What kind of
bifurcation is it (explain why)? Sketch the bifurcation diagram.
Answer: When h = 0 there are two fixed points x∗ = 0 and x∗ = r.
Since f ′(x) = r − 2hx the fixed point at x∗ = 0 is stable when r < 0
and unstable when r > 0. The fixed point at x∗ = r is unstable when
r < 0 and stable when r > 0. This is the normal form of a transcritical
bifurcation, with the following bifurcation diagram:

b) For each value of non-zero h we obtain a different bifurcation diagram
x∗ against r for the dynamical system in Eq. (1). Use analytical cal-
culations and/or sketches of the flow to determine the fixed points and
their stability for generic values of r and h. Use the results from the
analysis to sketch one typical bifurcation diagram for each of the two
cases h < 0 and h > 0.
Answer: The system has fixed points at

x∗1 = 0 , x∗2 =
1 +
√

1− 4hr

2h
, x∗3 =

1−
√

1− 4hr

2h
.

The fixed point at the origin is stable if r < 0 and unstable if r > 0.

• If hr > 1/4 we have a single fixed point located at the origin.

• If hr < 0 the square root is larger than 1 and we have one fixed
point to the left and one to the right of the fixed point in the
origin. These must have the opposite stability compared to the
fixed point in the origin, i.e. when r < 0 they are unstable, when
r > 0 they are stable.

1



• If 0 < hr < 1/4 there are two new possibilities: the two non-zero
fixed points both either lie to the left (h < 0 ⇒ r < 0) or to the
right (h > 0 ⇒ r > 0) of the origin.

Together these cases give the following bifurcation diagrams:

When h 6= 0 we have a saddle-node bifurcation at hr = 1/4 and a
transcritical bifurcation at r = 0.
Note that when h approaches zero, the saddle-node bifurcation is moved
to −∞ (h < 0) or +∞ (h > 0) and the bifurcation diagram takes the
form in problem a). This can be explicitly seen by expanding the
locations of the fixed points in terms of small h. For small values of h
the fixed points are located at

x∗1 = 0 , x∗2 ∼
1

h
− r , x∗3 ∼ r .

with gradients

f(x∗1) = r , f(x∗2) ∼
1

h
− 3r , f(x∗3) ∼ −r .

The bifurcation that occurs as h passes zero is of a type we have not
encountered in the course: when h < 0 the second fixed point x∗2 is
stable, as h→ 0− it vanishes at −∞ (the system (1) becomes a second-
order polynomial and there exists only two solutions), and when h
becomes positive the second fixed point reappears as an unstable fixed
point.

c) Divide the (r,h)-plane into regions separated by lines, where each line
is determined by the condition that the dynamics in Eq. (1) has exactly
two separate fixed points. Label each region with the number of fixed
points in that region. Label each line with the type of bifurcation that
occurs if the line is passed to a different region.
Answer: There are three lines that give two separate fixed points:
h = 0, r = 0 and 4hr = 1. According to the analysis for the cases
h < 0, h = 0 and h > 0 above, we obtain the following bifurcation
diagram:
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3. Stability analysis and phase portrait [1.5 points] Consider the
system

ẋ = xy

ẏ = x2 − y .
(2)

a) Find all fixed points of this system.
Answer:
The only fixed point is (x∗, y∗) = (0, 0).

b) What does linear stability analysis predict about the fixed point(s)?
Answer:
The system has the eigenvalues λ1 = −1 and λ2 = 0 and correspond-
ing eigenvectors v1 = (0, 1) and v2 = (1, 0). This is a marginal case
between stable and unstable dynamics. If no non-linear terms were
present, we would have a line of fixed points at y = 0.

c) Consider the linear system ẋ = J(0)x with x = (x, y) and J(0) being
the Jacobian evaluated at the origin. This system corresponds to the
system obtained in problem b) by linearization around the fixed point
at the origin. How many fixed points do the linear system ẋ = J(0)x
have? Is this consistent with your findings in a)? Why?
Answer:
The linear system has a line of fixed points, while the system in problem
a) has a single isolated fixed point. The reason this is possible is because
the linear system is structurably unstable; the non-linear terms changes
the properties of the fixed point.
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d) In order to classify the fixed point at the origin for the system (2),
sketch the nullclines and make a qualitative phase diagram. What
kind of fixed point do you obtain?
Answer:
Nullclines with ẋ = 0: x = 0 and y = 0.
Nullclines with ẏ = 0: y = x2.
Sketch:

The fixed point behaves as a saddle point: it is unstable, but it has a
stable direction along the y-axis. This is also consistent with the index
I = −1 of the fixed point.

4. Indices and bifurcations [2 points] The phase portraits of two dy-
namical systems are plotted in subproblems a) and b) below.

a) What is the index of the fixed point of the following dynamical system?

ẋ = x− y2 − 1

ẏ = −x+ 2y
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y
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0
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Answer:
The index is I = 0

b) What is the index of the fixed point of the following dynamical system?

ẋ = x2 − y2

ẏ = 2xy

x

y

−2 −1 0 1 2

−2

−1

0

1

2

Answer:
The index is I = 2

Now add perturbations to the x-components of the flows.
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c) What is the bifurcation that occurs when µ passes through zero in the
perturbed system below? Explain why it is that bifurcation.

ẋ = x− y2 − 1 + µ

ẏ = −x+ 2y

Answer:
The fixed points are at (x∗, y∗) = (2, 1)(1±√µ). The Jacobian is

J =

(
1 −2y
−1 2

)
with eigenvalues λ1,2 = (3 ±

√
1 + 8y)/2. Thus, when µ < 0 we have

no fixed points. When µ > 0 we have two fixed points with eigenval-
ues λ1,2 = (3 ±

√
9 + 8

√
µ)/2 (saddle) and λ1,2 = (3 ±

√
9− 8

√
µ)/2

(unstable node). We thus have a saddle-node bifurction at µ = 0.

Without calculations:
Draw the nullclines x = 2y and x = y2 + 1 + µ and see that they have
zero overlap for µ < 0 and double fixed point for µ > 0.

d) What is the bifurcation that occurs when µ passes through zero in the
perturbed system below? Explain why it is that bifurcation.

ẋ = x2 − y2 + µ

ẏ = 2xy

Answer:
Case µ > 0: We have fixed points at x = 0 and y = ±√µ. The
Jacobian is

J =

(
2x −2y
2y 2x

)
⇒ Both fixed points are centers with (λ1,2 = ±2i

√
µ).

Case µ < 0: We have fixed points at x = ±
√
−µ and y = 0. Fixed

points are star nodes with (λ1,2 = −2
√
−µ) (stable) and (λ1,2 = 2

√
−µ)

(unstable).

Does non-linear terms destroy the types of the fixed points?
Spirals are not allowed due to the symmetry properties of the flow: The
symmetry under reversibility (t, x)→ (−t,−x) ‘protects’ closed orbits
around the centers on the y-axis from forming spirals. The symmetry
under y → −y prevents the star nodes to deform into spirals.

We have no reason to expect that the star nodes do not transform
into regular nodes when the non-linear terms are added (changing to
spherical coordinates centered around one of the fixed points show that
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we indeed have an angular dependence in the dynamics), i.e. the star
nodes are regular nodes when non-linear terms are taken into account.

In conclusion: The bifurcation at µ = 0 consists of a pair of one stable
node and one unstable node forming two centers.

e) Are the bifurcations in problems c) and d) consistent with the indices
of involved fixed points and with the results in problems a) and b)?
Explain your answer.
Answer:
For problem a): Yes, saddles have index I = −1 and nodes have index
I = +1. Upon bifurcation these joins into a fixed point of index I = 0.
After the bifurcation, no fixed points exists and the index remains zero.
For problem b): Yes, nodes and centers both have indices I = +1.
Upon bifurcation these joins into a fixed point of index I = 2.

5. Homoclinic bifurcation [2 points] Consider the dynamical system

ẋ = µx+ y − x2

ẏ = −x+ µy + 2x2 .
(3)

a) What kind of bifurcation occurs at the origin as µ passes zero? Explain
why it is that bifurcation. If you happen to find that the bifurcation is a
Hopf bifurcation, you can use the following condition on a to determine
whether the bifurcation is supercritical (a < 0) or subcritical (a > 0):

16a =fxxx + fxyy + gxxy + gyyy

− fxy(fxx + fyy) + gxy(gxx + gyy) + fxxgxx − fyygyy .

Here subscripts denote partial derivatives evaluated at the origin.
Answer:
The Jacobian at the origin is

J =

(
µ 1
−1 µ

)
with eigenvalues λ1,2 = µ ± i. Thus, the real part of the eigenvalues
pass zero with a finite imaginary part ⇒ we have a Hopf bifurcation.

Evaluation of the criterion gives

16a = fxxgxx = (−2) · 4 = −8

i.e. a < 0 and the bifurcation is supercritical.

b) The system (3) has a homoclinic bifurcation at µ = µc ≈ 0.066. Ex-
plain what happens close to the homoclinic bifurcation by sketching the
dynamics for the three cases of µ slightly below µc, µ equal to µc, and
µ slightly above µc (no bifurcation occurs in the interval 0 < µ < µc).
Answer:
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From the fact that we have a supercritical Hopf bifurcation at µ = 0,
we now there exists a stable limit cycle when 0 < µ < µc. At µ = µc

this collides with the saddle point of the system, forming a homoclinic
orbit. At µ > µc the homoclinic orbit is destroyed and the system no
longer has a limit cycle. It could be noted that one of the stable man-
ifolds still connects to the spiral at the origin. See your own hand-ins
for sketches of these cases.

c) In order to find out how the period of a closed orbit scales as a homo-
clinic bifurcation is approached, it is useful to first estimate the time
it takes for an orbit to pass a saddle point. To estimate the time to
pass a general saddle point, consider the linearized dynamics ẋ = λux
and ẏ = λsy, where λu and λs are the eigenvalues of the unstable and
stable directions respectively (λu > 0 and λs < 0). Let a trajectory
start from the point (x, y) = (γ, 1) where γ is small. Find an analytical
expression for the time to escape from the saddle to x(t) = 1.
Answer:
The escape time is T ∼ − ln(γ)/λu

d) Find an analytical expression for λu suitable for the system in Eq. (3).
Answer:
We have a saddle point at (x∗, y∗) = ((1 + µ2)/(2 + µ), . . . ). Jacobian
and its invariants evaluated at the saddle point:

J(x∗) =

(
µ− 2x∗ 1
−1 + 4x∗ µ

)
trJ(x∗) = 2

2µ− 1

2 + µ

detJ(x∗) = −µ+ µ3 + 2 + 2µ2

2 + µ
= −1− µ2 .

The unstable eigenvalue is

λu =
1

2

(
trJ +

√
(trJ)2 − 4detJ

)
=

2µ− 1

2 + µ
+

√
(2µ− 1)2

(2 + µ)2
+ (1 + µ2)

=
2µ− 1 +

√
5 + 9µ2 + 4µ3 + µ4

2 + µ
.

e) Estimate the time of the periodic orbit, Tµ, just below the homoclinic
bifurcation. You can assume that this time is completely determined
by the passage of the saddle point, i.e. it depends only on λµ and γ.
You can assume γ ∼ A(µ− µc)

a with A = 3.2 and a = 0.7.
Answer:
Putting everything together

Tu ∼ − ln(A(µ− µc)
a)/λu

With A and a from problem formulation and λu from part d).
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6. Box-counting dimension [2 points] The two figures below show the
first few generations in the construction of a) the even fifths Cantor set and
b) the second fifths Cantor set. The fractal set is obtained by iterating to
generation Sn with n→∞.

a) Analytically find the box-counting dimension D0 of the even fifths Can-
tor set, obtained by at each generation removing intervals 2 and 4 out
of five equally sized intervals:

Answer:
The box-counting dimension is

D0 =
ln 3

ln 5

b) Analytically find the box-counting dimension D0 of the second fifths
Cantor set, obtained by at each generation removing interval 2 out of
five equally sized intervals:

Answer:
The box-counting dimension is given implicitly as the solution to the
transcendental equation

1 + 3D0 = 5D0
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