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1. Short questions [2 points] For each of the following questions give a
concise answer within a few lines per question.

a) Give a definition for what a dynamical system is.

b) A nonautonomous system can be written as

ẋ = f(x, t) ,

i.e. the flow f depends explicitly on time. Is a nonautonomous system
a dynamical system? Explain your answer.

c) What does a transcritical bifurcation mean?

d) What are the stable manifolds of a fixed point?

e) Give an example of how the knowledge of stable manifolds of a fixed
point could be used to understand the dynamics in a dynamical system.

f) What is a quasiperiodic flow? Give an example!

g) In the problem sets the Lyapunov exponents were evaluated using a
QR-decomposition method. Why is this method preferred over direct
numerical evaluation of the eigenvalues of MTM where M is the de-
formation matrix, or over evaluation of the Lyapunov exponent using
separations between a number of particles?

h) Sketch the typical shape of the generalized dimension spectrum Dq

against q for a mono fractal and for a multi fractal.
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2. Quadfurcation [2 points]

a) Give/construct an example of a one-dimensional dynamical system
showing a pitchfork bifurcation as a parameter r passes 0.

b) Sketch the bifurcation diagram for your system in subtask a).

c) Pitchfork bifurcations are examples of ‘trifurcations’, meaning a divi-
sion into three branches of fixed points as r passes 0. Construct an
example of a ‘quadfurcation’, in which no fixed points exist for r < 0
and four fixed points exist for r > 0.

Solution
One example is

ẋ = r − (x− 1)2(x+ 1)2

No fixed point for r < 0. Four fixed points for r > 0. Two simultaneous
saddle-node bifurcations at x = −1 and x = 1

d) Sketch the bifurcation diagram for your system in subtask c).

3. Phase portrait [2 points] Consider the system

ẋ = x(ax− y)

ẏ = y(2x− y) .
(1)

a) Find all fixed points of the system (1).

Solution
For all values of a we have a fixed point at the origin (x∗, y∗) = (0, 0).
For a = 2 we have a line of fixed points along y = 2x.

b) What does linear stability analysis predict about the fixed point(s)?

Solution
The Jacobian is

J =

(
2ax− y −x

2y 2x− 2y

)
.

For all fixed points in subtask a), the eigenvalues evaluated at the fixed
point vanish. Linear stability theory is therefore inconclusive.

c) For a = 2, sketch the nullclines and the phase-plane dynamics (phase
portrait) in the region −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2.
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4. Trapping regions for the van der Pol oscillator [2 points] Con-
sider the van der Pol equation

ẍ+ µ(x2 − 1)ẋ+ x = 0 (2)

with µ a real parameter.

a) Give physical interpretations or explanations of the different terms in
Eq. (2).

Solution
See Lecture notes.

b) Consider the dynamics in the phase-plane (x, y) with y = ẋ. Knowing
that this dynamical system shows an attractive limit cycle when µ > 0,
show that it has a repelling limit cycle when µ < 0.

Solution
The dynamics in the phase-plane is

ẋ = y

ẏ = −µ(x2 − 1)y − x .

These equations are invariant under the simultaneous change µ→ −µ,
y → −y, and t → −t. Thus, the dynamics with flipped sign of µ cor-
responds to a time reversal and a flip of the y-coordinate. Since we
know that the system has an attracting limit cycle when µ > 0, and
since the time reversal changes the stability of all attractors (trajecto-
ries running backwards), we conclude that the system with µ < 0 must
have a repelling limit cycle (the flip of the y-coordinate just mirrors the
system, but does not affect existence or stability of the attractors).

c) Let r =
√
x2 + y2 and derive an equation for ṙ in terms of x and y.

Solution

ṙ =
xẋ+ yẏ

r
=
xy + y(−µ(x2 − 1)y − x)

r
=
−µ(x2 − 1)y2√

x2 + y2

d) When µ < 0, show that there exist ‘trapping regions’ in the form
of circles of radii r < rc such that all solutions starting from initial
conditions inside these circles tend to the origin. Determine rc.

Solution
Consider the dynamics of r:

ṙ =
−µy2√
x2 + y2︸ ︷︷ ︸
>0

(x2 − 1)

The first factor is positive since µ > 0. The second factor is negative if
|x| < 1. Thus, the radial flow through all circles of radius smaller than
rc = 1 is negative. Therefore, initial conditions starting with r < rc
tend to the origin.
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5. Indices and bifurcations [2 points] The phase portraits of two dy-
namical systems are plotted in subtasks a) and b) below.

a) What is the index of the fixed point of the following dynamical system?

ẋ = y − x
ẏ = x2

x

y

−5 0 5

−5

0

5

Solution
The index is I = 0.

b) What is the index of the fixed point of the following dynamical system?

ẋ = x2 − y2

ẏ = −2xy
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x

y

−2 −1 0 1 2

−2

−1

0

1

2

Solution
The index is I = −2.

c) Add a perturbation term µ to the x-component of the flow in subtask
b). Describe the bifurcation (if any) that occurs when µ passes through
zero in the perturbed system:

ẋ = x2 − y2 + µ

ẏ = −2xy .

Solution
If µ > 0 we have two fixed points at (x∗, y∗) = (0,±√µ). The Jacobian
is

J =

(
2x −2y
−2y −2x

)
.

Fixed points are saddle points, both with λ1,2 = ±2
√
µ.

If µ < 0 the fixed points are located at (x∗, y∗) = (±
√
−µ, 0). Also in

this case both fixed points are saddle points.

In conclusion, as µ passes 0 two saddle points collide and reemerge
as two saddle points. It may look like nothing has happened, but by
calculation of the eigendirections, one finds that the stable|unstable
manifolds discontinuously change direction by π/4 in the bifurcation
as µ passes zero.

d) Is the bifurcation in subtask c) consistent with the indices of involved
fixed points and with the result you obtained in subtask b)?

Solution
Yes, since saddle points have index I = −1. At µ = 0 these join into a
fixed point of index I = −2.
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6. Box-counting dimension [2 points] The two figures below show the
first few generations in the construction of two fractals. The fractal set is
obtained by iterating to generation Sn with n→∞.

a) Analytically find the box-counting dimension D0 (explicitly if possible,
otherwise implicitly) of the Koch curve, obtained by at each generation
replacing the middle third interval of all lines of length L with two new
lines. The two replacing lines both have length L/3 and form a wedge:

S1

S2

S3

Solution
The box-counting dimension is

D0 =
ln 4

ln 3

b) Analytically find the box-counting dimension D0 (explicitly if possible,
otherwise implicitly) of the fractal constructed by infinite iteration of
the sequence illustrated below:
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S1

S2 S3

Solution
This fractal resembles the asymmetric third fourth’s Cantor set. Choose
length scales λa = 1/2 and λb = 1/4. Have N(ε) = 2Na(ε) + 2Nb(ε).
Furthermore Na = N(ε/λa) and Nb = N(ε/λb) gives

N(ε) = 2N(ε/λa) + 2N(ε/λb)

Aε−D0 = 2Aε−D0λD0
a + 2Aε−D0λD0

b

1 = 2 · 2−D0 + 2 · 4−D0

The box-counting dimension is given implicitly as the solution to the
transcendental equation

1 = 3D0/5D0 + 1/5D0

1 + 3D0 = 5D0
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