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1. Multiple choice questions [2 points] For each of the following ques-
tions identify all the correct alternatives A–E. Answer with letters among
A–E. Some questions may have more than one correct alternative. In
these cases answer with all appropriate letters among A–E.

a) Classify the fixed point of the two-dimensional dynamical system:

ẋ = Ax , where A =

(
3 4
−4 2

)
.

A. It is a saddle point.

B. It is a stable spiral.

C. It is an unstable spiral.

D. It is a stable node.

E. It is an unstable node.

b) Which of the following statements are true in general for smooth one-
dimensional dynamical systems (flows on the line)?

A. They can be solved using separation of variables.

B. They can have periodic solutions with finite period time.

C. They can be chaotic.

D. Around any non-infinite initial position a unique solution ex-
ists within a non-empty time interval.

E. The only possible non-infinite attractors are fixed points.
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c) Which of the following kinds of fixed points do you typically encounter
in conservative dynamical systems

A. Nodes

B. Saddles

C. Spirals

D. Centers

E. Conservative systems do not have fixed points.

d) A three-dimensional dynamical system has the following Lyapunov ex-
ponents: λ1 = 1, λ2 = 0, λ3 = −1. Which of the following statements
are true?

A. The system may be chaotic.

B. The system may be volume preserving.

C. The system may be Hamiltonian.

D. The system may have a globally attracting limit cycle.

E. The Lyapunov spectrum is unchanged if time changes sign.

e) The existence and uniqueness theorem implies that trajectories cannot
intersect if the flow is smooth enough. But in many phase portraits of
smooth systems different trajectories appear to intersect at fixed points,
for example close to saddle points. Is this a contradiction? Answer with
one of the following alternatives.

A. No, this is an artefact of projecting higher-dimensional tra-
jectories onto two dimensions.

B. No, since no trajectory can pass the fixed point, trajectories
do not intersect.

C. No, since flows are non-smooth at fixed points.

D. No, near the fixed point the density of trajectories become
too high for the resolution of the phase portrait. Therefore
trajectories appear to intersect even though they do not.

E. No, it just appears that way due to numerical errors when
plotting the phase portrait.
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The following sequence of images shows the phase portraits for the system

ẋ = r + x2

ẏ = xy
(1)

for three values of r:
r = −1 r = 0 r = 1

f) What is the sum of the indices of the two fixed points in the leftmost
panel with r = −1?
A. -2 B. -1 C. 0 D. 1 E. 2

2. Short questions [2 points] For each of the following questions give a
concise answer within a few lines per question.

a) Consider once again the system in Eq. (1) above. Is the index preserved
in the bifurcation as r passes 0? Explain.

Solution
No, the index is not preserved. For r < 0 the index is 2, after the
bifurcation the index is 0. At the bifurcation point r = 0 the line x = 0
consists of non-isolated fixed points. Therefore index theorem does not
apply when r = 0 and the index does not need to be conserved.

b) What is meant by a ghost or slow passage in the context of fixed points?

Solution
Close to for example a saddle-node bifurcation of a one-dimensional
dynamical system the magnitude of the flow is small where the fixed
points used to be. This creates a bottleneck in the dynamics with slow
passing time (typically of the order 1/

√
µ where µ is the bifurcation

parameter of a bifurcation on normal form).

c) Explain what a limit cycle is. Give an example of a system with a limit
cycle.

Solution
A limit cycle is a closed orbit that is isolated (at least from one side).
It can be stable, unstable or half-stable. An example of a system with
a limit cycle is the van der Pol oscillator.
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d) What is meant by structural stability?

Solution
Structural stability means that the topology of the flow does not change
as the vector field is weakly perturbed. For example, linear centers are
nt structurally stable since the flow surrounding them may become
either attracting or repelling under a small non-linear perturbation.

e) In the problem sets you calculated the Lyapunov exponents for a con-
tinuous dynamical system (the Lorenz equations) and for a discrete
dynamical system (the Hénon map). Contrast any similarities or dif-
ferences in the two approaches.

Solution
For the continuous system a discretisation of the dynamics was used to
calculate the deformation matrix M as a product of discrete matrices
for short time intervals. Therefore the calculation of the Lyapunov
exponents was basically identical to that of a discrete system, with the
difference that the discrete matrix in the continuous case was given by
I + Jδt, while it for the discrete system was given simply by J.

f) The generalized fractal dimension Dq is defined by

Dq ≡
1

1− q
lim
ε→0

ln I(q, ε)

ln(1/ε)
(2)

with

I(q, ε) =

Nbox∑
k=1

pqk(ε) .

Here pk is the probability to be in the k:th occupied box and Nbox is the
total number of occupied boxes. Briefly explain an appropriate method
to calculate Dq from numerical or experimental data.

Solution
A suitable method is to plot ln I(q, ε) against ln ε to see in which range
we have a power-law scaling I(q, ε) ∼ Aqε

(q−1)Dq . In this range the
slope of the curve gives Dq independent from Aq:

Dq =
1

q − 1

∆ ln I(q, ε)

∆ ln ε
.

3. Bifurcations [2 points]

a) Sketch the bifurcation diagram for the dynamical system

ẋ = x+ rx(x− 1) .

Determine all values rc where bifurcations occur and determine the
kind(s) of bifurcation(s).
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Solution
Fixed points where x+ rx(x− 1) = 0, i.e. at x∗ = 0 and x∗ = 1− 1/r.
Linear stability analysis f ′(x) = 1− r+2rx shows that x∗ = 0 is stable
if r > 1 and unstable otherwise and that x∗ = 1− 1/r is stable if r < 1
and unstable otherwise. We have a transcritical bifurcation at rc = 1.

b) Sketch the bifurcation diagram for the dynamical system

ẋ = x3 + r2x− rx

Determine all values rc where bifurcations occur and determine the
kind(s) of bifurcation(s).

Solution
Fixed points where x3 + r(r − 1)x = 0, i.e. at x∗ = 0 and x∗ =
±
√
r(1− r) (these exists if 0 ≤ r ≤ 1). We have f ′(x) = 3x2 + r2 − r,

i.e. x∗ = 0 is stable if 0 < r < 1 and unstable otherwise, while
x∗ = ±

√
r(1− r) are unstable when they exist. The system has two

subcritical pitchfork bifurcations at rc = 0 and rc = 1.

4. Construction of degenerate fixed points [2 points] Both stars
and degenerate nodes are fixed points of linear systems whose Jacobian eval-
uated at the fixed point has two equal eigenvalues. For a star all vectors are
eigenvectors, while a degenerate node only has a single eigenvector.

a) Construct an example of a linear dynamical system for x and y that
has a stable star at the point (x∗, y∗) = (1, 2).

Solution
The condition that any vector ξ is an eigenvector, Jξ = λξ, implies
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that J is λI, where I is the identity matrix and λ is the eigenvalue. As
an example, the system

ẋ = 1− x
ẏ = 2− y

has a fixed point at (x∗, y∗) = (1, 2) that is a stable star (eigenvalue
λ = −1).

b) Construct an example of a linear dynamical system for x and y that
has a stable degenerate node at the origin.

Solution
Let ẋ = Jx The eigenvalues are equal with negative value λ = tr J/2
if tr J = −2

√
det J:

J11 + J22 = −2
√
J11J22 − J12J21 .

As an example, choose J21 = 0, J12 = 1, J11 = J22 = −1:

J =

(
−1 1
0 −1

)
with eigenvalue λ = −1. Since this choice of J is not a multiple of
the unit matrix, we can only have one eigenvector corresponding to the
single eigenvalue λ = −1, as required. Explicitly, the system becomes

ẋ = −x+ y

ẏ = −y

c) Determine the stable and unstable manifolds for your example system
in subtask b).

Solution
The stable manifold is given by the entire phase plane. In contrast, the
stable direction of the fixed point, v, such that Jv = −v:(

−1 1
0 −1

)
v =

(
−vx + vy
−vy

)
= −

(
vx
vy

)
We can take as eigenvector v = (1, 0) and the stable direction is the
x-axis. The unstable manifold is simply the fixed point (x∗, y∗) = (0, 0)
(also ‘does not exist’ is an acceptable answer).

d) Construct a nonlinear system with a single fixed point at (x∗, y∗) =
(0, 0). The system should be such that linear stability analysis predicts
a line of fixed points, but the contribution from non-linear terms results
in a single fixed point that is a stable node.
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Solution
One example of such a system is

ẋ = −x
ẏ = −y3

We have a single fixed point attracting from all directions without swirl
(stable node) and linear stability analysis predicts a line of fixed points
because one eigenvalue of the Jacobian J(0, 0) is zero:

J =

(
−1 0
0 0

)
.

5. Biased van der Pol oscillator [2 points] Consider the van der Pol
oscillator biased with a constant force F :

ẍ = −µ(x2 − 1)ẋ− x+ F . (3)

Here µ and F are real parameters.

a) Introduce y = ẋ and write Eq. (3) as a dynamical system and determine
all of its fixed points.

Solution
Let y = ẋ and write

ẋ = y

ẏ = −µ(x2 − 1)y − x+ F

A single fixed point at (x∗, y∗) = (F, 0).

b) Analytically find the values of µ and F for which bifurcations occur in
the system. The kind of bifurcations you should look for are bifurca-
tions where the real part of an eigenvalue of the Jacobian at an isolated
fixed point passes zero. Identify the types of found bifurcations.

Solution
The Jacobian of the fixed point (x∗, y∗) = (F, 0) is

J(x∗, y∗) =

(
0 1

−2µx∗y∗ − 1 −µ((x∗)2 − 1)

)
=

(
0 1
−1 −µ(F 2 − 1)

)
tr J(x∗, y∗) = −µ(F 2 − 1)

det J(x∗, y∗) = 1

with eigenvalues

λ1,2 =
−µ(F 2 − 1)±

√
µ2(F 2 − 1)2 − 4

2
.
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A bifurcation occurs if the real part of the eigenvalue passes zero. As-
suming that the square root is positive, the condition to have a zero
eigenvalue is:

0 =
−tr J±

√
(tr J)2 − 4 det J

2

tr J = ±
√

(tr J)2 − 4 det J
(tr J)2 = (tr J)2 − 4 det J

0 = −4 det J .

That is, this condition can only be satisfied if det J = 0, which is
not the case here (det J = 1). The only possibility is to have a Hopf
bifurcation, i.e. if the real part of the eigenvalue crosses zero with a
non-zero imaginary part. The imaginary part of the eigenvalue can
only come from the square root. The real part crosses zero when either
µ = 0 or when F = ±1. For both these cases, the eigenvalues are
purely imaginary, i.e. we have Hopf bifurcations. In conclusion, we
have Hopf bifurcations along the curves µ = 0, F = −1, or F = 1.

c) Plot the curves in (µ, F ) space where bifurcations occur and label them
with their types. Label the regions between the bifurcation curves with
the number of stable fixed points and the number of unstable fixed
points.

Solution
We have one fixed point everywhere. It is stable when −µ(F 2− 1) < 0

6. Middle Cantor sets [2 points] The two figures below show the first
few generations in the construction of two fractals. The fractal set is obtained
by iterating to generation Sn with n→∞.

a) Analytically find the box-counting dimension D0 for the ‘Middle third’s
Cantor set’, obtained by at each generation removing the central 1/3
of each interval.
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Solution
Using boxes of side length ε = 3−n it takes Nn = 2n boxes to cover the
fractal. Thus

D0 = − lim
n→∞

ln(2n)

ln(3−n)
=

ln 2

ln 3
.

b) Analytically find the box-counting dimensionD0 for the ‘Middle fourth’s
Cantor set’, obtained by at each generation removing the central 1/4
of each interval.

Solution
At generation n we have Nn = 2n connected intervals of equal length:
ln = ln−1(1 − 1/4)/2 = ln−13/8. This recursion equation is solved by
(using Beta or by inspection) ln = l0(3/8)n. Using εn = ln the box-
counting dimension becomes

D0 = − lim
n→∞

ln(2n)

ln(l0(3/8)n)
=

ln 2

ln(8/3)
.

c) Analytically find the box-counting dimension D0 for the generalized
Cantor set obtained by at each generation removing the central fraction
q of each interval. To check your result, make sure that D0 equals your
results in a) for q = 1/3 and in b) for q = 1/4. You can also check that
D0 → 1 as q → 0 and D0 → 0 as q → 1.

Solution
Similar to subtask b), at generation n we have Nn = 2n connected
intervals of equal length: ln = ln−1(1 − q)/2. This gives ln = l0((1 −
q)/2)2 and the fractal dimension becomes

D0 = − lim
n→∞

ln(2n)

ln(l0((1− q)/2)n)
=

ln 2

ln(2/(1− q))
.
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