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1. Multiple choice questions [2 points] For each of the following ques-
tions identify all the correct alternatives A–E. Answer with letters among
A–E. Some questions may have more than one correct alternative. In
these cases answer with all appropriate letters among A–E.

a) Classify the fixed point of the two-dimensional dynamical system:

ẋ = Ax , where A =

(
3 4
4 2

)
.

A. It is a saddle point.

B. It is a stable spiral.

C. It is an unstable spiral.

D. It is a stable node.

E. It is an unstable node.

b) Which of the following kinds of fixed points do you typically encounter
in Hamiltonian dynamical systems

A. Nodes

B. Saddles

C. Spirals

D. Centers

E. Conservative systems do not have fixed points.

1 (8)



c) May the following dynamical system exhibit chaos?

ẋ = x2 + 2xy

ẏ = x− y + xy .

ż = z2

A. Yes, because of the dimensionality of the system.

B. Yes, because the system is non-linear.

C. Yes, because the maximal Lyapunov exponent is positive.

D. Yes, because the system is mixing.

E. No.

d) The figure below shows a phase portrait of a flow with four fixed points:

What is the index of a curve surrounding this phase portrait?
A. -2 B. -1 C. 0 D. 1 E. 2

e) The image below shows a section of a phase portrait:

Which of the following statements are true for the trajectory that orig-
inates and ends at the unstable fixed point?

A. It is a heteroclinic orbit.

B. It is a homoclinic orbit.

C. It is a separatrix.

D. Its index is +1.

E. Its index is not defined.
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f) The figure below shows the first few generations in the construction of
a fractal. The fractal set is obtained by iterating to generation Sn with
n→∞.

S1 S2 S3

Which of the following alternatives describe the box-counting dimen-
sion of the fractal above?

A.
log(2)

log(3)
B.

log(3)

log(2)
C.

log(3)

log(4)
D.

log(4)

log(3)
E.

3

2

2. Short questions [2 points] For each of the following questions give a
concise answer within a few lines per question.

a) Assume that you are given a dynamical system which you simulate on
your computer. How can you determine whether the obtained solutions
are structurally stable?

b) Explain the Poincaré-Bendixon theorem.

c) Explain what kinds of dynamics one can obtain from a system of two
uncoupled oscillators on the torus:

θ̇1 = ω1 = const.

θ̇2 = ω2 = const.
.

d) Explain what a Hopf bifurcation is.

e) Explain the difference of chaotic motion in a volume-conserving system
and in a dissipative system.

f) What is the significance of the parameter q in the generalized dimension
spectrum Dq?

3. Normal forms of bifurcations [2.5 points] The normal forms of typi-
cal bifurcations for dynamical systems of dimensionality one are the following:

Type saddle-node transcritical supercrit. pitchfork subcrit. pitchfork
Normal form ẋ = r + x2 ẋ = rx− x2 ẋ = rx− x3 ẋ = rx+ x3

a) Discuss why normal forms of bifurcations are useful in the context of
dynamical systems.
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Solution
The normal forms describe the universal forms of dynamical systems
close to bifurcations. They can therefore be used to analytically identify
bifurcations and their type, or to construct dynamical systems with
desired bifurcation properties.

b) Consider the system

ẋ =
x

x+ 1
− ax ,

where a is a real parameter. The system undergoes a bifurcation at
x = 0 as the parameter a changes. Identify the bifurcation point and
type of bifurcation by writing the system on normal form close to the
bifurcation.

Solution
Series expand the flow ẋ = f(x) around x = 0 to get

f(0) ≈ (1− a)x− x2 + x3 .

Comparison to the normal forms show that we have a transcritical
bifurcation at the bifurcation point ac = 1.

c) Use the normal forms above to construct a dynamical system of dimen-
sionality one, ẋ = f(x), with a single bifurcation parameter a such that
the system undergoes a supercritical pitchfork bifurcation at a = 0 and
x = 0, and a subcritical pitchfork bifurcation at a = 1 and x = 1.
Hint: To simplify, you can start from the ansatz f(x) = c0(a)+c1(a)x+
c2x

2 + c3x
3 + c4x

4, where ci are coefficients to be determined and where
only c0(a) and c1(a) depend on a.

Solution
We use the normal forms for the pitchfork bifurcations to construct the
system. Series expansions to third order around x = 0 gives

f(x = 0) ≈ c0(a) + c1(a)x+ c2x
2 + c3x

3

Comparison of this equation to the normal form of the supercritical
pitchfork rx− x3 we get c0(a) = O(a), c1(a) = a + O(a2), c2 = 0, and
c3 = −1, i.e. the ansatz reduces to f(x) = c0(a) + c1(a)x − x3 + c4x

4.
Series expansions to third order around x = 1 now gives

f(x = 1) ≈ f(1) + f ′(1)(x− 1) +
1

2
f ′′(1)(x− 1)2 +

1

6
f ′′′(1)(x− 1)3

= c0(a) + c1(a)− 1 + c4 + (c1 − 3 + 4c4)(x− 1)

+ (−3 + 6c4)(x− 1)2 + (−1 + 4c4)(x− 1)3

We compare this equation to the normal form of the subcritical pitch-
fork at x = 1 and r = 1: (r − 1)(x − 1) + (x − 1)3. Both the (x − 1)2
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and (x − 1)3 terms give c4 = 1/2. Choosing c1 = a and c0 = −a2/2
(in agreement with the result above) the behaviour around x = 1 and
a = 1 becomes

f(x = 1) ≈ −(a− 1)2

2
+ (a− 1)(x− 1) + (x− 1)3 ≈ (a− 1)(x− 1) + (x− 1)3

in agreement with the normal form.

In conclusion, our constructed system becomes

ẋ = −a
2

2
+ ax− x3 +

1

2
x4 .

d) Sketch the bifurcation diagram of your system in subtask c).

Solution
The following figure shows a sketch of the bifurcation diagram (it is
not necessary to solve the problem analytically, but the fixed points
are x∗ = ±

√
r and x∗ = 1±

√
1− r):

a

x
∗

4. Laser model [2 points] A simple model for a laser is provided by

ṅ = GnN − kn
Ṅ = −GnN − fN + p ,

(1)

where N(t) is the number of excited atoms and n(t) is the number of photons
in the laser field. The parameters G, k, and f are positive and p can take
either sign.

a) Introduce suitable dimensionless units and write the system on dimen-
sionless form in terms of two dimensionless parameters.

Solution
Let t = t0τ , n = n0x and N = N0y to rewrite Eq. (1) as

dx

dτ
=
t0
n0

[n0N0Gxy − n0kx] = t0N0Gxy − t0kx

dy

dτ
=

t0
N0

[−n0N0Gxy −N0fy + p] = −t0n0Gxy − t0fy +
t0
N0

p ,
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Choose t0 = 1/k, N0 = n0 = k/G to get

dx

dτ
= xy − x

dy

dτ
= −xy − f

k︸︷︷︸
≡α

y +
Gp

k2︸︷︷︸
≡β

.

with α > 0 and β can take either sign.

b) Find all the fixed points of the system (1) and determine their stability.

Solution
The first equation has nullclines at either x = 0 or y = 1. The first
case gives the fixed point (x∗1, y

∗
1) = (0, β/α), the second case gives

(x∗1, y
∗
1) = (β − α, 1).

The Jacobian becomes

J =

(
y − 1 x
−y −α− x

)
J(x∗1, y

∗
1) =

(
β/α− 1 0
−β/α −α

)
tr J(x∗1, y

∗
1) = β/α− 1− α

det J(x∗1, y
∗
1) = α− β

J(x∗2, y
∗
2) =

(
0 β − α
−1 −β

)
tr J(x∗2, y

∗
2) = −β

det J(x∗2, y
∗
2) = β − α

The first fixed point is unstable (saddle-point) if α < β since det J(x∗1, y
∗
1) <

0. When β < α, tr J(x∗1, y
∗
1) = β/α− 1− α < α/α− 1− α < 0, i.e. the

first fixed point is stable (stable node).

The second fixed point is unstable (saddle-point) if α > β since det J(x∗2, y
∗
2) <

0. When β > α > 0, tr J(x∗1, y
∗
1) = −β > 0, it is stable (node or spiral

depending on the parameters).

c) Make a plot over the two-dimensional parameter space spanned by the
two dimensionless parameters from subtask a). Plot any curves where
regular bifurcations occur and label them with their type. Also label
the regions separated by bifurcation curves with the number of stable
fixed points and the number of unstable fixed points.

Solution
The number of fixed points remain constant for all parameters, but
their stability changes along the line α = β in the α-β parameter space
(transcritical bifurcation).
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5. Van der Pol relaxation oscillator [1.5 points] The van der Pol
oscillator is governed by the following dynamics:

ẍ+ µ(x2 − 1)ẋ+ x = 0 , (2)

where x(t) is a dynamical variable and µ is a positive parameter, µ > 0.

a) Introduce y = ẋ/µ + x3/3 − x and derive a dynamical system for x
and y.

Solution
The dynamical system corresponding to Eq. (2) is

ẋ = µ[y − (x3/3− x)]

ẏ = ẍ/µ+ (x2 − 1)ẋ = −x/µ .

b) Classify the fixed points (determine stability and type) of the dynamical
system in subtask a) for general positive values of µ.

Solution
The system has a single fixed point at the origin. The Jacobian evalu-
ated at the origin becomes

J =

(
µ µ
−1/µ 0

)
tr J = µ

det J = 1

The fixed point is an unstable spiral for 0 < µ < 2 and an unstable
node for µ > 2. When µ = 2, J is not a multiple of the unit matrix
and the fixed point is therefore an unstable degenerate node.

c) Explain the dynamics of the van der Pol oscillator in the limit of large
values of µ.

Solution
Relaxation oscillations, see Lecture notes 8.0.1

6. Lyapunov exponents [2 points] Consider the dynamical system

ẋ = a(y − x)

ẏ = (c− a)x− xz + cy

ż = xy − bz
(3)

where x, y and z are dynamical variables and a, b and c are parameters.

a) For a = 40, b = 3, and c = 28 the system (3) has no stable fixed
points. In this limit, calculate the sum of the Lyapunov exponents of
the system.
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Solution

The Jacobian becomes

J =

 −a a 0
c− a− z c −x

y x −b


tr J = c− b− a = −15 < 0

Since tr J is independent of the position, the sum of the Lyapunov
exponents becomes λ1 + λ2 + λ3 = −15

b) Given that the maximal Lyapunov exponent in the system (3) is pos-
itive, discuss what long-term behavior you expect from the system for
the parameter values quoted in subtask a).

Solution
Since the system is dissipative tr J < 0 everywhere, since there are no
stable fixed points, and since λ1 > 0 we expect the dynamics to be
chaotic with a strange attractor.

c) For a = 3 and b = c = 1 the system (3) has a single fixed point at the
origin x = y = z = 0 which is stable and attracts the full phase-volume.
Determine the Lyapunov exponents of the system.
Hint: For this system the Lyapunov exponents are equal to the real
part of the stability exponents of separations.

Solution

For a system with a globally attracting fixed point, all trajectories
approach it and consequently the Lyapunov exponents become equal
to the real part of the stability exponents of the Jacobian at the fixed
point:

J =

−3 3 0
−2 1 0
0 0 −1


One eigenvalue is σ3 = −1, the other two are obtained from the eigen-
values of the upper left 2×2 matrix with trace τ = −2 and determinant
∆ = −3 + 6 = 3:

σ1,2 =
1

2
(τ ±

√
τ 2 − 4∆) = −1± i

√
2

Consequently, all three Lyapunov exponents are equal to −1.

d) Discuss how the dynamics in subtask c) can turn into the dynamics in
subtask b) as the parameters change.

Solution
Discussion based on Lecture notes 13.1.
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