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1. Multiple choice questions [2 points] For each of the following ques-
tions identify all the correct alternatives A–E. Answer with letters among
A–E. Some questions may have more than one correct alternative. In
these cases answer with all appropriate letters among A–E.

a) Classify the fixed point of the two-dimensional dynamical system:

ẋ = Ax , where A =

(
−3 4
−4 2

)
.

A. It is a saddle point.

B. It is a stable spiral.

C. It is an unstable spiral.

D. It is a stable node.

E. It is an unstable node.

b) The normal forms of typical bifurcations for dynamical systems of di-
mensionality one are the following:

Type saddle-node transcritical supercrit. pitchfork subcrit. pitchfork
Normal form ẋ = r + x2 ẋ = rx− x2 ẋ = rx− x3 ẋ = rx+ x3

How does the stability time of the fixed points close to a subcritical
pitchfork bifurcation scale with the bifurcation parameter r?

A. ∼ 1
r

B. ∼ 1√
r

C. ∼ 1 D. ∼
√
r E. ∼ r

1 (10)



c) Which type(s) of bifurcation(s) does the system ẋ = 5− re−x2 have?

A. Saddle-node bifurcation

B. Transcritical bifurcation

C. Supercritical pitchfork bifurcation

D. Subcritical pitchfork bifurcation

E. No bifurcation occurs

d) Each path A–E in the ∆-τ diagram below (∆ and τ are the determi-
nant and trace of the stability matrix of dimensionality two) is obtained
from τ and ∆ of a fixed point upon increasing a parameter.

A

B

C

D E

Which of the paths corresponds to one of the fixed points in a normal
form of the saddle-node bifurcation in dimensionality two?

A. B. C. D. E.

e) The figure below shows the phase portrait of the system:

ẋ = y3

ẏ = x

x

y

What is the index of the fixed point at the origin?
A. -2 B. -1 C. 0 D. 1 E. 2
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f) Which properties hold in general for the Lyapunov exponents in a con-
tinuous dynamical system of dimensionality three with a strange at-
tractor that is globally attracting?

A. One Lyapunov exponent is negative

B. One Lyapunov exponent is zero

C. One Lyapunov exponent is positive

D. The sum of all Lyapunov exponents is negative

E. The sum of all Lyapunov exponents is zero

2. Short questions [2 points] For each of the following questions give a
concise answer within a few lines per question.

a) Write down the equations for a Hamiltonian dynamical system of your
choice.

Solution
For example, starting from Newton’s second law of motion, F = mẍ,
we have the Hamiltonian system

ẋ =
p

m
, ṗ = F

b) What is meant by a catastrophe in the context of bifurcation theory?

Solution
A catastrophe is a sudden change in the state of the system as a pa-
rameter is changed. For example, after a saddle-node bifurcation or a
subcritical pitchfork bifurcation, the system quickly shifts to a distant
attractor.

c) Explain what the difference between a global and a local bifurcation is.
Give two examples of global bifurcations.

Solution
Bifurcations of cycles, infinite-period bifurcation, bifurcation of hete-
roclinic trajectories, bifurcation of homoclinic orbit, . . .

d) Explain what is meant by a secular term in perturbation theory.

Solution
When performing perturbation theory in a small parameter ε in a time-
dependent problem, it is common that the perturbation coefficients in
ε grow without bound as t → ∞. Such terms growing without bound
are denoted secular terms.

e) What value does the maximal Lyapunov exponent of a stable limit
cycle take? Explain why.

Solution
The maximal Lyapunov exponent is zero. For a stable limit cycle
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closeby trajectories are attracted, meaning all Lyapunov exponents are
negative, except for the Lyapunov exponent along the cycle which must
be zero due to periodicity (separations can neither grow nor shrink in
the long run because after one revolution of the limit cycle, the sepa-
ration is back to the original length).

f) Explain why the transition from regular dynamics to chaos is typically
very different in dissipative and in Hamiltonian dynamical systems.

Solution
In dissipative systems the transitions usually occurs though a sequence
of bifurcations of where attractors becomes unstable. In Hamiltonian
systems there are no attractors and the thransition instead occurs in
bifurcations where closed orbits break up.

3. Imperfect bifurcations [2.5 points] Consider the system

ẋ = 2(4 + a+ 3r) + (12 + a+ 5r)x+ (6 + r)x2 + x3 (1)

where r and a are real parameters.

a) The system (1) has one fixed point x∗ which is independent of the
parameters a and b. Find the value of this fixed point.

Solution
Since one fixed point is independent of the parameters we can set the
parameters to any value, for instance a = −3r−4 (removes the constant
term) and furthermore r = −4 (removes the linear term), to obtain

ẋ = 2x2 + x3

Solving this flow equal zero gives x∗ = −2 and x∗ = 0. Inserting these
values in the original system, we find that x∗ = −2 is a fixed point for
all parameter values.

b) Find and classify all bifurcations that occur in the system (1) when
a = 0. Sketch the bifurcation diagram.
Hint: It may be helpful to know that the shifted coordinate ξ = x+x∗,
where x∗ is the parameter-independent fixed point in subtask a), has
the following dynamics

ξ̇ = (a+ r)ξ + rξ2 + ξ3 .

Solution
The shifted system has fixed points at

ξ∗1 = 0 , ξ∗2 =
1

2

(
−r −

√
r2 − 4a− 4r

)
, ξ∗3 =

1

2

(
−r +

√
r2 − 4a− 4r

)
.

When a = 0 we have three fixed points if r < 0 or if r > 4, otherwise
we have one fixed point.
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For the case r = 0, we have a triple root: ξ∗1 = ξ∗2 = ξ∗3 = 0.
For the case r = 4, we have a double root: ξ∗2 = ξ∗3 = −2.
Since the number of fixed points changes, we can conclude that we have
a pitchfork bifurcation between all three fixed points at rc = 0 and a
saddle-node bifurcation between ξ∗2 and ξ∗3 at rc = 4.

Differentiating the shifted flow with respect to ξ gives

∂ξ̇

∂ξ
= a+ r + 2rξ + 3ξ2 .

ξ∗1 is stable when r < −a and unstable for r > −a. As a consequence,
the pitchfork bifurcation at a = 0 is subcritical and the upper branch of
the saddle-node bifurcation is stable. Sketching the bifurcation diagram
(asymptotes x∗ ∼ 1 − r and x∗ ∼ −1) verifies that the system has
no other bifurcations (the corresponding bifurcation diagram for x is
simply shifted by 2):

c) Find and classify all bifurcations that occur in the system (1) when
a = −1. Sketch the bifurcation diagram.

Solution
When a = −1 the fixed points are located at

ξ∗1 = 0 , ξ∗2 =
1

2
(−r − |r − 2|) , ξ∗3 =

1

2
(−r + |r − 2|) .

Equivalently, we can reorder the second and third fixed points at r = 2
to obtain

ξ∗1 = 0 , ξ∗2 = 1− r , ξ∗3 = −1 .

Sketch the bifurcation diagram:
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We find that the system has two transcritical bifurcations, one at rc = 1
and one at rc = 2.

4. Linear stability analysis and phase portrait [1.5 points] Consider
the following dynamical system

ẋ = ax2 − xy
ẏ = −y + x2

(2)

where 0 ≤ a ≤ 1 is a real parameter.

a) Identify all fixed points of the system (2) and classify them according
to linear stability analysis for the parameter range 0 ≤ a ≤ 1.

Solution
Fixed points: (x∗1, y

∗
1) = (0, 0) and (x∗1, y

∗
1) = (a, a2). Jacobian matrix

J(x, y) =

(
2ax− y −x

2x −1

)
J(x∗1, y

∗
1) =

(
0 0
0 −1

)
tr J(x∗1, y

∗
1) = −1

det J(x∗1, y
∗
1) = 0

J(x∗2, y
∗
2) =

(
a2 −a
2a −1

)
tr J(x∗2, y

∗
2) = a2 − 1

det J(x∗2, y
∗
2) = a2

According to linear stability analysis, the first fixed point is stable in
the y-direction and marginally stable in the x-direction (in a linear
system we would have had a line of stable fixed points). For the second
fixed point, the discriminant (a2 − 1)2 − 4a2 has a relevant zero when
a2 = 3 −

√
8, i.e. when a =

√
2 − 1. According to linear stability

analysis, the second fixed point is therefore a center if a = 1, a stable
spiral if

√
2−1 < a < 1, a stable degenerate node if a =

√
2−1 (J(x∗2, y

∗
2)

is not multiple of the unit matrix), a stable node if 0 < a <
√

2 − 1
and the system only has one fixed point when a = 0.
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b) Using the nullclines as a guide, sketch the phase portrait of the system
(2) for the case a = 0. Describe in words how trajectories behave close
to the fixed point.

Solution
When a = 0, the nullclines corresponding to ẋ = 0 are x = 0 and y = 0
and the nullclines corresponding to ẏ = 0 are y = x2:

When y < 0 then sign(ẋ) = sign(x) and ẏ > 0, i.e. all trajectories with
x 6= 0 will cross the line y = 0 trajectories, moving away from the fixed
point in the x-direction. When y > 0 then sign(ẋ) = −sign(x) and
all trajectories will eventually get arbitrarily close to the fixed point.
In conclusion, the fixed point is globally attracting, but all trajectories
approach it from positive values of y.

5. Hopf bifurcation [2 points] Consider the following dynamical system

ẋ = y

ẏ = −x+ µy − x2y − 2y3
(3)

where µ is a real parameter.

a) Show that the system (3) undergoes a Hopf bifurcation as µ passes
zero.

Solution
The system has a single fixed point at the origin. The Jacobian evalu-
ated at the origin becomes

J =

(
0 1

−1− 2xy µ− x2 − 6y2

)∣∣∣∣
x=y=0

=

(
0 1
−1 µ

)
tr J = µ

det J = 1 .

The corresponding eigenvalues λ± = (µ±
√
µ2 − 4)/2 passes from neg-

ative to positive real part with a non-zero imaginary part as µ passes
zero. Thus, we have a Hopf bifurcation when µ passes zero.
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b) Consider the case µ = 0 in the system (3) and classify the fixed point
at the origin.

Solution
When µ = 0 linear stability analysis implies that the fixed point at the
origin is a center. However, non-linear terms may destroy the center
and to classify the fixed point we must consider the effect of the non-
linear terms. Consider the time evolution of the radial coordinate r =√
x2 + y2:

ṙ =
xẋ+ yẏ

r
=
xy + y(−x+ µy − x2y − 2y3)

r
=
y2

r
(µ− x2 − 2y2) .

When µ = 0, we have ṙ < 0 for any non-zero values of r. Consequently,
the origin is a stable spiral.

c) Consider the case µ = 1. Using the Poincaré-Bendixon theorem, show
that the system (3) has at least one closed orbit.

Solution
Consider once again the time evolution of the radial coordinate r =√
x2 + y2, now with µ = 1:

ṙ =
y2

r
(1− x2 − 2y2) .

First, rewriting ṙ = y2

r
(1 − r2 − y2) and let r = 1 gives ṙ = −y4

r
≤ 0

at r = 1. Second, rewriting ṙ = y2

r
(1 + x2 − 2r2) and let r = 1√

2

gives ṙ = x2y2

r
≥ 0 at r = 1√

2
. Thus, no trajectory starting within

1/
√

2 ≤ r ≤ 1 can leave this region (a trapping region) and since there
are no fixed points in the region, the Poincaré-Bendixon theorem gives
that we must have at least one closed orbit in the region.
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6. Fractal dimension of a weighted Cantor set [2 points] The gen-
eralized fractal dimension Dq is defined by

Dq ≡
1

1− q
lim
ε→0

ln I(q, ε)

ln(1/ε)

with

I(q, ε) =

Nbox∑
k=1

pqk(ε) .

Here pk is the probability to be in the k:th occupied box (box with pk 6= 0)
and Nbox is the total number of occupied boxes.
Consider a set Sn where n labels the generation. Start with S0 being the unit
interval. Sn is obtained by dividing each interval in the set Sn−1 into two
subintervals. Upon each division, allocate a fraction α (assume 0 ≤ α ≤ 1)
of the probability to be in the original interval to the left subinterval, and a
fraction 1− α to the right subinterval. The figure below illustrates the first
few generations S0, S1, S2 and S3:

p = 1

p = α p = 1− α

p = α2 p = α(1− α) p = α(1− α) p = (1− α)2

The probability to be in different intervals is displayed in the text below the
intervals. The height of an interval illustrates the relative probability to be
in that interval for the case α = 2/3. In what follows, consider the fractal
dimension of the set S∞ obtained by iterating n→∞.

a) Evaluate the generalized fractal dimension Dq of S∞ for the case α = 1.

Solution
When α = 1, the leftmost interval has all probability at each genera-
tion. The set becomes a single point with fractal dimension Dq = 0.

b) Evaluate the generalized fractal dimension Dq of S∞ for the case α = 1
2
.

Solution
When α = 1

2
, all intervals have equal probability at each generation.

Hence Sn is equivalent to the unit interval at any generation and the
fractal dimension becomes Dq = 1.
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c) Evaluate the box-counting dimension D0 of S∞ for 0 < α < 1.

Solution
Since all intervals have non-zero probability when 0 < α < 1, the box
counting dimension that does not take into account of the probability
to be at different intervals, must be equal to unity, i.e. D0 = 1 for
0 < α < 1.

d) Evaluate the generalized fractal dimension Dq of S∞ for general values
of α.
Hint: To verify your result, you can check that the results in subtasks
a), b) and c) come out correctly and that your result is symmetric upon
replacing α→ 1− α.

Solution
Consider intervals of length ε = 2−n at generation n. At each iteration,
subintervals takes either takes probability α times previous probability,
or 1 − α times previous probability. It follows that there will be

(
n
m

)
intervals having the probability αm(1− α)n−m with m = 0, . . . , n. We
use this information to evaluate

I(q, ε) =

Nbox∑
k=1

pqk(ε) =
n∑

m=0

(
n

m

)
[αq]m[(1− α)q]n−m = (αq + (1− α)q)n .

We obtain

Dq ≡
1

1− q
lim
ε→0

ln I(q, ε)

ln(1/ε)
=

1

1− q
lim
n→∞

ln [(αq + (1− α)q)n]

ln(2n)
=

1

1− q
ln [αq + (1− α)q]

ln 2
.

Consistency check when α = 0:

Dq =
1

1− q
ln 1

ln 2
= 0

Consistency check when α = 1/2:

Dq =
1

1− q
ln [2−q + 2−q]

ln 2
=

1

1− q
ln [21−q]

ln 2
=

ln 2

ln 2
= 1

Consistency check for q = 0 and 0 < α < 1:

Dq =
ln [1 + 1]

ln 2
= 1 .
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