
CHALMERS, GÖTEBORGS UNIVERSITET

EXAM for
DYNAMICAL SYSTEMS

COURSE CODES: TIF 155, FIM770GU, PhD

Time:
Place:
Teachers:
Allowed material:
Not allowed:

Test exam

Mathematics Handbook for Science and Engineering
any other written material, calculator

Maximum score on this exam: 12 points (need 5 points to pass).
Maximum score for homework problems: 24 points (need 10 points to pass).
CTH ≥18 passed; ≥26 grade 4; ≥31 grade 5,
GU ≥18 grade G; ≥ 28 grade VG.

1. Short questions [2 points] For each of the following questions give a
concise answer within a few lines per question.

a) What is a dynamical system?

Solution
A dynamical system consists of a set of quantities and a rule how these
evolve in time. These rules can be continuous (system of ordinary
differential equations, flow) or discrete (system of recurrence equations,
map)

b) Give three examples of dynamical systems.

Solution
Example examples: Pendulum, van Der Pol oscillator, models of lasers,
. . .

c) What is a nullcline?

Solution
A geometric shape (line in two-dimensional systems) formed by the
condition that the flow vanishes for one coordinate, ẋi = 0. Nullclines
partition space into regions where the flow has definite signs and the
intersections between nullclines give the fixed points of a system.

d) Give two examples of applications of nullclines in the analysis of dy-
namical systems.
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Solution
To help drawing phase portraits. To find locations of fixed points. To
understand how phase portrait changes when system parameters are
modified.

e) What is the index of a fixed point?

Solution
The index of a fixed point is equal to the index obtained from a curve
C encircling the fixed point and no other fixed points. This is a unique
number and tells how many counter-clockwise revolutions the vector
field does as the curve C is encircled counter-clockwise.

f) What does the Poincaré-Bendixon theorem state?

Solution
A trapping region is a closed region where the flow does not point
outwards anywhere. The Poincaré-Bendixon theorem applies to di-
mensionality two systems. It states that for any trapping region that
does not contain any fixed point, trajectories inside the trapping region
must end up on a closed orbit.

g) What does the maximal Lyapunov exponent characterize?

Solution
The maximal Lyapunov exponent λ1 characterizes the large-time aver-
age exponential growth or contraction rate of separations δ(t) between
two close-by particles:

λ1 ≡ lim
|δ(0)|→0

lim
t→∞

1

t
ln
|δ(t)|
|δ(0)|

h) What is the correlation dimension?

Solution
The correlation dimension is defined as the scaling with small ε of the
probability to find two points within distance ε, P (|x1−x2| < ε) ∼ εD2 .
The correlation dimension is equal to the generalized dimensionDq with
q = 2.

2. Imperfect bifurcation [2 points] Consider the system

ẋ = rx+ ax2 − x3

where a is a real parameter.

a) When a = 0 a bifurcation occurs when r passes zero. What kind of
bifurcation is it (explain why)? Sketch the bifurcation diagram.

Solution
Determine the fixed points and their stability when a = 0 by sketching
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ẋ against x with r < 0 and with r > 0:

Thus, i) when r < 0 we have a single stable fixed point at the origin
and when ii) r > 0 there are two stable fixed points and one unstable
at the origin. The case a = 0 is the normal form of a supercritical
pitchfork bifurcation, with the following bifurcation diagram:

b) For each value of non-zero a we obtain a different bifurcation diagram
x∗ against r. Sketch all the qualitatively different bifurcation diagrams
that can be obtained by varying a (you can skip the case a = 0).

Solution
The system has fixed points at

x∗1 = 0 , x∗2 =
a+
√
a2 + 4r

2
, x∗3 =

a−
√
a2 + 4r

2
.

• If r > 0 the square root is larger than a and we have one fixed
point to the left and one to the right of the fixed point in the origin
(case ii) above, stability must be the same because the x → ±∞
behaviour does not change when a is introduced).
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• If r < −a2/4 we have a single, stable fixed point in the origin, i.e.
case i) above.

• If −a2/4 < r < 0 there are two new possibilities: the two non-
zero fixed points both either lie to the left (a < 0) or to the right
(a > 0) of the origin:

Together these cases give the following bifurcation diagram:

When a 6= 0 we have a saddle-node bifurcation at r = −a2/4 and a
transcritical bifurcation at r = 0.

c) Sketch the regions in the (r,a)-plane that correspond to the bifurcation
diagrams in a) and b) and label the bifurcations that occur when you
pass from one region to another.

Solution
Summarizing the bifurcation diagrams for a < 0, a = 0 and a > 0 we
get:
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3. Phase portrait [1 point] A system with dimensionality two is known
to have exactly two fixed points. Both of these are saddle points.

a) Sketch a phase portrait in which a single trajectory connects the two
saddles.

Solution

b) Sketch a phase portrait in which no trajectory connects the saddles.

Solution
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c) Now change one of the fixed points to a spiral. Sketch a phase portrait
with a homoclinic orbit.

Solution

4. Stability analysis [1 point] Classify the fixed point(s) for the system

ẋ = −y + ax3

ẏ = x+ ay3

for any real value of the parameter a.
Solution
The system has a single fixed point (x∗, y∗) = (0, 0). The Jacobian evaluated
at this fixed point is

J =

(
3ax2 −1

1 3ay2

)∣∣∣∣
x=y=0

=

(
0 −1
1 0

)
This matrix has eigenvalues ±i, i.e. linear stability analysis gives a center.
When a = 0, there are no non-linear contributions and the fixed point is a
linear center.
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When a 6= 0 we must consider the effect of non-linear terms to characterize
the fixed point. This can be done in several ways. For example, evaluating
the divergence trJ = 3a(x2+y2) shows that the flow is contracting everywhere
(except the point x = y = 0) if a < 0 and expanding if a > 0. We conclude
that the fixed point must be a stable spiral if a < 0, and an unstable spiral
if a > 0.
Answer The fixed point at the origin is a stable spiral if a < 0, a linear
center if a = 0, and an unstable spiral if a > 0. NB: This problem is very
similar to one example in Lecture 4.

5. Pendulum [2 points] Consider a damped, rigid pendulum with con-
stant driving

θ̈ = − γ
m
θ̇ − g

l
sin θ +

τ

I0
(1)

where θ is the angle to the gravitational acceleration g with magnitude g =
|g|, m is a point mass, l is the distance of the point mass from the pendulum
center, τ is a constant torque applied to the pendulum, and I0 is the moment
of inertia with respect to the center.

a) Find a condition on the parameters in Eq. (1) that allows to use the
overdamped limit:

0 = − γ
m
θ̇ − g

l
sin θ +

τ

I0
.

Solution
Go to dimensionless units t = t0t

′ and multiply the equation by l/g to
make the entire equation dimensionless:

l

t20g

d2θ

dt′2
= − 1

t0

γl

mg

dθ

dt′
− sin θ +

τ l

I0g

Choose the time scale t0 = γl/(mg) to put the prefactor of dθ
dt′

to unity
(this term we want to keep). The dimensionless system becomes

m2g

γ2l

d2θ

dt′2
= −dθ

dt′
− sin θ +

τ l

I0g
.

If ε = m2g/(γ2l) � 1 we can neglect the angular acceleration (except
for initial transients), and the overdamped limit applies.
Answer: One condition where the overdamped limit applies is ε� 1.

Note that if we would have multiplied the equation by I0/τ instead of
l/g upon dedimensionalization, we would have obtained a different time
scale t0 and a different condition on the parameters, ετ l/(gI0)� 1, for
which the overdamped limit applies. In fact there are infinitely many
possible combinations to combine ε, τ l/(gI0) and the choice of t0 to form
conditions for the overdamped limit. Which of the different possibilities
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one should choose depends on the specific purpose one has in mind, and
are related by rescaling of time in the overdamped system.

Another remark: The overdamped limit is a new dynamical system that
is approached after a short initial transient. The angular acceleration
in the new dynamical system is not equal to the acceleration of the
original dynamical system for general phase-space coordinates (θ, θ̇).
The overdamped system is a one-dimensional system

θ̇ = −mg
γl

sin θ +
mτ

γI0
= f(θ) .

Extending this system with angular velocity y = θ̇ gives a two-dimensional
system

θ̇ = f(θ)

ẏ =
df

dt
(θ) = y

∂f

∂θ
(θ)

which has a different form compared to the original system correspond-
ing to Eq. (1). However, along the actual phase-space trajectories in
the overdamped system, the angular acceleration ẏ = y ∂f

∂θ
(θ) is equal to

the neglected angular acceleration in the original system.

b) Determine the fixed points and their stability for the overdamped pen-
dulum.

Solution
Solve

0 = − γ
m
θ̇ − g

l
sin θ +

τ

I0
,

with θ̇ = 0 to obtain sin θ∗ = lτ/(gI0) with explicit solutions

θ∗1 = arcsin

(
lτ

gI0

)
θ∗2 = π − arcsin

(
lτ

gI0

)
.

The stability of these can be obtained by inspection of I = lτ/(gI0)
and sin θ:
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When I = 0, θ∗1 = 0 is stable and θ∗2 = π is unstable (damped pen-
dulum). By continuity, θ∗1 must be stable and θ∗2 must be unstable for
all values of −1 < I < 1 (no bifurcations occur in this interval). This
can also be seen by noting that the flow is proportional to I − sin θ.
Finally, at I = ±1 there is a saddle-node bifurcation where the fixed
points are half-stable.

c) Does the overdamped pendulum have a conserved quantity? If so, what
is it?

Solution
The overdamped pendulum is a first-order differential equation in one
variable θ. This means that any conserved quantity must satisfy θ =
const.. We can not find such θ for general initial conditions, meaning
the overdamped pendulum does not have a conserved quantity.

d) Can you find a condition on the parameters for the driven pendulum
in Eq. (1) such that it has a conserved quantity? If so, what is it?

Solution
We know that a Hamiltonian system has one conserved quantity (the
energy). When γ = 0, Eq. (1) is equivalent to a Hamiltonian dynamical
system. Therefore, a condition on the parameters to have a conserved
quantity is γ = 0.

To find the corresponding conserved quantity, assume γ = 0 and mul-
tiply Eq. (1) by θ̇ and integrate

0 =

∫ T

0

dtθ̇

[
θ̈ +

g

l
sin θ − τ

I0

]
=

∫ T

0

dt
d

dt

[
1

2
θ̇2 − g

l
cos θ − τ

I0
θ

]
=

1

2
θ̇2T −

g

l
cos θT −

τ

I0
θT −

(
1

2
θ̇20 −

g

l
cos θ0 −

τ

I0
θ0

)
In conclusion E = 1

2
θ̇2− g

l
cos θ− τ

I0
θ is a conserved quantity. If multi-

plied by I), the terms represent in order: Kinetic energy, gravitational
potential energy, and work applied on the pendulum from the torque
(c.f. Work= F · x for a one-dimensional constant force).
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6. Bifurcations and Lyapunov exponents [2 points] Consider the
dynamical system from the third hand-in:

ṙ = µr − r3

θ̇ = ω + νr2
(2)

and answer the following questions.

a) What kind of bifurcation occurs in the corresponding Cartesian system
as µ passes zero? Explain why it is that bifurcation.

Solution
As shown in problem 2a) the r-dynamics undergoes a supercritical
pitchfork bifurcation at µ = 0 (now r is constrained to be positive).
Determine the eigenvalues of the Jacobian close to the origin (skip non-
linear terms in x and y):

ẋ = ṙ cos θ − rθ̇ sin θ ≈ µr cos θ − rω sin θ = µx− ωy
ẏ = ṙ sin θ + rθ̇ cos θ ≈ µr sin θ + rω cos θ = µy + ωx .

The corresponding Jacobian becomes

J =

(
µ −ω
ω µ

)
with eigenvalues λ1,2 = µ± iω. The eigenvalues form a complex pair as
the bifurcation occurs. Since the r-dynamics undergoes a supercritical
pitchfork bifurcation, a stable limit cycle is formed after the bifurcation,
meaning that we have a supercritical Hopf bifurcation.

b) What is the radius and period time of the stable limit cycle when µ > 0?

Solution
The limit cycle forms at the positive stable fixed point of the system
ṙ = 0. Solving 0 = µr − r3 for positive r gives r∗ =

√
µ. Thus, the

radius of the cycle is
√
µ.

At the limit cycle r =
√
µ, the angular dynamics becomes

θ̇ = ω + νµ ,

i.e. θ has a constant angular frequency ω + νµ and the period time
becomes T = 2π/(ω + νµ).

c) Can you determine which Lyapunov exponents are positive/negative/zero
for the system (2) when µ < 0 and when µ > 0?

Solution
When µ < 0 the system has one globally attracting fixed point at
x∗ = y∗ = 0. It follows that for large times any trajectory approaches
the fixed point, and all Lyapunov exponents are therefore negative.
When µ > 0 we have an attracting limit cycle, for which one Lyapunov
exponent must be zero (for dynamics along the cycle) and one Lyapunov
exponent must be negative (because cycle is attracting).
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7. Fractal dimensions [2 points] The generalized fractal dimension Dq

is defined by

Dq ≡
1

1− q
lim
ε→0

ln I(q, ε)

ln(1/ε)
(3)

with

I(q, ε) =

Nbox∑
k=1

pqk(ε) .

Here pk is the probability to be in the k:th occupied box and Nbox is the total
number of occupied boxes.

a) Show that Dq is constant for a mono-fractal, i.e. a fractal where all
occupied boxes have equal probability.

Solution
If all boxes have equal probability pk ∼ 1/Nbox, Dq becomes

Dq =
1

1− q
lim
ε→0

ln
(∑Nbox

k=1 p
q
k

)
ln(1/ε)

=
1

1− q
lim
ε→0

ln(Nbox(1/Nbox)
q)

ln(1/ε)

=
1

1− q
lim
ε→0

ln(N1−q
box )

ln(1/ε)
= lim

ε→0

ln(Nbox)

ln(1/ε)
= D0

i.e. Dq = D0 = const. Q.E.D.

b) In Eq. (3) the limit ε → 0 is taken. This raises some problems in nu-
merical evaluations of Dq from numerical or experimental data. Discuss
the potential problems and discuss how they can be resolved.

Solution
Two problems in evaluating Eq. (3) with a small value of ε for numerical
data are that it is unclear whether we have enough points in our data to
resolve the chosen value of ε, and that there is an unknown coefficient
Aq in the scaling law corresponding to Eq. (3): I(q, ε) ∼ Aqε

(q−1)Dq .

These problems can be resolved by plotting ln I(q, ε) against ln ε to see
in which range we have a power-law scaling:
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In this range the scaling I(q, ε) ∼ Aqε
(q−1)Dq holds, and the slope of the

curve gives Dq independent from Aq:

Dq =
1

q − 1

∆ ln I(q, ε)

∆ ln ε
.

c) Evaluate the limit q → 1 (the information dimension).

Solution
Expand ln I(q, ε) around q = 1

ln I(q, ε) = ln

(
Nbox∑
k=1

pqk

)
[
From Beta: ax ∼ 1 + x ln a ⇒ pq−1k ∼ 1 + (q − 1) ln pk ⇒ pqk ∼ pk(1 + (q − 1) ln pk) for q ≈ 1

]
= ln

(
Nbox∑
k=1

pk +

Nbox∑
k=1

pk(q − 1) ln pk)

)
[
Use norm:

Nbox∑
k=1

pk = 1 and from Beta:

ln(1 + x) ∼ x⇒ ln(1 + (q − 1)A) ≈ (q − 1)A for q ≈ 1 with A =

Nbox∑
k=1

pk ln pk

]

=

Nbox∑
k=1

pk(q − 1) ln pk .
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Using this expression we get the limit q → 1:

lim
q→1

Dq = lim
q→1

lim
ε→0

1

1− q
ln (I(q, ε))

ln(1/ε)

= lim
q→1

lim
ε→0

1

1− q
(q − 1)

∑Nbox

k=1 pk ln pk
ln(1/ε)

= lim
ε→0

∑Nbox

k=1 pk ln pk
ln(ε)

.

d) Why is the limit q → 1 specifically sensitive to normalization of prob-
abilities?

Solution
If pk is not normalized to unity,

∑Nbox

k=1 pk = 1, the lowest-order contri-
bution in the expansion of ln I(q, ε) is not proportional to q−1, meaning
that D1 becomes (wrongly) infinite.

e) Does the resolution you discussed in problem b) apply to the limit
q → 1?

Solution
Yes, it applies with some modifications. From problem c) we have
D1 ln(ε) =

∑Nbox

k=1 pk ln pk = ln(exp(
∑Nbox

k=1 pk ln pk)) for small values of

ε. I.e. if we replace I1 by exp(
∑Nbox

k=1 pk ln pk) the resolution in problem
b) applies.
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