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When the spring is fully compressed, each cart moves with same velocity v Apply
conservation of momentum for the system of two gliders

. - L - ~ MV My,
P, =P;: MV + 1,V =(my) +m, )V v=—-——m -
1,

. 1
Only conservative forces act, therefore AF =0 %mlv]z +%m2v§ = E(ml +my o +%kx,2n

Substitute for v from (a) and solve for x,,

2 (my +my)myof +(my +my )y o3 —(mlvl)z —(mzvz)z - 2mym,v, 0,

7 k(my +m)
2
m'[mz(vl +03 _2‘1’1?’12) MM,
X = P2 = (01_32) k—___
(1my +1m5) (my +my)
MV +myVy =V MV,
Conservation of momentum: (\71 - fr]f) = mz(‘"rzf - i’z) I
Conservation of energy: lmr o +lm 3 =lm v} +lm vy
¥ g UL T Mty = Dy Uy
which simplifies to: my (vf - vlzf ) = mz(zfgf - v%)
Factoring gives my(Vy =y ) (91 + V) =my (¥, ~V,} (725 +%,)
and with the use of the momentum equation {equation (1)),
this reduces to (‘71 +Vy, ) = (ffzf +§2)
03¢ i’rlf =§2f+§2—{71 (2)

Substituting equation (2) into equation (1) and simplifying yields:

- 2 - - ~

sz = i} Vi + i i Vo
rmy + M, M+

Upon substitution of this expression for v, s into equation 2, one finds

Vi = (ml _sz€’1+[ 2 J‘w’z
my o, My -+ iy

Observe that these results are the same as Equations 8.24 and 8 25, which should have been
expected since this is a perfectly elastic collision in one dimension
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(a) W = AK + AU
0=Lmo? + L1o? —mgd sin 9L ia?
2 2 2
1 (1+mR?)=mgd Sin @+ kd?
2 2
_ Jngd sin -+ kdi?
I+mR?
FIG. P10 61
o 2(0 500 kg ){9 80 m/s?)(0.200 m)(sin37.0°)+500 N/m (0 200 m)®
) w=
100 kg -m? +0 500 kg(0.300 m)°
1.18+2.00
= e = o304 =| 1.74 rad/s
o=y - VaU=[174 redjs|
> F=ma ol ‘lm]g
1
For m;,: I =ma = M __% el ﬂT_w
Fot m,: T—m,g=10 - 1,‘1 |
b T e n 1 —
- { l‘ 1-
Eliminating T, B |
L M+ + w5 _—"" my
g="2& 1,
m -
! ¥ (Fdiotal Mg
For all 3 blocks:
FIG P447

E=(M+m; +my)a=| (M+m +m2)[m2gJ
My




Applying Newton's second law to each object gives: fiy= 2mgcos

v

. T
(1) I;=f+2m(gsind+a} \ /1
(2) TI,-T; = f, +m(gsin+a) 7 1,
2mgsing ., t 5
(3) I,=M{g—a) f; 2mgcos 0 ll
{a), (b) Equilibrium a=0 3
4 ( ) a/7 fig=mgcos f
and frictionless incline  (f; = f, =0} LY i
Under these conditions, the equations reduce to , M@ :
mgsing ?
1 rTl - ijgsmg 2 mgcosH :

(2) T,-1,=mgsind FIG. P5.37

() I,=Myg
Substituting (1') and (3) into equation (2') then gives
so equation (3') becomes T, =3mygsiné

(c), (d) M =6msiné (double the value found above), and f; = f, =0 With these conditions present; . :
the equations become I, = 2m(gsing+a), I, =T, =m(gsinf+a) and I, = 6msin &g - a)
Solved simultaneously, these yield

. : T
a= 890 1 r pngsing 00 1 and | 7, —6mgsing — —nr
1+2sind 1+2siné 1+2siné

(e) Equilibtium (a=0) and impending motion up the incline so M =M, while
f =2u,mgcosf and f, = i£,;mg cos &, both directed down the incline. Under these _
conditions, the equations become T; = 2mg(sin 6+ p1, cos 8), I, ~ I} = mg(sin 6+ y; cos ), and’

T, = Mg, which yield l M = 3m{sing+ u, cos ) ’

(£ Equilibrium (2 = 0) and impending motion down the incline so M =M., while
f =2pu,mg cos@ and f, = y;mg cos 8, both directed up the incline Undet these conditions,
the equations are I; = 2mg(siné— y, cos 8), T, — Iy = mg(sin§— p1, cos 8),and T = Mg,
which yield l My = 3m(sin - p, cos 6) ] . When this expression gives a negative value, it
cotresponds physically to a mass M hanging from a cord over a pulley at the bottom end of
the incline.

(g) | TZ,max ATZ,min = Mmaxgﬂ Mm.mg = 6nusmg cosé l




{(a) First, we note that F =T,. Next, we focus on the
mass M and write I5 = Mg . Next, we focus on the
bottom pulley and write Iy =T, + I, Finally, we
focus on the top pulley and write I, =1, + T, + T;.

2

Since the pulleys are not starting to rotate and are
frictionless, I; = T3, and T, = T3 From this

M
information, we have Iy =271;,s0 I, = *Zig"

Then| I, =T, =T, 1% ,and | T, :¥  and
T, =Mg
{(b) Since F=T;, we have | F z% ‘
(a) Since only conservative forces act within the system of the - I
rod and the Barth, Ryi* jﬂ'[
AE=0 so K, +U, =K, +U, f{;"?\*‘:‘ Force
= (f - NE ; Diagram
Lt +0=0+M [wL-) Pivot 8
2 - 82 .
"N < Motion
ay
‘3
Therefore, W= Tg FIC. P10.59
(b) > r=Ia, so that in the horizontal orientation,
LY ML
Mg — = o
8 ( 2 j 3
3
o
2L

L 3 L 3
{c) a,=a, =-10° *———[-2—‘)602 = ——5& &y == =—raf=~r/(5)= rv—tf—

Ih
N By -ha, - - 2



Q?’ (a) First, draw a free-body diagram, (top figure) of the top a=196 N t
block Since 2, =0, 1, =196 N. And _ o BIe E = 100N
fi =ty =0.300(19.6 N)=588 N IF, = ma, /= e ——-
100 N-588 N =(200 kg)a, mg =196 N

fiy
ora; =2.06 m/ s? (for top block) Now draw a free- 1

body diagram (middie figure) of the bottom block and Bettom Block
observe that EF, = May gives f =588 N=(800 kglag

o1 a5 =0.735 m/ §2 {for the bottom block). In time ¢, the
distance each block moves (star ting from rest) is

d; =%a1t2 and dp =%a3t2 For the top block to reach

the right edge of the bottom block, (see bottom figure)
itis necessary that d; =dp +1 o1

Bottom Block

%(2.06 m/s? )2 =%(0 735 m/s?)t* +300 m
RN

which gives: =
ZN 72N
Initial posi/t\ion of left/\

1
()  Fromabove, dj =5(o.735 m/s’)(213 5)" = (167 m]. Vedges of both biocks

When itis on the verge of slipping, the cylinder is in equilibrium
2 E=0: fr=my=pumn and f2 = psny
Zl‘-y=0: Pini+f,=F

> r=0: P=fi+f

As P grows so do f; and f,

. 1 n . ny; n
Therefore, since g, =5 fi :31— and fa :—f:j
then P+n +Zl=F (1) and p="1
4 F 2 4
5 8
So P-¢-Zn1 = T-g becomes P+ Z[gP = Fx' or §P= r-g

Therefore, P= ‘
8 4
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(a)

The initial momentumn of the system is zero, which
remains constant throughout the motion
Therefore, when nz; leaves the wedge, we must
have
T = 7

iy L’wet:lge + P Vblock = 0

o1 (300 kg)vyeqqe + (0500 kg)(+400 m/s)=0
G\‘\fe\ (3
S0 Upeage =| ~0667 m/s pal o = 400

77

Using conservation of energy for the biock-wedge-
Earth system as the block slides down the smooth
(frictionless) wedge, we have FIG. P8.51

[Kblmk + usystem]t + {K wedge ], = [Kblnck + usysfem]f + [Kwedge ]J‘

or [O+mlgh]+0 [2 m,(400)° + ] -;—;-112(—0 667)° which gives [ h=0952 m

L
OlOo
(a)
(b)
{c)

Between the second and the third picture, AE_ 4, = AK+AU
1 2.1,
- d=——mv? +—kd
g mu;

%-(50 0 N/m)d* +0.250(1.00 kg)(9.80 m,/sz)d *%(I 00 kg)(3.00 m/s)2 =0
[-2.45+2135] N
= =10.378
00 Njm

Between picture two and picture four, AL, = AK+AU .
#l :‘D lb\@i \@

f(2d)=5mvz—%mvz —

- Jaoo m/s)’ “(2_(2 45 N)(2)(0 378 m)

1.00 kg)
[z ]

For the motion from picture two to picture five,

%Du—pl

~f(D+2d)= %(1_00 kg)(3.00 mys)’

9,007 ~2(0378 m)=[1.08 m |

= 2
2(0 250)(1.00 kg){9.80 m/s ) FIG. P754

=
I
=]




The upward acceleration of the rod is mg
described by L™ &

1 _,j
. |
Y= +?)yr-f+5ﬂyl‘2 ] *

AN

2
1x107° m:0+0+iav(8x10—35)
2 k

) <1 F F
— ~f—— e
a, =312 m/s A M
g O 4
The distance y moved by the rod and the _ I ~
distance x moved by the wedge in the same Bl YMg
. ‘ oY __ ¥

time are related by tan15°= . = x= T FIG. P4.50
Then their speeds and accelerations are
refated by

dx 1 dy

it tanl5° dt
and

d*x 1 d% 1 2
. tanl5° gs> [tanlS") m/s m/s

The free body diagram for the 1od is shown Here Hand H' are forces exerted by the guide.

2k, =may: ncos15°—mg =ma,
1tcos 15°-0 250 kg(9.8 mys” }=0.250 kg(31.2 m/s?)

n= 103N =106 N
cos15°

For the wedge,

Y E =Ma,: -nsinl5+F =05 kg{117 m/s?)

F={106 N)sin15°+58 3 N=[611 N



Let A represent the mass of each one metet of the chain and T B T
represent the tension in the chain at the table edge We imagine the i t L = /7 /1'3
edge to act like a frictionless and massless pulley. - @Rﬁ%m: =’ i T
(a) Fort the five meters on the table with motion impending, IS
2 E=0: +4n-5ig=0 n=584g
fosun=06(54g)=34 :
338
D=0 +T-f =0 I=f, I<34
FIG.P7.56

The maximum value is barely enough to support the hanging segment according to
2E=00 +I-3ig=0 I=3Jg

so it is at this point that the chain starts to slide.

(b) Let x represent the variable distance the chain has slipped since the start.
Then length (5 — x) remains on the table, with now
2E =00 +n-(5-x)Ag=0 n=(5-x)Ag
fr = =04{5-x)Ag=21g - 0.4xAg

Consider energies of the chain-Eatth system at the initial moment when the chain starts to
slip, and a final moment when x =5, when the last link goes over the brink. Measure
heights above the final position of the leading end of the chain. At the moment the final link
slips off, the centet of the chain is at y; =4 meters

Originally, 5 meters of chain is at height 8 m and the middle of the dangling segment is at
height 8 —% =65m

_ £ I
Kl+ur+AEmech=Kf +Uj: U+(m1gy1 +m2gy2)i—jfkd.x: Emv +mgy }
i

5
(5.45)8+(348)6 5~ [ (2Ag— 0 4xAg)dx = %(s,z)vz +(82g)4
0

5 5
400g+19.5g - 2.00g {dx +0.400g { x dx = 4000° +32 03
o 0

. 2P
275¢ -200gx|, +0 400g% = 40007
0

27 5¢—200g(5 00) + 0 400g(125) = 4 000
225g = 4.000°

(225 m)(9.80 my/s”)
e T
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(a)

(b)

AK , +AK, . +AU=0

rot

Note that initially the center of mass of the sphere
is a distance i +r above the bottom of the loop;
and as the mass reaches the top of the loop, this
distance above the reference level is 2R ~+ The
conservation of energy requirement gives

1
mg(h+1)= mg(ZR—r)+%mvz +Elcaz

FIG. P10.76

For the sphere I:%mr2 and v=r& so that the

expression becomes

gh+2g7‘:2gR+~1~7602 1

Note that = h;, when the speed of the sphere at the top of the loop satisfies the condition

2

_ my”
Zszg-(R“r)

or v¥ = g(R-1)

Substituting this into Equation (1) gives

honin = 2AR=1)+0700(R~7) ot [ Iy, = 270(R - 1) = 2.70R |

When the sphere is initially at h=3R and finally at point P, the conservation of energy
equation gives

mg(3R +1)=mgR +-%mv2 +%mv2, o1 v? :379(2R+r)g

Turning clockwise as it rolls without slipping past point P, the sphere is slowing down with
counterclockwise angular acceleration caused by the torque of an upward force f of static

friction We have 3 F, =ma, and 3" 7=1Io becoming f - mg =-mar and fr= (%)mrza

—bmg

Eliminating f by substitution yields & = :;_g sothat ' F = .
) !

2 1Y 2R ++ .
Z.Fx:*n:—mv =_(7)( )mg— 20mg
R—7 R—r 7

(since R>>1)




O\4

{(a) Locate the origin at the bottom left corner of the cabinet w =60 cm
and let x = distance between the resultant normal force and F
the front of the cabinet Then we have
# =100 cm | Capinets ¥~ 1777
> F, =200c0s37.0°-un=0 1)
> F, =200sin37 0°+n - 400 =0 (2)
(200 N) sin 37°
S 7 =n(0 600 x) — 400(0.300) + 200 5in 37.0° (0 600) ol TLT-@O N) cos 37°
B - h
200 cos37 0°(0 400) = 0 @ Ll "l
From (2},  n=400-200sin37(°=280 N ]’ Ty J(300 Ny sin 37°
r 1)
72.2—120 + 280(0.600) - 64.0 |__B0ON) cos 37
From (3), x= 406 N t
280 h
- n
- E £ '
x= to the left of the front edge — CmJ -
200 cos37.0°
From (1), , =———— =1 (} 571
W =0 FIG. P10.73
(b In this case, locate the origin x =0 at the bottom right
corner of the cabinet Since the cabinet is about to tip, we
canuse » 7=0 to find h:
120
T =400(0.300) - (300cos37 0k =0 h=—————=|0501
2 ( )= ) 300 cos 37 0°
- ™~
O 5’ (a) Use conservation of the horizontal component of
momentumn for the system of the shell, the cannon,
and the cartiage, from just before to just after the
cannon firing
Pyf = Puit M hell Vshelt €O8 45 0°H1m g nnon Urecoll = 0
200)(125 45 0°+(5 000Y0 ey =0
( )( )COS ( ) ecoil FIG. P8.58
ot Vrecoi =| —3.54 my/s
{b) Use conservation of energy for the system of the cannon, the carriage, and the spring from
right after the cannon is fired to the instant when the cannon comes to rest.
1 1
K+l +Uy =K +Ug, + U 0+0+Ekxfmx =-2—ma$ec0ﬂ +0+0
3 2
= / Moy _ ((SO0ONBS) e
e k 20010
<) € ( 4
\somax | = lex o = 384 10" N
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(K+U), +AE o = (K+U)f:
O+—kx* — fAx==—mv* +0
2 2

%(8.00 N/m)(5 00x10~ m)2 ~(320%107% N)(0150 m):%(S 30x107° kglo?

2(520x107% J)
R e T

When the spring force just equals the friction force, the ball will stop speeding up. Here
FS[ =kx; the spring is compressed by

320x107° N
800 N/m

=(0.400 cm

and the ball has moved

500 cm~0.400 cm =} 4.60 cm from the start.

Between start and maximum speed points,
Lo - a2t + Li2
2 2 2
’ 2
1g 00(5 00x 1072 )2 - (3 20% 1072 )(4 60 x 10-2) ] (5‘30 X 10'3)v2 +18‘.00(4.00 X 10*3)
2 2

T2
v={179 m/s



