
Ecotoxicology and Environmental Toxicology

an introduction, Part 2

Thomas Backhaus thomas.backhaus@dpes.gu.se

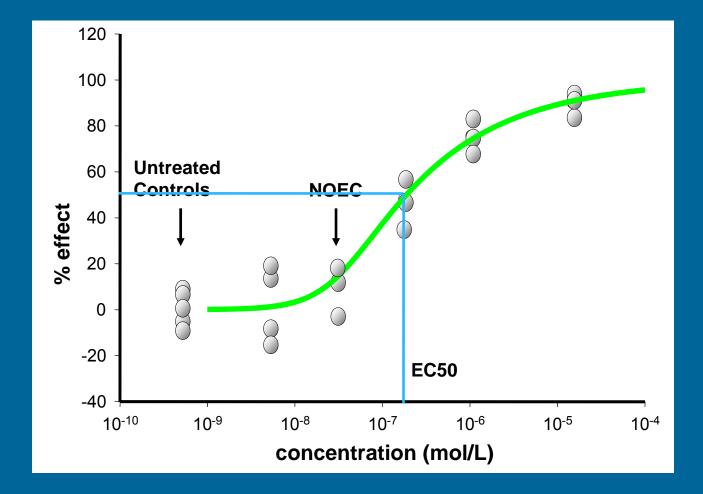
University of Gothenburg

Toxicological and ecotoxicological effect assessment

Combination of analysis and inference of possible consequences of the exposure to a particular agent based on knowledge of the dose-effect relationship associated with that agent in a specific target organism, system or (sub) population.

(OECD, 2003)

Description of observed effects

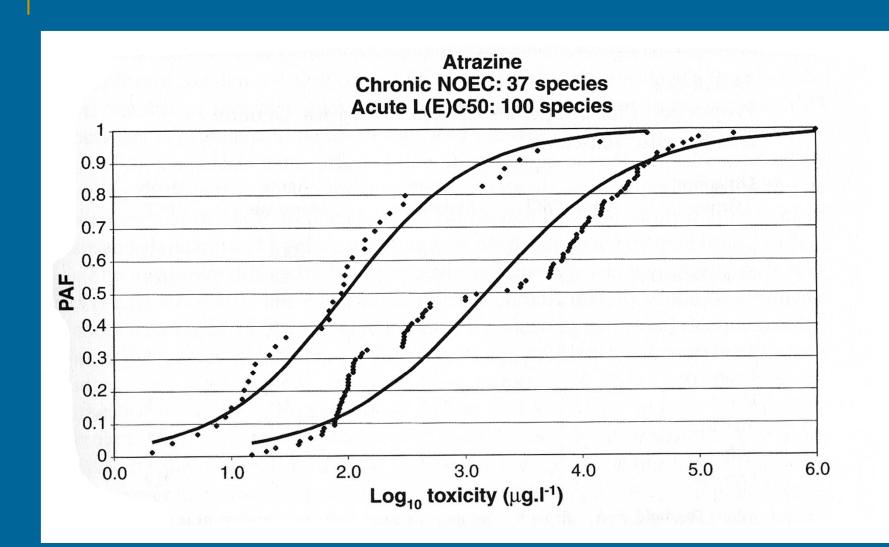

 Regression based approaches (concentration/doseresponse curves)

- Effective Concentration 50 (EC50)
- Lethal Dose for 50% (LD50)

Hypothesis testing

- No Observed Effect Concentration (NOEC)
- No Observed Effect Level (NOEL)
- No Observed Adverese Effect Level (NOAEL)

Concentration-response relationship

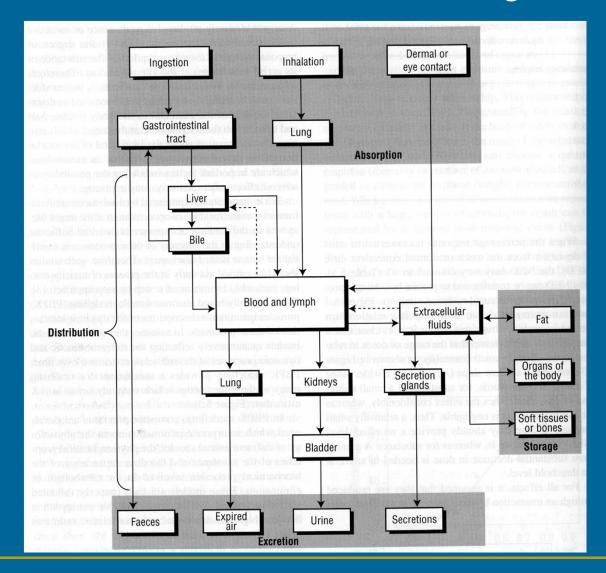

Major challenges

- Biological complexity of the target system for which a hazard is to be described
- Low concentrations of pollutants over long exposure periods
- A pollutant can have multiple effects
- Interactions with other stressors

Hazard Assessment is specific

...for Human Health Assessments
...for Ecological Assessments

- Major differences:
 - Taxonomic diversity



Hazard Assessment is specific

...for Human Health Assessments
...for Ecological Assessments

- Major differences:
 - Taxonomic diversity
 - Biological knowledge

Simple distribution model of chemicals in the human body

Hazard Assessment is specific

- ...for Human Health Assessments
- ...for Ecological Assessments
- Major differences:
 - Taxonomic diversity
 - Biological knowledge
 - Life history
 - Endpoints
 - Spatial scale
 - Temporal scale
 - Complexity of exposure
 - Assessment endpoints

HRA and ERA: Different protection goals

- Human Health Assessments
 - Sensitive Sub-Populations (e.g. infants)
 - Individuals
- Ecological Assessments
 - Sensitive Species, Populations
 - Charismatic Species
 - Ecosystem Functions

Environmental Hazard Assessment

For certain compartments, e.g.

- □ soil,
- freshwater,
- marine waters,
- For certain organisms, e.g.
 - predatory birds,
 - trees in a temperate forest,
 - humans
- For certain (eco)systems
 - nature reserve,
 - drinking water protection area,
 - sewage treatment plant

Environmental Hazard Assessment

For certain compounds, e.g.

- pesticides,
- pharmaceuticals,
- waste
- For certain processes, e.g.
 - production plants for chemicals,
 - **t**ransport,
 - sewage treatment plants

Environmental Hazard Assessment

Direct testing not always possible
Need to test surrogate systems

Extrapolation necessary

- \Box tested species \rightarrow species of concern
- test duration
- \rightarrow infinite exposure
- single species \rightarrow community
 - \rightarrow community
- test conditions \rightarrow conditions in the natural environment

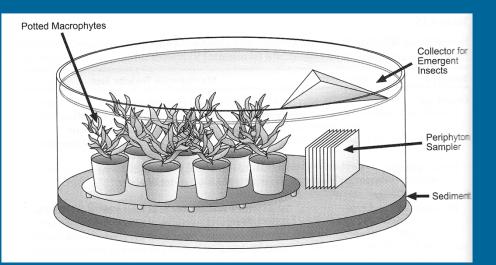
Factors Modifying Effects

Physico/chemical factors

- Light
- □ pH
- Temperature
- Redox potential
- Water hardness
- Salinity
- Clay and organic matter
- Biotransformation
- Presence of other toxicants (mixture effects)

Ecotoxicological biotests I: ecosystems /communities

Ecosystem and ecological communities


- Structural endpoints
- Functional endpoints

Structural endpoints

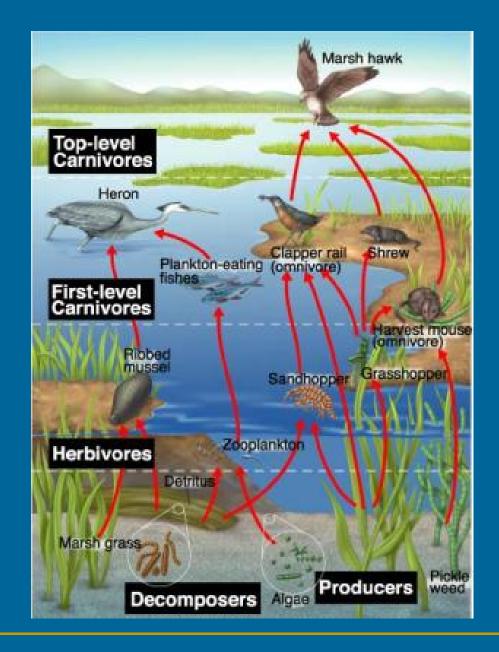
- Species richness
- Abundance
- Biomass

Functional endpoints

- Primary production
- Respiration
- Rate of nutrient uptake
- Rate of decomposition

Common ecosystem/community effects of chemicals

- Energy is diverted from growth and reproduction to acclimation and compensation
- Import of auxiliary energy becomes necessary
- Nutrient loss
- Life spans decrease, turnover of organisms increase
- Functional diversity declines
- Food chains change (usually shortened)
- Efficiency of resource usage decreases
- Capacity for dampening undesirable oscillations decreases


Ecotoxicological biotests II: populations and individuals

Acute tests

- Functional tests
- Mortality

Chronic tests

- Life-cycle test
- Sensitive life stage test / early life stage test

Daphnids (Daphnia magna, Daphnia pulex)

- 24/48 h acute test
- static test
- EC50 determination

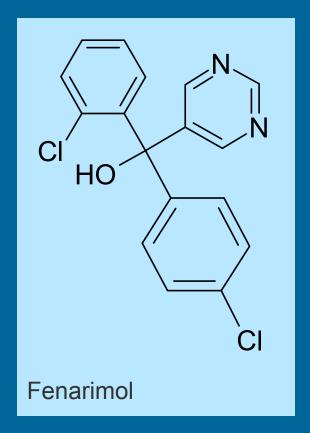
- Algae (Selenastrum capricornutum, Chlorella vulgaris, Scenedesmus subspicatus)
 - **72-96h reproduction inhibition test**
 - static test
 - EC50 determination

 Fish (Poecilia reticulata, Brachydanio rerio, Pimephales promelas, Oncorhyncus mykiss)

- **96h**
- static, renewal, flow-through
- **LC50**

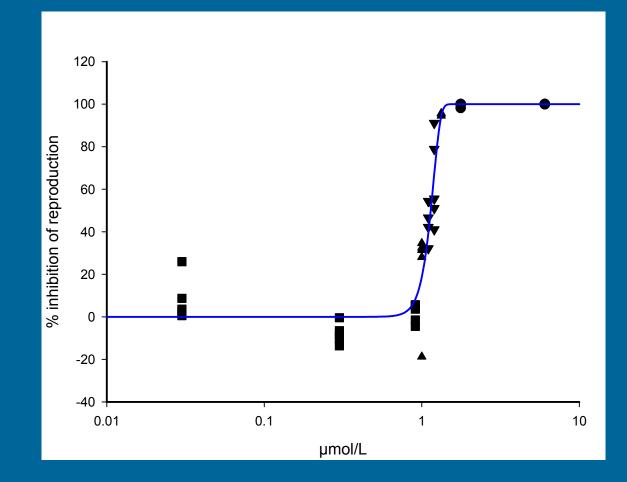
- Bacteria (sludge respiration inhibition test)
 - **3**h
 - static
 - **EC50**

- Daphnia, chronic (*Daphnia magna, Daphnia pulex*)
 - **21d**
 - renewal
 - LC50, EC50, NOEC (multi-parameter test)
- Fish, early life stage (Poecilia reticulata, Brachydanio rerio, Pimephales promelas, Oncorhyncus mykiss)
 - □ 60 90 d
 - renewal, flow-through
 - LC50, EC50, NOEC (multi-parameter test)


Advantages

- Standardised (i.e. comparable results, justiciable)
- Endpoints with a well understood toxicological (physiological) meaning
- (Technical) shortcomings
 - Mainly aquatic species
 - Mainly limnic species

(Fundamental) disadvantages


 Very limited ecological foundation - although the results of the tests are used for ecological (environmental) assessments

Effects of a fungicide on Daphnids

- Fenarimol, CAS 60168-88-9
- Common agricultural fungicide
- Mode of Action in fungi: inhibition of 14α-demethylase, which belongs to the cytochrom-family. The enzyme synthesises ergosterol, a vital component of the fungal cell membrane.

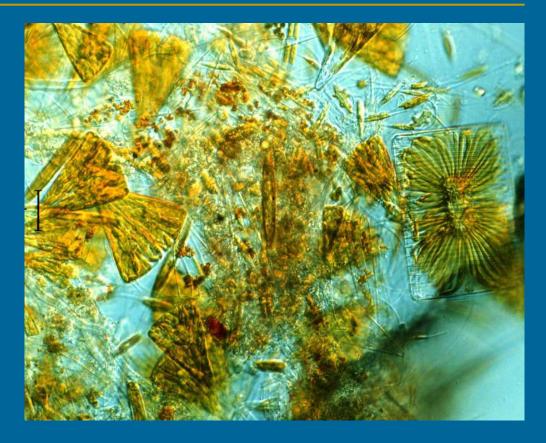
Inhibition of reproduction after 21 days

Effects on offspring

Typical adult daphnid

Offspring of an exposed daphnid

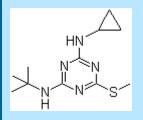
Effects on offspring


- Only number of offspring considered
- Developmental defects of offspring not considered
- Ecological consequences not considered

Offspring of an exposed daphnid

Periphyton

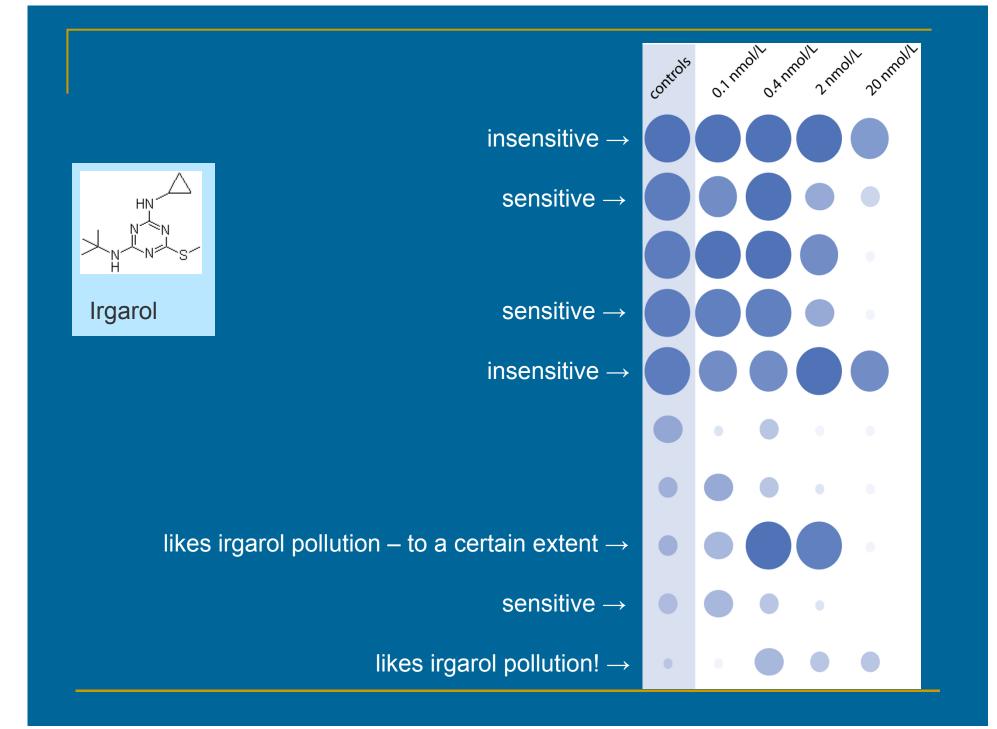
- Marine microbial communities
- Established in the natural environment for 7-9 days on glass substrate



- Short-term exposure over 30 min
- Semistatic exposure over 96 hours
- Flow-through micro-cosms over 14-21 days

Possible endpoints

- Physiological activity, such as photosynthetic C14 incorporation
- Biomass
- Pigment pattern as a biochemical fingerprint reflecting species composition, biomass and algal physiological status
- Other biomarkers
- Genetic fingerprints
- Species composition

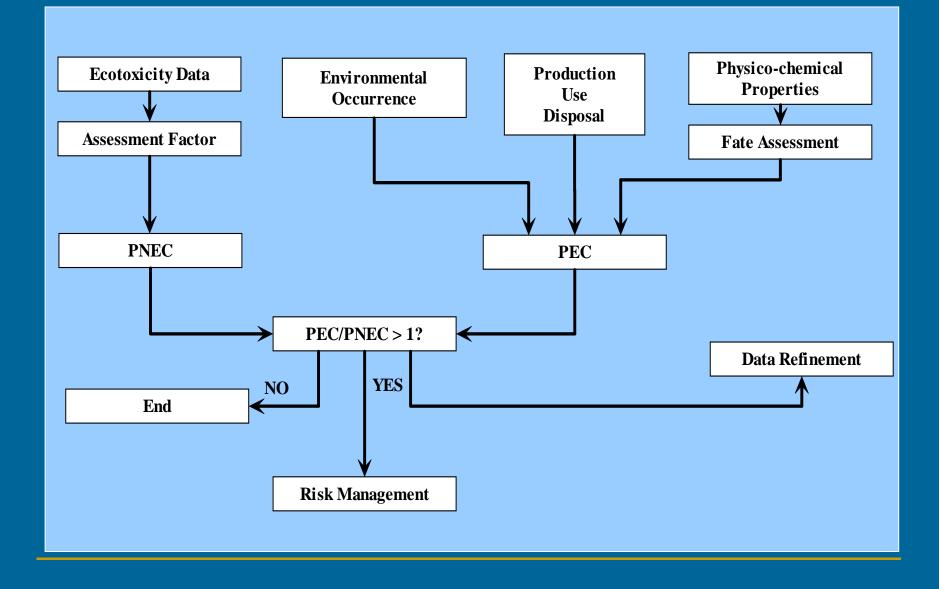

Reaction to Irgarol exposure

Irgarol

- Photosystem II inhibitor
- Used as an antifoulant biocide
- Closely related to agricultural PSII inhibitors such as e.g. atrazine

0.4 mmol/l 0.1 nmol/L 2mmol/L Species Species 2 Species 3

Environmental Risk Assessment


 Exposure Estimation: Predicted Environmental Concentration (PEC)
Ecotoxicity Estimation: Predicted No Effect Concentration (PNEC)
Risk Characterisation:

PEC / PNEC > 1 ?

Predicted No Effect Concentration (PNEC)

- "A PNEC is regarded as a concentration, below which an unacceptable effect will most likely not occur."
- PNEC derivation is based on two critical assumptions:
 - Ecosystem sensitivity depends on the most sensitive species, and;
 - Protecting ecosystem structure protects community function

Env. Risk Assessment of Chemicals

Predicted No Effect Concentration (PNEC)

Base set contains toxicity data for the major trophic levels

- Primary producer (toxicity to algae)
- Primary consumer (acute toxicity to daphnids)
- Secondary consumer (acute toxicity to fish)

Typically NOECs are available for each assay.

Predicted No Effect Concentration (PNEC)

- Extremly limited set of data. Several major sources of uncertainty remain:
 - intra- and inter-laboratory variation of toxicity data;
 - intra- and inter-species variations (biological variance);
 - short-term to long-term toxicity extrapolation;
 - laboratory data to field impact extrapolation

Predicted No Effect Concentration (PNEC)

- Uncertainty is dealt with by using Assessment Factors.
- Freshwater compartment:
 - If the base set is available:
 - **Base set + chronic daphnia or fish data:**
 - Base set + 2 long term data:
 - Base set + 3 long term data:
 - Field data:

Factor 1000 Factor 100 Factor 50 Factor 10 Case by case

Predicted No Effect Concentration (PNEC)

- PNECs are derived for the major environmental compartments:
 - freshwater
 - marine
 - soil, sediment
 - sewage treatment plants

Predicted No Effect Concentration (PNEC)

- Step 1: Select the most sensitive trophic level. All following calculations are based solely on this value.
- Step 2: Divide by an assessment factor
- Result: PNEC

Example

Algae	NOEC:	5 µg/L
Fish _{acute}	NOEC:	8 µg/L
Daphnia _{acute}	NOEC:	100 µg/L

PNEC_{aquatic} = 5 / 1000 = 5 ng/L

Example

Algae	NOEC:	5 µg/L
Fish _{acute}	NOEC:	8 µg/L
Daphnia _{acute}	NOEC:	100 µg/L
Daphnia _{chronic}	NOEC:	10 µg/L

PNEC_{aquatic} = 5 / 100 = 50 ng/L

Summary

- Different species have vastly different sensitivities towards a given chemical
- "The" most sensitive species does not exist
- The toxicity of chemical can be analysed on different levels of biological complexity using different endpoints.
- Most commonly studied levels:
 - Populations of isolated species
 - Artifical ecosystems and communities
- Most commonly used endpoints:
 - Mortality
 - Growth / Reproduction
- The effects are analysed using concentration-response curves (EC50, LD50, NOEC, NOAEL)

Summary

- Environmental Risk Assessment in Europe is based on a comparison between the Predicted Environmental Concentration (PEC) and the Predicted No Effect Concentration (PNEC)
- Use of Assessment Factors to account for gaps in the data
- Tiered Approach