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We consider the finite temperature metal-insulator transition in the half filled paramagnetic Hub-
bard model on the infinite dimensional Bethe lattice. A new method for calculating the Dynamical
Mean Field Theory fixpoint surface in the phase diagram is presented and shown to be free from the
convergence problems of standard forward recursion. The fixpoint equation is then analyzed using
dynamical systems methods. On the fixpoint surface the eigenspectra of its Jacobian is used to
characterize the hysteresis boundaries of the first order transition line and its second order critical
end point. The critical point is shown to be a cusp catastrophe in the parameter space, opening a
pitchfork bifurcation along the first order transition line, while the hysteresis boundaries are shown
to be saddle-node bifurcations of two merging fixpoints. Using Landau theory the properties of the
critical end point is determined and related to the critical eigenmode of the Jacobian. Our findings
provide new insights into basic properties of this intensively studied transition.

PACS numbers: 71.30.+h, 71.10.Fd, 71.27.+a

I. INTRODUCTION

The correlation driven Metal-Insulator Transition
(MIT) at finite temperature, also known as the Mott
transition, is today one of the most intensively studied
phase transitions in solid state physics. The problem
contains competing energy scales making it inaccessible
to perturbative methods. The seminal work of Metzner
and Vollhardt1 spurred a rapid development in this field
by introducing the limit of infinite connectivity. In this
limit the Dynamical Mean Field Theory (DMFT)2,3 be-
comes exact and the lattice problem can be mapped to an
auxiliary impurity model connected to a non-interacting
bath.

The paramagnetic MIT of the Hubbard model on the
Bethe lattice where spatial correlations and magnetic or-
der parameters are suppressed, has been studied by many
authors in this particular limit.4–7 Regarding this transi-
tion driven by Hubbard repulsion U , the emerging con-
sensus is that it is a first-order phase transition terminat-
ing at a critical point. The low temperature first-order
transition line Uc(T ) is surrounded by a hysteresis re-
gion with borders Uc1(T ) and Uc2(T ), containing both a
metallic and an insulating solution. At a critical temper-
ature Tc, the lines Uc1(T ), Uc2(T ) and Uc(T ) all meet in
the second-order critical end point, (U, T ) = (Uc(Tc), Tc),
as schematically shown in Fig. 1.

A theoretical framework for the understanding of the
critical point has been presented by Kotliar et. al.,8,9

explaining it in terms of a DMFT Landau functional and
an emerging zeroth mode in the “fluctuation matrix” of
this functional. Moreover, the double occupancy D act as
the thermodynamic conjugate variable to the (external)
field U .10

In this paper we show, using the impurity solvers Exact
Diagonalization (ED) and Iterated Perturbation Theory
(IPT), that this theory also can explain the existence
of a third thermodynamically unstable solution in the
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FIG. 1. (Color online) Sketch of the (U, T ) phase diagram
showing the first order thermodynamic transition line Uc(T )
and the instability edges of the insulating and metallic solu-
tions, Uc1(T ) and Uc2(T ) respectively.

hysteresis region, previously reported by Tong and co-
workers.10 We also present a general algorithm for finding
fixpoints to the DMFT equations that is free from the sta-
bility and convergence problems encumbering both for-
ward recursion7,11 and Newton methods in the vicinity
of the hysteresis boundaries and the critical point. The
algorithm is quite general and can be implemented with
any DMFT impurity solver. Furthermore we present a
method to calculate the Jacobian of the DMFT recursion
relation at a fixpoint in the framework of ED and IPT.
The properties of the Jacobian is then used to explain
the origin of the numerical problems of forward recur-
sion and Newton methods and how these difficulties are
avoided by our algorithm.

This paper is organized as follows: In Section II we
give an introduction to the single band Hubbard model
on the Bethe lattice, in Section II A we introduce DMFT
and how it can be reformulated as a fixpoint problem. In
Section II B we present our implementation of the Exact
Diagonalization impurity solver and how the Jacobian of
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the DMFT fixpoint function is calculated in this context.
Section II C is used to explain the same details for the
Iterated Perturbation Theory impurity solver. Based on
the general fixpoint problem we investigate the local con-
vergence properties of the mentioned fixpoint solvers in
Section II D. In Section II E we give a brief description
of the thermodynamics of the MIT. In Section III the
results are presented and put into relation with previous
work in Section IV. Finally we give a short conclusion in
Section V.

II. THEORY

The Hamiltonian Ĥ of the half-filled Hubbard model
is given by,

Ĥ =− t
∑

<ij>,σ

(
c†iσcjσ + c†jσciσ

)
+

+ U
∑

i

c†i↑ci↑c
†
i↓ci↓ − µ

∑

iσ

c†iσciσ , (1)

with nearest neighbor hopping −t, local Hubbard repul-
sion U and the chemical potential, µ = U/2. In the limit
of infinite dimensions, d → ∞, the hopping matrix el-
ement t has to be rescaled as, t → t/

√
d, in order to

retain a finite kinetic energy.2 On the Bethe lattice the
non-interacting density of states ρ(0)(ω) is semicircular
and given by,

ρ(0)(ω) =
2

π

√
1−

(
2ω

W

)2

, |ω| < W

2
, (2)

where W is the bandwidth (W = 4t). In this study we
use, W = 2 eV. Since the Bethe lattice is bipartite the
ground state of Ĥ is antiferromagnetic at low tempera-
ture, which should in principle suppress the MIT of the
paramagnetic state studied here. In the spirit of previ-
ous studies2 we enforce the paramagnetic state by impos-
ing translational invariance ignoring spatial correlations.
This also enables us to connect to experimental results
on more frustrated multi-band systems not displaying the
antiferromagnetic instability.

A. Dynamical Mean Field Theory

Let us first introduce some concepts used in the formu-
lation of DMFT. In the limit of infinite coordination the
lattice self-energy ΣL is local, ΣL(R, iωn) → ΣL(iωn),
and DMFT2,3 is an exact theory. In the continuum limit
the local lattice Green’s function, GL(R = 0, iωn) =
GL(iωn), is given by,

GL(iωn) =

∫
dω

ρ(0)(ω)

iωn − ω + µ− ΣL(iωn)
, (3)

where iωn are Matsubara frequencies. With the lattice
we associate an auxiliary impurity connected to a bath

GL =
∫

dερ(0)

iωn−ε−ΣL

G0 = [G−1
L + ΣL]−1

GI = 〈cc†〉SI [G0]

ΣI = G−1
0 −G−1

I

FUβ(ΣL) = ΣI

F̃Uβ(G0) = G0

GL,ΣL G0

GI , G0

ΣL = ΣI

ΣI

ΣL

FIG. 2. (Color online) The self consistent DMFT equations
and the two possible fixpoint function formulations FUβ(ΣL)

and F̃Uβ(G0).

acting as a dynamic Weiss field. The bath Green’s func-
tion G0 is obtained by subtracting the local interactions
using ΣL.

G0(iωn) =
[
G−1
L (iωn) + ΣL(iωn)

]−1
(4)

The local interactions of the lattice Hamiltonian Ĥ and
G0 now fully determine the action SI for the impurity
system,

SI [G0] = U

∫ β

0

dτ c†↑(τ)c↑(τ)c†↓(τ)c↓(τ)−

−
∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

c†σ(τ)G−1
0 (τ − τ ′)cσ(τ ′) . (5)

Solving the impurity problem is still a formidable task
but the single impurity system is now well within reach
for state of the art numerical algorithms. Using an impu-
rity solver the paramagnetic interacting impurity Green’s
function, GI(iωn), can be calculated as,

GIσσ′(iωn) =−
∫ β

0

dτ eiωnτ 〈Tcσ(τ)c†σ′(0)〉SI [G0] ,

where, GI =GI↑↑ = GI↓↓ , GI↑↓ = GI↓↑ = 0 . (6)

The corresponding impurity self-energy ΣI is calculated
by inverting the Dyson equation,

ΣI(iωn) = G−1
0 (iωn)−G−1

I (iωn) . (7)

Now given ΣL, the equations, (3, 4, 6 and 7), can be used
to calculate a corresponding ΣI . Incorporating these
steps into a single DMFT function F gives the short form,

FUβ(ΣL) = ΣI , (8)
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FIG. 3. (Color online) Truncated SIAM, with one correlated
impurity level εI , bath levels εk, 1 ≤ k ≤ Nb, hybridizations
Vk and Hubbard repulsion U .

where the Hubbard U and the inverse temperature, β =
1/kBT , are external parameters.

The last step is to find self consistent solutions where
the lattice and impurity self-energies coincide, ΣL(iωn) =
ΣI(iωn). This is equivalent to finding fixpoint solutions
Σ∗ of the DMFT function FUβ ,

FUβ(Σ∗) = Σ∗ , Σ∗ = ΣL = ΣI . (9)

In principle any fixpoint algorithm for multidimensional
functions can now be applied on FUβ to find DMFT solu-
tions. The choice of Σ as the fundamental variable in the
fixpoint scheme is not unique, as one can alternatively use
the bath Green’s function G0 as fixpoint variable giving
fixpoint solutions, F̃Uβ(G∗0) = G∗0. Both possibilities are
indicated in Fig. 2, where the coupled equations forming
the DMFT fixpoint functions are shown schematically.

B. Exact Diagonalization

To solve the impurity problem of Eqs. (5) and (6) we
have implemented12 the Exact Diagonalization (ED) al-
gorithm by Caffarel and Krauth.13 In ED the impurity
problem is projected to a truncated Single Impurity An-
derson Model (SIAM), with the Hamiltonian,

ĤSIAM =
∑

σ

(εI − µ)c†σcσ +
∑

kσ

εkc
†
kσckσ+

∑

kσ

Vk

(
c†σckσ + c†kσcσ

)
+ Uc†↑c↑c

†
↓c↓ , (10)

keeping the local interaction of the lattice Hamiltonian
Ĥ but replacing the hopping term with hybridization Vk
to a set of “bath” states at energies εk, see Fig. 3.

As Ĥ is particle-hole symmetric the same symmetry is
imposed on the SIAM parameters. Letting εI = 0, the
bath level energies εk are placed symmetrically around
zero energy. Moreover for each pair, εk = −εk̃ 6= 0,
the hybridizations are the same, Vk = Vk̃. Half filling is
obtained by fixing the chemical potential µ to, µ = U/2.

The first step of the algorithm is to project the im-
purity bath Green’s function G0 to the non-interacting
(U = 0) SIAM Green’s function GSIAM

0 ,

GSIAM

0 [εk, Vk](iωn) =

[
iωn + µ− εI −

∑

k

|Vk|2
iωn − εk

]−1

,

(11)
through minimization of a penalty function χ2,

χ2[εk, Vk] =
1

N

N∑

n

|G0(iωn)−GSIAM

0 [εk, Vk](iωn)|2 ,

(12)
with respect to the SIAM parameters εk and Vk. To
minimize χ2 a standard conjugate gradient minimization
algorithm is used. Many forms of the penalty function
χ2 can be constructed14 and in this work we choose Eq.
(12), which is sensitive to the low frequency behavior of
GSIAM

0 , and N = 29 matsubara frequencies.

With the parameters of ĤSIAM determined its matrix
representation in the occupation number basis is calcu-
lated. The symmetries of ĤSIAM can be used to block-
diagonalize the matrix representation. For simplicity
we only exploit the symmetry that subspaces with fixed
number of spin up n↑ and spin down n↓ are not mixed

by ĤSIAM. Let us denote the eigenstates of ĤSIAM by |ν〉
where, ĤSIAM|ν〉 = Eν |ν〉.

The eigenstates are explicitly calculated by diagonal-
ization and used to calculate the impurity Green’s func-
tion GIσσ′ from the Lehmann spectral representation,15

GIσσ′(iωn) =
1

Z

∑

ν,µ

〈µ|c†σ|ν〉〈ν|cσ′ |µ〉
iωn + Eµ − Eν

(
e−βEν + e−βEµ

)
.

(13)
As the the system is paramagnetic, Eq. (6) holds, and
only one impurity Green’s function GI has to be calcu-
lated. The double occupancy D is given by,

D =
1

Z

∑

ν

〈ν|n̂↑n̂↓|ν〉e−βEν . (14)

The described steps of the ED algorithm are schemat-
ically shown in Fig. 4 and replaces the, GI = 〈cc†〉SI [G0],
block in the DMFT equations of Fig. 2.

In our calculations the dimension of the SIAM Hilbert
space is the limiting factor of the ED algorithm. With
one impurity level the number of fermionic states Nf is
given by, Nf = Nb + 1, where Nb is the number of bath
levels. The corresponding size of the Hilbert space be-
comes 22Nf , growing exponentially with respect to Nf .
Dividing the Hamiltonian in blocks of constant (n↑, n↓)
gives a set of smaller Hilbert spaces with dimensions,(
Nf
n↑

)(
Nf
n↓

)
. Our calculations converge rapidly with the

number of fermionic levels Nf and for, Nf = 6, used in
our calculations, the region around the critical point is
well converged.16,17
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GI = 〈cc†〉SI

G0

GI { HSIAM|ν〉 = Eν |ν〉

minεk,Vk
χ2

GI =
∑
ν,µ ...

G0

[εk, Vk]

Eν , |ν〉

GI

FIG. 4. (Color online) Detailed schematic (right) of the Exact
Diagonalization impurity solver (left).

1. Fixpoint function and Jacobian

We now discuss the coupled DMFT equations as a fix-
point function in terms of G0 instead of ΣL. In the ED
algorithm G0 is parametrized by a small number of pa-
rameters, x = [εk, Vk], when projected on to the SIAM
and a solution of the DMFT equations can be formulated
as a fixpoint problem in x, FUβ(x∗) = x∗.

The reduction of parameters using x instead of
G0(iωn) facilitates a direct calculation of the Jacobian,
JF (x) = ∇FUβ(x). At each obtained fixpoint x∗,
FUβ(x∗) = x∗, the low dimensional parameter space al-
lows us to use a modified central finite differences formula
to calculate the Jacobian,

JF (x) ≈FUβ(x + hx̂n)− FUβ(x− hx̂n)

2h
, (15)

where h is the discretization, x̂n is the unit vector in the
n:th dimension. Due to the large parameter spread in
x∗ relative scaling was applied to stabilize the numerical
evaluation of JF (x∗).

C. Iterated Perturbation Theory

To show the generality of the fixpoint analysis we also
consider the Iterated Perturbation Theory (IPT)2 for-
mulation of the DMFT equations, which amounts to
solving the impurity problem, Eq. (6), perturbatively
to second order in U . To discretize the problem in
this case we consider directly the iteration scheme of
the self-energy Σ(τ) defined on a discrete time mesh,

τj = β
N j with N a constant integer and j integer. Clearly

the step size β/N needs to be increased with decreas-
ing temperature to be able to capture the self-energy
or Green’s function sufficiently well. Because of the
discretization in time, we can represent the self-energy

Σ(τj) (or Green’s function) using a finite number of Mat-
subara frequencies, ωn = 2π

β (n + 1
2 ), with, 0 ≤ n <

N . Thus defining a “Matsubara-periodized” self-energy

Σ(iωn) through, Σ(τj) = β−1
∑N−1
n=0 e

−iωnτjΣ(iωn), and,

Σ(iωn) = β
N

∑N−1
j=0 eiωnτjΣ(τj), which is now periodic

with period 2π
β N . We formulate a fixpoint equation in

terms of the finite dimensional self-energy similarly,

FUβ (Σ(iωn)) = Σ′(iωn) , (16)

allowing for the same study of the fluctuations around
the fixpoint as for the ED formulation but now in the
N dimensional space spanned by Σ(iωn). Specifically we
calculate the Jacobian of FUβ through,

JF (Σ) ≈FUβ(Σ + hẑn)− FUβ(Σ− hẑn)

2h
, (17)

where, ẑn = i(x̂n − x̂−n−1)/
√

2, is a unit vector in the
particle-hole symmetric Σ(iωn) subspace and h is the fi-
nite difference discretization.

We will not present the details of the calculations here
in terms of “Matsubara-periodized” Greens functions18

but only point out some main features. Since we have
discretized the Green’s function, we have to be particu-
lar careful about defining, G(τj = 0). Particle-hole sym-
metry implies that, GL(τ) = −GL(−τ), and to preserve
this we define, G(τj = 0) = 0. With this definition the
first-order Hartree-contribution to Σ is zero and corre-
spondingly, µ = 0, at half-filling. The discretized IPT
approximation for the self-energy is given by, Σ(τj) =
−U2G2(τj)G(−τj) = U2G3(τj), with G(τj = 0) = 0 by
definition. From this follows also that Σ is purely imagi-
nary.

The DMFT equations can be written exactly in terms
of the periodized Green’s function and self-energy by re-
placing Eq. (3) with,

GL(iωn) =

∫
dω

ρ0(ω)
2N
β (coth β

2N (iωn − ω))−1 − Σ(iωn)
,

(18)
where the coth(...) term is the exact expression for the
discrete Fourier transform of the non-interacting Green’s
function on the lattice.

D. Fixpoint solvers

A common ingredient in all DMFT calculations is
solving a fixpoint problem. Conceptually the choice to
parametrize the fixpoint function in terms of Σ or G0

is irrelevant, since the resulting fixpoints are equivalent
whichever coordinates are used. In this section we adapt
Σ as the fixpoint-variable keeping in mind that it is ex-
changeable with G0 (or x = [εk, Vk]).

We now discuss the two most widely used algorithms
for solving the fixpoint problem, forward recursion and
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Newton methods and for each method the local conver-
gence properties around a fixpoint Σ∗ will be explained
in terms of the dominating eigenvalue ε of the Jacobian,
JF (Σ∗). Finally we introduce the phase space extension
and explain why this method is free from some of the
deficiencies of forward recursion and Newton methods.

1. Forward recursion

The most common algorithm for solving the DMFT
equations is the fixpoint forward recursion.2 Given an ini-
tial guess Σ0 a series {Σn} is generated by the recursion
relation,

Σn+1 = FUβ(Σn) , (19)

and a fixpoint Σ∗ is found if the series converges, Σ∗ =
Σ∞. To study the convergence properties of the series
{Σn} in the vicinity of a fixpoint Σ∗, we can approximate
FUβ by its first order Taylor expansion,

FUβ(Σ∗ + δΣ) ≈ FUβ(Σ∗) + JF (Σ∗) · δΣ , (20)

where JF is the Jacobian matrix of FUβ , JF (Σ) =
∇FUβ(Σ) and δΣ is a small perturbation. By repeated
application of the recursion near the fixpoint,

Σ0 =Σ∗ + δΣ

Σn =Σ∗ + JF (Σ∗)nδΣ , (21)

we easily observe that the convergence is determined by
the eigenvalues of JF and in particular by the eigenvalue,
ε, with the largest magnitude. Hence we require, |ε| < 1,
for forward recursion to converge at all. This imposes
a restriction on the solution space that can be found by
this scheme.

If the Jacobian at a fixpoint has an eigenvalue larger
than one in magnitude, the algorithm will only converge
if the perturbation δΣ has no components in the corre-
sponding eigenspace. Any contribution in δΣ from this
eigenspace will be amplified and Σn will move away from
the fixpoint Σ∗, and the forward recursion algorithm will
be unable to find the fixpoint in the first place. Fixpoint
forward recursion can therefore only be used to find a
subset of all fixpoints Σ∗ of the function FUβ whose Ja-
cobian have all eigenvalues bounded by one in magnitude.
And if, |ε| → 1−, when tuning an external parameter the
fixpoint forward recursion experiences a critical slowing
down of convergence, due to the damping factor εn of a
perturbation. This phenomena has been reported for the
MIT of DMFT when approaching the hysteresis bound-
aries of the phase diagram.7,11

2. Newton methods

The family of Newton’s method and the quasi New-
ton methods19 are all multi dimensional root solvers with

better stability properties than forward recursion. Broy-
den’s method20 from this class of algorithms have re-
cently been applied in the context of DMFT.21 In order
to use a root solver, the fixpoint problem in Eq. (9) is
simply reformulated to a root problem,

RUβ(Σ∗) ≡ FUβ(Σ∗)− Σ∗ = 0 , (22)

where the Jacobian JR of RUβ has the form,

JR(Σ) = ∇RUβ(Σ) = ∇FUβ(Σ)− 1 = JF (Σ)− 1 . (23)

The series {Σn} is in the case of Newton’s method
generated as,

Σn+1 = Σn − (JR(Σn))−1RUβ(Σn) . (24)

In the linear regime in the vicinity of a fixpoint Σ∗

where, RUβ(Σ∗ + δΣ) ≈ JR(Σ∗)δΣ and JR(Σ∗ + δΣ) ≈
JR(Σ∗), the series converges in one iteration as,

Σ0 =Σ∗ + δΣ

Σ1 =Σ0 − J−1
R (Σ0)RUβ(Σ0) ≈ Σ∗ , (25)

assuming that JR(Σ∗) is invertible. Translated to the
eigenvalue spectrum of the Jacobian JF (Σ∗) of the fix-
point function FUβ(Σ∗), local convergence is achieved as
long as no eigenvalue is equal to one, a less restrictive
requirement compared to forward recursion. Newton’s
method will therefore converge even in areas of parame-
ter space where forward recursion fails completely.

3. The phase space extension

Although Newton’s metod allows us to work with,
|ε| > 1, a problem remains when, |ε| = 1, which (as we
will show) is precisely at the hysteresis boundaries of the
MIT. To be able to trace the solutions across this singu-
larity we reformulate the problem in an extended phase
space where the resulting Jacobian no longer becomes
singular at the hysteresis boundaries.

We construct a real-valued function A(Σ) whose value
lifts the degeneracy of the coexisting fixpoints of the
DMFT fixpoint function. Using A(Σ) we write down
an extended root problem that not only finds a DMFT
solution but also fixes the value of A to some given value
α, A(Σ) = α. By increasing the dimension of the root

problem by one, the extended root function R̃αβ can be
defined as,

R̃αβ(U,Σ) = (α−A(Σ), RUβ(Σ)) = 0 , (26)

where U is treated as a free parameter to be varied along
with Σ in order to obtain, α−A(Σ) = 0. By constraining
the value of A(Σ) to α the degeneracy of the fixpoints is
lifted and the resulting Jacobian JR̃ is invertible even at
the hysteresis boundaries.

In this investigation, A(Σ) = Im[Σ(iω0)], was used and
sampled on a logarithmic grid. The extended root prob-
lem was solved using Broyden’s second method.20 As
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Broyden’s method does not require any Jacobian eval-
uations it has the same computational cost as forward
recursion, but with an almost constant convergence rate
in the entire phase diagram.

E. Thermodynamics

Studying the MIT in the (U, T ) phase space requires

understanding of the thermodynamics of Ĥ in Eq. (1).

Let us first consider the expectation value 〈Ĥ−µN̂〉 and
introduce some notation,

〈Ĥ − µN̂〉 =〈T̂ 〉+ U
∑

i

〈D̂i〉 − µ
∑

iσ

〈n̂iσ〉 = (27)

=〈T̂ 〉+ UN

(
〈D〉 − 1

2

)
, (28)

where N is the number of sites, D̂i = n̂i↑n̂i↓ is the on
site double occupancy, and the single particle hopping is
contained in the kinetic term T̂ . In the last step we have
assumed half-filling with 〈n̂iσ〉 = 1/2 and µ = U/2. It is
now evident that U acts as an external field and can be
considered a conjugate variable to the double occupancy,
D = 〈D̂〉. From this it is possible to derive a Maxwell
construction in U and D analogous to the formulation in
density and pressure for the van der Waals equation of
state.10,22

From the definition of the grand partition function
Z(β, µ, U) and the free energy Ω(β, µ, U),

Z = e−βΩ = Tr
[
e−β(Ĥ−µN̂)

]
, (29)

the derivative of Ω with respect to U is given by,

∂Ω

∂U

∣∣∣∣
β

= − 1

β

∂

∂U
lnZ = N

(
〈D̂〉 − 1

2

)
. (30)

The free energy difference ∆Ω between two points on an
isotherm can be expressed as,

∆Ω

N
=

∫ U2

U1

dU

(
〈D̂〉 − 1

2

)
. (31)

provided that there is an adiabatic connection between
U1 and U2.

In the case of the MIT this can be used to determine
the thermodynamic first order transition given by the
three DMFT solutions on an isotherm in the hystere-
sis region, as reported previously by Tong et. al.10 This
third unstable solution connects the metallic and insu-
lating solutions making it possible to calculate the free
energy difference between the metal and insulator for a
given Hubbard U.

III. RESULTS

Using the phase space extension and Broyden’s second
method to solve the DMFT equations we find three so-
lutions in the hysteresis region at fixed U and β. One
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0.028

0.030
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ai
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/s
it

e)

Uc1

Uc2

Uc

T = 22.500 meV

FIG. 5. (Color online) Isotherm at, T = 22.50 meV, inside the
hysteresis region, with the double occupancy D as a function
of U . Shaded areas show the Maxwell construction. The solid
line is composed of dense DMFT-ED solution points.

metallic solution with high double occupancy D, one in-
sulating solution with low D and a third intermediate
“unstable” solution, see Fig. 5. As a function of U these
three solutions form a continuous Z-shaped isotherm in
D(U), where the unstable solution adiabatically connects
the metallic and insulating solutions. The unstable solu-
tion is not an artifact due to the phase space extension
since it also is a solution to the DMFT root problem,
RUβ(Σ∗) = 0, of equation (22).

With the continuous isotherm D(U), of Fig. 5, it is
possible to apply the Maxwell construction, Eq. (31),
to determine the thermodynamic first order transition
Uc(T ). Where the free energies of the metallic and insu-
lating solutions coincide. This corresponds to equating
the enclosed areas left and right of Uc, as shown in Fig.
5. It is evident that the unstable solution always has a
free energy higher than both the metallic and insulating
solution, thus always being thermodynamically unstable.
Increasing the temperature towards the critical temper-
ature T → T−c shrinks the size of the hysteresis region
and at T = Tc it disappear.

Many of our results can now bee seen to be quite gen-
eral properties of the MIT. The DMFT fixpoint solutions
form a continuous surface in the (U, T,D) phase space.
At the critical point (Uc, Tc, Dc) this surface has a cusp
singularity. As a function of the DMFT recursion this
surface opens up a pitchfork bifurcation23 in the (T,D)
plane and two of the solutions annihilate by saddle-node
bifurcations23 at the hysteresis boundaries Uc1(T ) and
Uc2(T ) in the (U, T ) plane. Studying the isotherms of
D(U) and ε(U), where ε is the in magnitude largest eigen-
value of JF (x∗), around the critical point, see Fig. 6, we
can explain the behavior of the common algorithms used
to solve the DMFT equations.

Above the critical temperature, T > Tc, the eigen-
value ε is always less than one and both forward recur-
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FIG. 6. (Color online) Double occupancy D (upper panel)
and maximum eigenvalue ε of JF (Σ∗) (lower panel) plotted
against U on isotherms above, close to and below the critical
point (circles, triangles and squares respectively). Saddle-
node bifurcation boundaries Uc1 and Uc2 occur when ε = 1.
The solid lines are composed of dense DMFT-ED solution
points.

sion and Newton’s method converge. In this regime the
maximum of ε at the coupling Uε determines the center
of the thermodynamic crossover region.5,24 At the crit-
ical temperature, T ∼ Tc, forward recursion displays a
critical slowing down of convergence, as ε → 1− when
U → Uc, while Newton’s method becomes unstable first
at the critical point (Uc, Tc). Below the critical tem-
perature, T < Tc, the behavior of ε(U) becomes more
complicated. Following the metallic solution (high D)
the solution annihilate with the unstable solution at the
second hysteresis boundary Uc2 through a saddle-node
bifurcation. This coincides with ε → 1− and explains
the critical slowing down of forward recursion when ap-
proaching the hysteresis boundary from the inside of the
hysteresis region. The behavior of the insulating solution
(low D) at the first hysteresis boundary Uc1 is analogous
to that of the metallic solution.

The unstable solution emerges at the hysteresis bound-
aries Uc1 and Uc2 through the saddle-node bifurcations
and has ε ≥ 1 in the entire hysteresis region. Thus for-
ward recursion will never find this solution, although we
have been able to trace it using Newton’s method by
supplying a close enough initial guess. But Newton’s
method is still unstable on the hysteresis boundaries and
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FIG. 7. (Color online) Phase diagram in U and T plane,
markers are ED-DMFT data and the dotted line correspond
to, a0(u, t) = 0, to linear order i.e., β0u+γ0t = 0. (Solid lines
are guides for the eye.)

a far better method is the phase space extension which
converges everywhere in the studied parameter range.

Recalling the definition of ε(U, T ) as the maximum
eigenvalue of JF (Σ∗) let us define Uε(T ) to be the cou-
pling that maximizes ε for fixed T , see Fig. 6. This allows
for a precise determination of the critical temperature Tc
and critical coupling Uc(Tc) as, ε(Uε(Tc), Tc) = 1 and
Uc(Tc) = Uε(Tc). By linear interpolation of ε(Uε(T ), T )
from isotherms above and below Tc the critical end point
can be directly determined, as indicated in the lower
panel of Fig. 6. Away from Tc, Uε(T ) is not equal to the
coupling Uc(T ) where the first order transition occur.

The (U, T ) phase diagram can now be represented by
four lines, see Fig. 7, the hysteresis boundaries Uc1(T )
and Uc2(T ) that confine the region of fixpoint coex-
istence, the first order thermodynamic transition line
Uc(T ) between metal and insulator and the maximal
eigenmode curve Uε(T ). Where Uε(T ) gives the crossover
between metal and insulator for temperatures above the
critical temperature Tc.

To accurately determine the location (Uc(Tc), Tc, Dc)
of the critical end point and its critical properties we fit a
Landau functional model L to the calculated DMFT-ED
isotherms near the critical end point,

L(u, t, d) = a0d+ a1
d2

2
+ a2

d3

3
+
d4

4
, (32)

where, u = U − Uc, t = T − Tc, d = D −Dc and an are
linear functions in u and t, an(u, t) = βnu + γnt. The
expansion to fourth order in d is the minimal model for
a system with a cusp singularity.25 The free parameters
of the fit are, Uc, Tc, Dc, βn and γn.

For fixed u and t the extremal points of L,

∂dL = a0 + a1d+ a2d
2 + d3 = 0 , (33)

are the Landau analogue of the DMFT fixpoints spanning
a continuous surface SL = {(u, t, d) : ∂dL(u, t, d) = 0},
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FIG. 8. (Color online) Landau fit (solid lines) and DMFT-
ED data (markers) in the (u − γ0/β0t, T ) plane close to the
critical point.

in (u, t, d) phase space. The hysteresis boundaries on SL
satisfy, ∂2

dL = 0, and in addition the critical point is
characterized by, ∂3

dL = 0, ∂4
dL > 0.

To obtain a fit to the DMFT-ED data, on the ±1 meV
scale around the critical point, a second order tempera-
ture term was added to a0(u, t),

a0(u, t) = β0u+ γ0t+ γ
(2)
0 t2 . (34)

Note that this extra term does not change critical behav-
ior of the Landau functional, but changes the behavior
of its “unstable” solution significantly.

We asses the ability of the minimal cusp singularity
Landau functional to describe the DMFT fixpoints in
the vicinity of the critical point by comparing, the (U, T )
phase diagram, the isotherms of D(U) and ε(U) and fi-
nally the critical behavior along the first order transition
line.

When studying the phase diagram in the (U, T ) plane
it is useful to compensate for the linear slope of the
hysteresis region at the critical point. From the Lan-
dau functional the slope is obtained as the dotted line,
β0u + γ0t = 0, shown in Fig. 7. By the transformation,
u → u − γ0

β0
t, this line becomes vertical and the corre-

sponding transformed phase diagram is shown in Fig. 8.
The phase diagram of the DMFT-ED data and the Lan-
dau functional converge when approaching the critical
point.

The Landau functional isotherms of D(U) agree re-
markably well with the calculated DMFT-ED data as
shown in Fig. 9. An important additional fact is that
the largest eigenmode ε of the Jacobian JF of the DMFT
fixpoint function FUβ and the second derivative of the
Landau functional ∂2

dL are related through,

∂2
dL = C(ε− 1) , (35)

for, (u, t, d) ∈ SL, where C is a constant factor. (See
the lower panel of Fig. 9.) As only one eigenmode of the
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FIG. 9. (Color online) Landau fit (solid lines) and DMFT-
ED data (markers) in the vicinity of the critical point for the
shifted double occupancy, d = D − Dc (upper panel), and
maximum eigenvalue ε of JF (Σ∗) (markers) and the scaled
and shifted second order derivative of the Landau functional
∂2
dL/C+1 (solid lines) (lower panel), plotted against, u = U−
Uc, on isotherms with, T = 25.0 meV + (0.650, 0.600, 0.575,
0.550, 0.500) meV, for circles, triangles, squares, pentagons
and hexagons respectively.

DMFT Jacobian JF (Σ∗) becomes critical in the hystere-
sis region, this mode alone governs the critical behav-
ior of D, while all other eigenmodes gives the universal
structure of the phase diagram around the critical point.
The observed proportionality of Eq. (35) confirms that
our Landau functional, parametrized by the single pa-
rameter d, is able to describe the final “effective” critical
behavior.

From Eq. (35) we can construct U∂2
dL(T ) analogously

to Uε(T ) as the coupling maximizing ∂2
dL on an isotherm

with temperature T . Comparing U∂2
dL(T ) to Uε(T ), see

Fig. 8, qualitative agreement is achieved below Tc and
quantitative agreement above Tc.

As a final test of the Landau fit we study the critical be-
havior of the fixpoints on the surfaces defined by the first
order transition line Uc(T ) and the critical eigenmode
maximum line Uε(T ). On these surfaces, (Uc(T ), T,D)
and (Uε(T ), T,D), the emergence of the pitchfork bifur-
cation at Tc is clear, and the Landau model and DMFT-
ED data are again in good agreement. (See Fig. 10.)

We have shown that the Landau functional L quanti-
tatively reproduces the critical properties of the DMFT



9

24.5 25.0 25.5 26.0

T (meV)

0.030

0.031

0.032

0.033

0.034

0.035
D

(p
ai

rs
/s

it
e)

Uc

Uε

10−2 10−1 100

10−4

10−3

10−2

d
(p

ai
rs

/s
it

e)

−t (meV)

.
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lines). (Inset) Logarithmic plot of the metallic branch of

(Uc(T ), T,D) showing the d ∼ t
1
2 critical exponent.

fixpoint surface in the (U, T,D) phase space and criti-
cal exponents can now be derived directly from L. For,
U = Uc, the critical behavior of the double occupancy
with respect to T is given by Eq. (33) as,

D −Dc ∼ |T − Tc|
1
3 , (36)

and equivalently for T = Tc the double occupancy as a
function of U has the same critical form,

D −Dc ∼ |U − Uc|
1
3 . (37)

Along the first order transition line we have a very
different critical behavior. Approaching criticality this
line coincides with the first order term in the Landau
functional being zero, a0(u, t) = β0u + γ0t + γ

(2)
0 t2 = 0.

Sufficiently close to the critical point only the linear order
contribute giving, u = − γ0

β0
t. With this constraint on u

we regain “Ising” scaling exponents and the temperature
critical exponent changes to 1/2 ie.,

D −Dc ∼ |T − Tc|
1
2 , iff U = Uc −

γ0

β0
(T − Tc) , (38)

which is also confirmed by the DMFT-ED data and Lan-
dau fit in the inset of Fig. 10.

The Landau fit also gives a very precise location of the
critical point, in the approximation of DMFT-ED with,
Nf = 6, we obtain Dc = 0.03244 ± 0.0001 pairs/site, for
Uc and Tc see Table I. The error in Tc is estimated by
the temperature difference between the isotherms closest
to Tc and the error in Uc and Dc are estimated from
the isotherms in Fig. 9. The values are compatible with
previous reports on the critical point, see Table I. Even
though the precision is very high, the errors are estimated
within the approximation of ED with a SIAM size of,

TABLE I. Comparison of (Uc, Tc, Dc) for the second order
critical end point.

Uc (eV) Tc (meV)
This work, ED 2.3398± 0.0030a 25.5625± 0.0125a

HF-QMC7 2.3325± 0.015 27.5 ± 0.2
HF-QMC26 2.38 ± 0.02 25.0 ± 3.0
ED10 2.34 25
NRG5 − 40
This work, IPT 2.46073±0.00050 46.9048± 0.0550
IPT9 2.46315 46.895
IPT27 2.51 44.0

a Errors given with respect to ED using Nf = 6, not including
finite size effects.

Nf = 6, using the weight function of Eq. 12. The real
accuracy is lower due to the finite size of the SIAM and
the particular choice of weight function.

The fixpoint surface SL can be intuitively understood
in terms of stationary points of the Landau functional L
as a function of d. In Fig. 11, L is shown for fixed T
and U on the hysteresis boundaries and at the first order
transition. For U = Uc the fixpoints correspond to two
equal local minima and one unstable maxima. As the
local minimas have the same value of L the system is un-
stable and can undergo a first order phase transition. At
the hysteresis boundaries U = Uc1, Uc2 a saddle-node bi-
furcation occur through the appearance of an inflection
point, with two coinciding stationary points that sepa-
rate when moving in to the hysteresis region. The local
maxima corresponding to the unstable solution is always
the stationary point with the highest free energy and can
never be the thermodynamic ground-state.

To demonstrate generality of the phase space extension
and the critical properties of the MIT the same calcula-
tions have also been performed using the impurity solver
IPT. In the IPT calculations the Matsubara formalism is
implemented in terms of periodized Green’s functions. In
the ED calculations the DMFT problem FUβ was formu-
lated as a fixpoint problem in terms of the parametrized
bath Green’s function G0(iωn), FUβ(G0) = FUβ(x),
while in the IPT calculations the fixpoint problem was
formulated in terms of the self-energy Σ(iωn), FUβ(Σ).
The Jacobian was evaluated numerically and the maxi-
mal eigenvalue ε determined. Applying the phase space
extension to IPT we get exactly the same critical be-
havior as before, see Fig. 12, although the location of
the critical point is shifted as previously reported,9,27 see
Tab. I.

IV. DISCUSSION

Using the phase space extension and the Jacobian
JF (Σ∗) of the DMFT fixpoint function we have mapped
out the metal insulator phase digram, the different
DMFT fixpoints and their bifurcations. This extends
previous calculations8,11 by describing the unstable solu-
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FIG. 12. (Color online) DMFT-IPT results for the double oc-
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(lower panel) plotted against U on isotherms above, close to
and below the critical point (circles, triangles and squares
respectively).

tion, which allows us to compute a continuous two dimen-
sional fixpoint surface in the three dimensional (U, T,D)
phase space.

The critical point has been classified as a cusp catastro-
phe with a pitchfork bifurcation on the first order tran-
sition line. The hysteresis boundaries have been shown
to be saddle-node bifurcations of two merging fixpoints,
one stable and one unstable respectively. Using the ex-

plicit calculation of JF (Σ∗) we have confirmed the pre-
diction that a single critical eigenmode governs the MIT
in DMFT9 and shown that this mode becomes critical
not only at the critical point but also on the hystere-
sis boundaries. The calculated fixpoint surface was then
used to fit a cusp catastrophe minimal Landau functional
expansion in the vicinity of the critical point.

The excellent agreement between the mean field Lan-
dau model and the DMFT-ED data shows that the MIT
critical point in DMFT do have mean-field critical behav-
ior, confirming previous reports.8,9,11 From the Landau
fit the critical temperature and coupling, Tc and Uc, was
determined with high precision but with an accuracy lim-
ited by finite size effects of the ED impurity solver.

The study of the DMFT fixpoint surface using the
phase space extension and the Jacobian has shown all the
general features of the MIT. In principle it can be com-
bined with numerical exact impurity solvers like Contin-
uous Time Quantum MonteCarlo (CT-QMC) to remove
convergence issues caused by fixpoint-bifurcations. This
combination has the potential to further improve the ac-
curacy in the location of the critical point.

Our ED results for the critical point agrees with pre-
vious ED calculations10 using the same number of bath
sites, see Tab. I. Also the results of previous Hirsch-Fye
QMC calculations7,26 are compatible with our ED re-
sults. The exact position of the critical point from IPT
does not converge to the one of the other impurity solvers.
This cannot to be expected since the expression for the
self-energy is truncated at second-order in U . However
our discretization procedure yields results consistent with
other IPT calculations.9,27

Our results, showing that the fourth order Landau
functional describes the critical properties of the DMFT
solution when using ED, confirms the findings of Kotliar
et. al.9 who showed, using Hirsch-Fye QMC and IPT,
that the critical properties are not impurity solver de-
pendent.

Using the Landau functional we obtain the same uni-
versal 1/3 critical exponents, in Eq. (36), as initially re-
ported for DMFT9 and later also found experimentally28

in Cr doped V2O3 in the U and pressure dependence
respectively. We also present DMFT results on the 1/2
critical exponent, Eq. (38), along the first order transition
line. This has been found experimentally in the tempera-
ture dependence, D−Dc ∼ |T −Tc|

1
2 , of Cr doped V2O3,

where the coupling to temperature in the first order term
of the Landau functional vanishes, γ0/β0 ≈ 0.

Regarding the minimal cusp singularity Landau model,
Eq. (32), it is noteworthy that the linear expansion of
the an(u, t) coefficients captures the critical behavior of
the metallic and insulating solution of the DMFT data.
However, an additional second order temperature term

γ
(2)
0 t2 must be added to correctly describe the unstable

solution. Without this term, the Landau line Uε(T ) in
Fig. 8 becomes a straight line, all isotherms of the Landau
functional cross the same point (u − γ0/β0t, d) = (0, 0)
(Fig. 9) and the unstable central branch of the pitchfork
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bifurcation in Fig. 10 becomes horizontal.

V. CONCLUSION

In this paper we have presented the phase space exten-
sion algorithm for solving the single band DMFT fixpoint
problem that is free from the numerical problems expe-
rienced by other methods in the hysteresis region of the
MIT.

We have also performed an explicit calculation of the
Jacobian of the DMFT fixpoint function and its corre-
sponding eigenmodes. Using the critical eigenmode of
the Jacobian we explained the critical slowing down and
inability to find the thermodynamically unstable solu-
tion using forward recursion. Moreover the instability of
both forward recursion and Newton algorithms on the
hysteresis boundaries has been explained in terms of one
eigenmode going critical.

The critical properties of the second order critical point
of the MIT has been shown to be representable by a mean
field Landau functional, giving the general properties of
the DMFT fixpoint surface in (U, T,D) phase space in
terms of a cusp singularity with a pitchfork bifurcation

and saddle-node bifurcations on the hysteresis bound-
aries. Experimentally the pressure driven MIT in Cr-
doped V2O3 show the same mean-field critical exponents
for the second order critical point.28

Finally we note that the phase space extension algo-
rithm is general and can be combined with any impurity
solver, and possibly also extended to study phase transi-
tions in other systems such as the multi-band Hubbard
model and the Hubbard-Holstein model.
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