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Abstract
We study the validity of two frequently used approximations in calculations of electron–phonon
coupling at surfaces. The rigid-ion approximation is a standard approximation used for the bulk
metals. On the basis of density functional theory calculations, we find that for Be this
approximation is as valid for surface atoms as for bulk atoms. In addition, the slab method for
calculations of a phonon induced surface state lifetime is examined. The convergence of the
electron–phonon matrix element with respect to the thickness of the slab is studied for several
systems. When the number of slab layers is increased, the net effect of decreasing overlap and
increasing number of final states depends strongly on the decay length of the surface state
wavefunction and the band structure.

1. Introduction

Recent progress in experimental surface science techniques,
such as photoemission spectroscopy and low-temperature
scanning tunneling microscopy, reveals the importance of the
electron–phonon (e–p) coupling in many ultra-fast processes at
surfaces such as the decay of excited surface states or quantum-
well states [1–3]. In chemical reactions the e–p coupling
also plays an important role in dissipative processes such as
vibrational damping. To get further understanding of the e–p
coupling from experimental studies, theoretical investigations
are indispensable.

The estimation of the lifetime broadening due to the e–p
coupling from experimentally determined λ values has often
been based on a simple phonon Debye or Einstein model.
These phonon models seem to be too crude as the detailed
microscopic ingredients of the e–p coupling is not contained in
the analysis [4–10]. Recently more elaborate studies including
the electronic band structures and/or phonon structures have
been reported [11–16].

Very recently several papers have been published where
the electron–phonon coupling is accounted for by applying
first principles calculations based on the density functional
perturbation theory (DFPT) [17–19]. In these types of more
realistic calculations, including the phonon and electronic
structure, the slab method is used to mimic the semi-infinite
systems. For several decades reliable electronic structure

calculations of metal surfaces have been performed with the
slab method. However, for the electron–phonon coupling
calculations, the requirements applying this method has not
been analyzed in any details. In this paper, we investigate,
within a simple model, some convergence aspects of the slab
method in calculations of the e–p matrix element.

Another approximation often used in the calculations of
the e–p coupling is the rigid-ion approximation (RIA) [20].
Due to efficient screening by the conduction electrons the
atomic deformation potential is assumed to localize around the
atom, valence charge follows the ion motion rigidly. This leads
to RIA. RIA has been used to study the e–p coupling in bulk
metals [20] and recently, for the calculation of the e–p coupling
at surfaces [12–15]. However, as far as we know, nobody
addressed the validity of this approximation for the surface
atoms. In this paper we analyze these aspects applying first
principles method based on density functional theory (DFT).

In the next two sections we discuss the validity of
the rigid-ion approximation and the convergence of the e–p
coupling with respect to the number of atomic layers in a slab
calculation.

2. Rigid-ion approximation

As mentioned above, RIA was discussed several decades ago
for bulk systems but only more recently for surfaces. RIA deals
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Figure 1. Super cell geometries of Be(0001) for the three (1)–(3) configurations used in the test of the RIA. The details are given in the text.

with a simplification of the deformation potential caused by the
vibrating lattice of a solid. Roughly, the strength of the e–p
coupling is determined by the basic e–p matrix element which
reads

Mnm
ep ∼

〈
n

∣∣∣∣∂Uie

∂ R

∣∣∣∣m
〉

(1)

where the change of the ion–electron potential Uie—the
deformation potential—, induced by phonon emission or
absorption, drives the scattering of an electron from state m
to state n. R is here some collective notation for the nuclei
coordinates. Uie is the potential experienced by the conduction
electrons in a solid due to the presence of the ions (the screened
atomic nuclei). When an ion moves, surrounded by other
ions in a phonon mode, the electron density will in principle
be locally deformed. However, in RIA, it is assumed that
the valence electron density follows the ion motion and is
independent of the neighboring ion positions. As a result
Uie is assumed to follow rigidly the motion of the ions. For
small displacement vectors �u j of an ion labeled j , the potential
change according to RIA goes as

Uie( �R0
j + �u j ; �r) − Uie( �R0

j ; �r) ≈ Uie( �R0
j + �u j − �r)

− Uie( �R0
j − �r) ≈ �u j · �∇ �R j

Uie( �R0
j − �r)

= �u j · �∇�rUie( �R0
j − �r) (2)

where �R0
j is the equilibrium position of the ion j and �r

is electron coordinate. The benefit from RIA is that in a
calculation we do not have to move the atoms from the
equilibrium positions as the derivative with respect to the
nuclear coordinate is transformed to the electron coordinate.
In the calculation of the e–p matrix elements (equation (1)) we
can further utilize partial integration over electron coordinates.

To check the validity of RIA, in particular for surface
atoms, we have performed first principles calculations based on
the density functional theory (DFT). We study the Be(0001)-
(2 ×2) surface in a 7-layers-thick slab. The (2×2) surface cell
is used instead of the (1 × 1) to avoid that the nearest neighbor
atoms are moved when a particular atom is displaced. The
DFT calculations were performed with the PWscf code [21]

with the local density approximations (LDA) for the exchange
correlation potential.

The calculations were done for three different slabs. First,
(1), the self-consistent potential of Be slab with optimized
structure was calculated. Then, (2), one of the first layer
atoms was moved into the vacuum by 0.1 Å (a typical
vibrational amplitude of an atom in a solid) and the self-
consistent potential was calculated. Thirdly, (3), the whole
slab was moved rigidly perpendicular to the surface (into the
vacuum) from the configuration (1) by 0.1 Å, which is the
simple translation of (1), and the self-consistent potential was
calculated. The atomic positions in the calculations (1)–(3) are
shown in figure 1. To compare the difference of the screening
by the conduction electrons for surface atoms and bulk atoms,
we performed the same procedure of (2) described above for
the bulk atom. In this case one atom in the third layer was
chosen as a bulk atom. To check the effect of the surface layer
on bulk atoms, the same calculation for the middle layer in 13-
layers-thick slab was performed. The result is almost identical
to that of 7-layers-thick slab.

The results of the potential difference between (1) and
(2) as a function of the distance from the atom moved
perpendicular to the surface are shown in figures 2(a) and (b).
The potential difference has decayed sufficiently within 2 a.u.
from the equilibrium position (z = 0). This result clearly
shows that the deformation potential is quite localized around
the displaced Be atom within the atomic radius of Be (2.1 a.u.)
due to the screening by the conduction electrons. The result
is quite similar to that of the bulk atom, which indicates the
difference of the screening by the conduction electron between
surface and bulk is small. We note however, as expected, that
the screening is slightly less efficient in the positive direction
when the surface atom is displaced.

The validity of RIA is judged by the difference between
(2) and (3). In the case of (2) the atom is really moved whereas
in the case of (3), all atoms are displaced rigidly. In RIA, the
screened electron–ion potential Uie, which is determined by
the valence electron density, follows the ion motion and so the
potential difference between (2) and (3) is small compared with
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Figure 2. Results of the RIA test. Left: surface atom displacement: right: bulk atom displacement. Details in the text.

the difference between (1) and (2). The results are also shown
in figures 2(a) and (b). These results indicate that the difference
is quite small, comparing the surface and bulk atoms. This
analysis shows the validity of RIA for Be(0001), not only for
the bulk atoms but also for the atoms in the surface layer.

3. Slab calculation of electron–phonon coupling

In this section we investigate some aspects of the convergence
of the e–p coupling at surfaces in a slab calculation. We
focus on the e–p matrix element related to the phonon induced
decay of a surface state hole. The convergence with respect
to the number of atomic layers is studied for the surface
states of Cu(111), Al(001) and Be(0001). The model potential
and wavefunction used in this section are as follows. The
surface state wavefunctions are approximated with the crude
wavefunction

|0〉 =
⎧⎨
⎩

1√
l�

(0 � z � l)

0, otherwise
(3)

where l characterizes the extension of the surface state in the
direction normal to the surface plane and � is the sample
surface area. The energy of the surface state we denote E0.

We have in mind a metal surface with a surface state band
partly occupied in the �̄-point and located in a projected band
gap. These general features are present for e.g. the (111)
surface of the noble metals. In the paper [22] the authors
pointed out that the decay constant (inverse of l), describing
the decay of the surface state wavefunction into the bulk, is
approximately proportional to the energy difference between
the surface state in the �̄-point E0 and the lower band edge of
the bulk band gap Emax. We utilize this idea to determine l
in our calculations. Both the minimum of the surface state and
the lower edge of the bulk band gap is obtained from a previous
publication [23]. The results are shown in table 1.

As we are only interested in finding out the important
parameters to explain trends of the convergence, we choose
simple bulk band wavefunctions given by the simple one-
dimensional ‘particle-in-box’ potential in the z direction and

free electron like in the direction parallel to the surface.

|n�k‖〉 =
√

2

L�
ei�k‖·�x sin

(nπ

L
z
)

. (4)

The energy eigenvalues are then

En�k‖ = En + h̄2|�k‖|2
2m∗ (5)

where 1 � n � nmax and nmax labels the bulk band
corresponding to the lower edge of the projected band gap
(En = Emax). The bulk bands are assumed to exist up to the
lower edge of the band gap.

In order to focus on trends for different systems we
simplify rather drastically the expression for the hole lifetime
broadening. We neglect differences in phonon structures of
the systems and consider a single Einstein mode polarized
perpendicular to the surface and with frequency ω. The mode
is assumed to be confined within a fixed depth of at least l. The
RIA is applied with a deformation potential D independent of
the system.

We consider a normal photoemission experiment in which
the removed surface state electron in the �̄-point is analyzed.
The e–p induced lifetime broadening, �ep, corresponds to the
lifetime of the hole left behind. We have then

�ep = h̄

2MωN‖

∑
n,�k‖

|〈n�k‖|D |0〉|2δ(E0 − En�k‖ ) (6)

where N‖ is the number of atoms in each layer. In equation (6)
we have applied the quasi-static approximation, neglecting the
phonon energy in the energy conservation of e–p scattering
process. The atomic screened one-electron potential is taken
to have the form

V (r) = −V0 exp(−αr) (7)

where α is the inverse screening length which has to be
chosen large enough that V decays within half the distance
between nearby layers. In the calculations we have used
α = 10/d , where d is the interlayer distance. Within the RIA
the atomic deformation potential averaged over x and y within
the Wigner–Seitz radius Rws is then

Dα = 〈
V ′(z)

〉
xy

≈ V0
z

R2
ws

exp(−α |z|). (8)
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Figure 3. Illustration of convergence of the normalized �ep as a function of the number of the slab layers. The normalization is done with
respect to the asymptotic value (L → ∞).

Table 1. Parameters used in the convergence test of the slab
approximation. Definitions of parameters are shown in the text.

Al(001) Be(0001) Cu(111)

E0 − Emax (eV) 0.23 2.0 0.5
l (a.u.) 24.6 2.84 11.8
W (eV) 9.0 10 6.0
d (a.u.) 3.8 3.1 4.8

Thus we can write the deformation potential, to be inserted in
equation (6),

D(z) =
Nl −1∑
j=0

1√
Nl

Dα(z − jd) (9)

where Nl is the number of layers within l. The delta function
on equation (6) will pick up a particular |�k‖| for each band n,
we label these kn .

kn =
√

2m∗(E0 − En)

h̄
. (10)

We then have the L dependence of the lifetime broadening

�ep(L) = 1

2π

nl

h̄ω

m∗

M

1

l L

nmax∑
n=1

I 2
z (n)I 2

‖ (n) ∼ 1

l L

nmax∑
n=1

I 2
z (n)

(11)
where nl is the density of atoms in each layer, L =
nmaxπ

√
2W , where W is the band width in the �̄-point, and

I 2
‖ (n) ≈ π R2

ws and

Iz(n) =
∫ l

0
D(z) sin(nπz/L) dz. (12)

The parameter W and d are given in table 1.

If we increase the number of layers in the slab the number
of contributing bulk bands increases whereas the overlap for
each band with the surface state becomes smaller. The results
for �ep, normalized with its asymptotic value (L → ∞),
are shown for surface states of three clean metal surfaces in
figure 3. From these results, it is obvious that convergence in
terms of the number of slab layers, N , are different for different
surfaces. In general, for all surfaces, the line width decreases
with increasing number of slab layers. This means that the
reduced overlap between bulk states and surface state kills the
effect of the increasing number of contributing states. To reach
an error less than 10% of the asymptotic value of �ep we need
N > 3 for Cu(111) surface state, for Be(0001) N > 8, and for
Al(001) N > 13. We note here that the short extension of the
surface state into the bulk l for Be(0001) does not mean that
the needed number of layers to reach convergence of �ep is the
smallest for this surface. The reason why the smallest number
of layers is found for Cu(111) is due to its relatively small band
width of 6 eV (see table). Although the l is a factor 4 times
larger for Cu(111) than for Be(0001) the convergence of �ep is
reach within 3 layers. A small band width means a small slab
thickness L for small nmax as L = nmaxπ

√
2W and thus large

overlaps between the surface state wavefunctions and the bulk
wavefunctions. The reason why the convergence is slightly
slower for Al(001) in comparison with Be(0001) is due to the
large spread of the surface state (l) for Al(001).

Although the model here is very simple we think it
illustrates that we should be careful about the convergence of
e–p with respect to the slab thickness. The extension of the
surface state into the bulk, l, guides us for the choice of slab
thickness in the case of a static electronic structure calculation.
However, for a dynamical calculation such as the surface e–p
coupling, the bulk band width, W seems to be an important
parameter.
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4. Summary and conclusions

In this paper we have investigated the validity of commonly
used approximations in the calculations of the e–p coupling at
surfaces.

Applying a simple model, we explore the influence of
basic properties of the electronic structure on the convergence,
with respect to the slab thickness, of phonon induced surface
state hole lifetimes broadening, �ep. We find that even if the
extension of a surface state is small, within a few atomic layers,
as in the case of Be(0001), the convergence of �ep is relatively
slow. Our model study indicates that the bulk band width W
is a crucial parameter. The needed number of slab layers to
mimic the semi-infinite system, will increase with increasing
bulk band width.

We also studied, applying the first principles methods,
the validity of the rigid-ion approximation, RIA, for surface
atoms. For Be(0001), we find that RIA is valid for both bulk
and surface atoms. This indicates that we can expect RIA to
be valid in general for clean metal surface as the screening
properties in the surface and bulk of Be(0001) is expected to
be rather different, metallic and semi-metallic, respectively.
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