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We present a self-consistent numerical approach to solve the Gutzwiller variational problem for general
multiband models with arbitrary on-site interaction. The proposed method generalizes and improves the procedure
derived by Deng et al. [Phys. Rev. B 79, 075114 (2009)], overcoming the restriction to density-density interaction
without increasing the complexity of the computational algorithm. Our approach drastically reduces the problem
of the high-dimensional Gutzwiller minimization by mapping it to a minimization only in the variational density
matrix, in the spirit of the Levy and Lieb formulation of density functional theory (DFT). For fixed density the
Gutzwiller renormalization matrix is determined as a fixpoint of a proper functional, whose evaluation requires
only ground-state calculations of matrices defined in the Gutzwiller variational space. Furthermore, the proposed
method is able to account for the symmetries of the variational function in a controlled way, reducing the number
of variational parameters. After a detailed description of the method we present calculations for multiband
Hubbard models with full (rotationally invariant) Hund’s rule on-site interaction. Our analysis shows that the
numerical algorithm is very efficient, stable, and easy to implement. For these reasons this method is particularly
suitable for first-principles studies (e.g., in combination with DFT) of many complex real materials, where the
full intra-atomic interaction is important to obtain correct results.
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I. INTRODUCTION

In the 1960s Martin Gutzwiller published a series of
papers1–3 where he introduced a variational method for
studying ferromagnetism in transition metals. His brilliant
idea was to variationally determine a projected wave function
represented as

|�G〉 =
∏

R

PR |�0〉 , (1)

where the local operators PR improve the noninteracting wave
function |�0〉 in accordance with the on-site interaction by
modifying the weight of local electronic configurations.

In spite of its simplicity, the average values of any operator
on |�G〉 can be computed only numerically for realistic lattice
models, e.g., using variational Monte Carlo.4,5 For this reason,
Gutzwiller introduced an approximate scheme, known as the
Gutzwiller approximation, to compute these average values
analytically. Successively, the development of dynamical mean
field theory (DMFT)6 has brought additional insights into the
physical meaning of the Gutzwiller approximation. In fact,
Metzner and Vollhardt showed that this approximation is exact
in the limit of infinite coordination lattices,7–9 where the single-
particle self-energy becomes purely local in space.10

Since its introduction, the Gutzwiller wave function and
approximation have proven to be very important tools to
study strongly correlated systems. The understanding of
many basic concepts, such as the Brinkman-Rice scenario
for the Mott transition,11 came originally from calculations
based on the Gutzwiller method. From the computational
point of view, the list of interesting results that have been
obtained by means of the Gutzwiller approximation1–3 and
its respective generalizations9,12–15 is impressively long and,
hence, impossible to cite in an exhaustive way. Furthermore,
the Gutzwiller approximation can be naturally combined
with density functional theory (DFT),16,17 applying, e.g., the

local density approximation (LDA)18 for the exchange and
correlation. LDA + Gutzwiller (LDA + G)19,20 has proven to
be a powerful scheme for the study of real strongly -correlated
metallic materials,20 giving a more accurate description than
LDA + U,21 comparable to LDA + DMFT22 for ground-state
properties. Finally, the range of application of the Gutzwiller
method has recently been extended to out-of-equilibrium
calculations, such as electron transport across quantum dot
systems13,15 and quench dynamics in correlated electron
systems.14

The Gutzwiller variational method requires a number of
preliminary technical steps in order to make it really flexible
and able to cope with systems of interest, as the number of
variational parameters scales exponentially with the number
of correlated orbitals involved in the calculation. This scaling
is already problematic for transition-metal systems with corre-
lated d orbitals if the required minimization is performed in a
naive way. Based on the formalism introduced by Bünemann,23

Deng et al.20 recently derived a self-consistent numerical
method that allows us to efficiently perform calculations even
for d-orbital systems. The only limitation of this approach is
the restriction to density-density types of interactions, which
is actually due to the employed formalism and does not stem
from the numerical approach in itself.

However, in order to properly describe the physics of several
strongly correlated materials, the full intra-atomic interaction
is needed, not only its density-density component. The
rotational invariant on-site Coulomb and exchange interaction
is generally modeled in terms of the so-called Kanamori
parameters24 commonly referred to with the symbols U and J .
The strength of the two-electron spin-exchange interaction is
determined by the parameter J . In transition-metal oxides with
partly filled d shells the off-diagonal interactions—exchange
coupling, spin flip, and pair hopping—are crucial. For exam-
ple, the metallic property of SrVO3 cannot be reproduced from
theory without accounting for spin-exchange interaction.25
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Several theoretical model studies points in the same direction.
To mention a few, the transition from the paramagnetic to the
ferromagnetic phase for multiband systems requires finite J ,23

the spin-freezing transition predicted for multiband systems,
which is expected to influence the Mott transition,26 takes place
when 0 < J/U < 1/3, and is absent for J = 0.27 Previous
Gutzwiller model studies23 and the present work show that
the critical U required for the Mott-insulator transition is
substantially reduced when increasing the ratio J/U from
zero.

Motivated by the above examples we believe that an
implementation of the Gutzwiller variational method valid for
general on-site interactions and, at the same time, numerically
efficient would constitute an important step forward. Formal
advancements pointing in this direction have lately been
conceived by several authors,23,28–34 although progress has
been hampered by the lack of efficient numerical algorithms
applicable to the most general case. In particular, Fabrizio
and collaborators30,32–36 derived a mathematical formulation
of the problem whose complexity is unaffected by the form of
the on-site interactions and, furthermore, allows us to easily
incorporate symmetries into the variational function from the
onset.

The main goal of this work consists of merging to-
gether the general formalism developed by Fabrizio and
collaborators30,32–35 mentioned above and the numerical pro-
cedure derived by Deng et al.,20 overcoming the restriction
to density-density interactions without increasing the com-
plexity of the computational algorithm. Furthermore, the fully
rotational invariant on-site interaction enables us to construct
the variational wave function using the orbital rotational
symmetry, which is instead broken if the off-diagonal terms
are neglected. It will be shown that this extra symmetry can be
used to reduce the number of variational parameters.

The outline of this paper is as follows. In Sec. II the
Gutzwiller problem for a general tight-binding Hamiltonian
is introduced. In Sec. III the employed formulation of the
Gutzwiller method30,32–34,36 is summarized. In particular, in
Sec. III C it is shown that this formulation provides a natural
extension of the formalism of Ref. 20, having the same
mathematical structure in the special case of density-density
on-site interactions. In Sec. IV we discuss the implementation
of symmetries of the wave functions. In Sec. V the numerical
procedure to minimize the Gutzwiller energy is described
in detail. In Sec. VI we briefly discuss how the proposed
method can be adapted to an LDA + G type of calculation.
In Sec. VII we prove the reliability of the method, presenting
a comparison with other methods for the cases of two and
five orbitals. Furthermore, we discuss several technical details
of the numerical procedure, such as convergence properties
and computational speed. Finally, Sec. VIII is devoted to the
conclusions.

II. THE GUTZWILLER METHOD

Let us consider the general tight-binding Hamiltonian

Ĥ =
∑
R�=R′

∑
αβ

t
αβ

RR′ c
†
RαcR′β +

∑
R

∑
��′

U (R)��′ |�,R〉〈�′,R|

≡ T̂ + Ĥloc , (2)

where c
†
Rα creates an electron in state α (where α labels both

the spin σ and the orbital a at site R) and |�,R〉 are many-body
Fock states expressed in the cRα basis. These states are defined
by the occupation numbers nα(�,R) ∈ {0,1}, where α runs
over integer numbers from 1 to M , M being the number of
on-site single-particle states,

|�,R〉 = (c†R1)n1(�,R). . . (c†RM )nM (�,R) |0〉. (3)

Thus, the number of Fock states is 2M . The Hermitian matrix
U (R) represents the local terms, interaction and crystal fields,
in the c

†
Rα basis, i.e., the same basis in which T̂ was defined in

Eq. (2). This basis will henceforth be denoted as the original
basis.

The structure of the Gutzwiller variational function is given
by Eq. (1), where |�0〉 is an uncorrelated variational wave
function that satisfies Wick’s theorem and PR is a general
operator acting on the local configurations at site R

PR =
∑
��′

λ(R)��′ |�,R〉〈�′,R| , (4)

where the 2M × 2M matrix λ(R), assumed to be real in this
work, contains all the variational parameters needed to define
the operator PR.

In general, average values of operators with respect to
|�G〉 must be computed numerically unless the lattice has
an infinite coordination number, in which case they can be
evaluated analytically if the following equations—commonly
named Gutzwiller constraints—are satisfied:

〈�0|P†
R PR |�0〉 = 1, (5)

〈�0|P†
R PR CR |�0〉 = 〈�0| CR |�0〉, (6)

where CR is the local single-particle density-matrix operator
with elements c

†
RαcRβ .

The variational problem to solve amounts to variationally
determining both |�0〉 andPR by minimizing the average value
of the Hamiltonian [Eq.(2)]

Evar [P,�0] = 〈�0|P†ĤP |�0〉, (7)

fulfilling Eqs. (5) and (6), where we have introduced

P ≡
∏

R

PR. (8)

For a general tight-binding model [Eq. (2)] this problem
is complicated for two reasons: (i) |�0〉 and P are not
independent variables because of the Gutzwiller constraints
[Eqs. (5) and (6)] and (ii) the number of variational parameters
scales exponentially with the number of orbitals.

III. REFORMULATION OF THE GUTZWILLER PROBLEM

In this section we briefly summarize the reformulation of
the Gutzwiller problem derived in Refs. 33 and 34, and we
show its formal analogy with the formulation of Bünemann
and Weber23 in the special case of pure density-density local
interaction.
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A. The mixed-basis representation

Let us introduce the so-called natural-basis32 operators
dRα , i.e., the operators such that

〈�0| d†
RαdRβ |�0〉 = δαβ n0

Rα ≡ n0
αβ(R) ∀α,β, (9)

where 0 � n0
Rα � 1 are the eigenvalues of the local density

matrix

〈�0| c†RαcRβ |�0〉 ≡ ρ̄0
αβ(R). (10)

Notice that the natural-basis operators are always well defined,
as ρ̄0(R) is Hermitian, implying that there always exists a
unitary transformation UR such that

d
†
Rα =

∑
β

UR
βα c

†
Rβ . (11)

Instead of expressing the Gutzwiller projector in terms of the
original basis as in Eq. (4) we adopt the following mixed
original-natural33 basis form

PR =
∑
�n

λ(R)�n |�,R〉〈n,R|, (12)

where, by assumption, |�,R〉 are Fock states in the original
cRα basis, while |n,R〉 are Fock states in the natural basis,
namely in terms of the dRα operators. In other words, a generic
state |n,R〉 is identified by the occupation numbers nβ(n,R) ∈
{0,1}—with β ∈ {1, . . . ,M}—and has the explicit expression

|n,R〉 = (d†
R1)n1(n,R). . . (d†

RM )nM (n,R) |0〉. (13)

For later convenience we adopt the convention that the order
of the |�,R〉 and the |n,R〉 states is the same. For instance, if
the second � vector in Eq. (12) is c

†
1↑c

†
2↓ |0〉, then the second

n vector is d
†
1↑d

†
2↓ |0〉.

B. The φ matrix

Let us introduce the uncorrelated occupation-probability
matrix P 0(R)32 with elements

[P 0(R)]nn′ ≡ 〈�0| |n′,R〉〈n,R| |�0〉 = δnn′ P 0
n (R), (14)

where

P 0
n (R) =

M∏
β=1

(
n0

Rβ

)nβ (n,R)(
1 − n0

Rβ

)1−nβ (n,R)
. (15)

We note that n0
Rβ are the elements of the diagonal density

matrix of Eq. (9) and denote the occupation numbers of the
natural states β. We also introduce the matrix representation
of the operators dRβ and cRβ ,

dRβ → (dRβ)nn′ = 〈n,R|dRβ |n′,R〉 (16)

cRβ → (cRβ)��′ = 〈�,R|cRβ |�′,R〉. (17)

Notice that, if we respect the convention that the order of the
|�,R〉 and the |n,R〉 states is the same, we have that

(cRβ )ij = (dRβ)ij ≡ (fβ )ij ∀β, i,j. (18)

We now define the matrices λ(R) and U (R) with elements
λ�n(R) [Eq. (12)] and U��′ (R) [Eq. (2)]. Notice that λ(R)

is defined in the original-natural and U (R) is defined in
the original-original basis. With the above definitions, the
expectation value of any local observable can be calculated
as

〈�0|P†Ô(R)P |�0〉 = Tr(P 0(R)λ†(R)O(R) λ(R)), (19)

where

O��′ (R) = 〈�|Ô|�′〉, (20)

and the Gutzwiller constraints [Eqs. (5) and (6)] can be written
as

Tr(P 0(R)λ†(R)λ(R)) = 1 (21)

Tr(P 0(R)λ†(R)λ(R)f †
αfβ ) = 〈�0| d†

RαdRβ |�0〉. (22)

The formalism is further simplified by defining the matrix

φ(R) = λ(R)
√

P 0(R) , (23)

that was introduced in Ref. 33. The expectation value of any
local observable is given by

〈�0|P†Ô(R)P |�0〉 = Tr(φ(R)† O(R) φ(R)). (24)

The Gutzwiller constraints take the form

Tr(φ†(R)φ(R)) = 1, (25)

Tr(φ†(R)φ(R) f †
αfβ ) = 〈�0| d†

RαdRβ |�0〉 ≡ δαβ n0
Rα, (26)

and the variational energy [Eq. (7)] is, in the Gutzwiller
approximation, given by33

Evar =
∑
RR′

∑
γ δ

t̃
γ δ

RR′ 〈�0| d†
R,γ dR′,δ |�0〉

+
∑

R

Tr(φ(R)† U (R) φ(R)), (27)

where

t̃
γ δ

RR′ ≡
∑
αβ

t
αβ

RR′ R(R)αγR(R′)βδ (28)

R(R)αβ = Tr(φ†(R) f †
α φ(R) fβ )√

n0
β(R)

[
1 − n0

β(R)
] . (29)

In conclusion, within the formalism summarized in this
section, the variational energy is a functional of φ(R) and |�0〉,
to be minimized fulfilling the Gutzwiller constraints [Eqs. (25)
and (26)].

C. Diagonal projector as a particular case

Let us assume that the coefficients of the matrix λ that
define the projector P in Eq. (4) are diagonal,

λ(R)��′ = δ��′ λ(R)�� , (30)

and that the original basis coincides with the natural basis,

〈�0| c†RαcRβ |�0〉 = δαβ 〈�0| c†RαcRα |�0〉
≡ 〈�0| d†

RαdRβ |�0〉. (31)

From Eqs. (30) and (31) we have that

φ(R)ij = δij φ(R)ii , (32)
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and, consequently, the following equation hold for all local
operators O(R)

Tr (φ†(R) φ(R)O(R)) = Tr(φ†(R)O(R) φ(R)). (33)

From Eq. (33) follows that the equations that characterize the
Gutzwiller problem [Eqs. (25)–(29)] can be evaluated in terms
of the variational parameters

√
m�(R) defined by Bünemann

in Ref. 23

φ(R)�� =
√

〈�0|P†|�,R〉〈�,R|P |�0〉 ≡
√

m�(R). (34)

A crucial observation in this work is that in the general case
considered here, in which Eqs. (30) and (31) are not assumed,
Eqs. (25)–(29) are expressed in terms of quadratic forms of the
matrix elements of φ(R) instead of

√
m�(R), but in a formally

identical way.
We conclude this section observing that the physical density

matrix of the system

ραβ(R) ≡ 〈�0|P†c†RαcRβP |�0〉 = Tr (φ†(R) f †
αfβ φ(R))

(35)

is not equal to the so-called variational density matrix

n0
αβ (R) ≡ 〈�0| d†

RαdRβ |�0〉 = Tr(φ†(R) φ(R) f †
αfβ ) (36)

when Eqs. (30)–(33) do not hold. In the general case the
distinction between variational density matrix and physical
density matrix needs to be taken into account.

IV. SYMMETRIES OF THE VARIATIONAL FUNCTION
AND φ MATRIX

In this section we discuss in detail how to build symmetries
in the Gutzwiller variational function. The site label R is
dropped for simplicity. The procedure discussed here extends
the method discussed in Ref. 34 to general point symmetry
groups. The problem amounts to define the form of the φ

matrix such that |�G〉 is invariant under the action of a matrix
representation of a group G in the many-body R-local space.
The transformation law

g c†α g−1 =
∑

β

Dβα(g) c
†
β ∀g ∈ G

(37)
g |0〉 = |0〉

defines a representation37 R(G) of G in the local Hilbert space
generated by the Fock configurations �, see Eq. (3),

g |�〉 =
∑
�′

R�′�(g) |�′〉. (38)

In the original-original basis [Eq. (4)] the invariance condition

gP g−1 = P ∀g ∈ G (39)

is equivalent to

[λ,R(g)] = 0 ∀g ∈ G. (40)

Let us assume that the most general transformation U that
relates the original and the natural basis

d†
α ≡ U c†α U † =

∑
β

Uβα c
†
β

U |0〉 = |0〉 (41)

U |�〉 = |n〉,
commutes with G, i.e., that

[U,R(g)] = [U †,R(g)] = 0 ∀g ∈ G. (42)

It can be shown, see Appendix A1, that Eq. (42) is verified for
every group G whose elements do not mix configurations that
belong to different eigenspaces of the number operator N̂ . This
assumption is obviously verified by every geometry group,
but excludes, for instance, the particle-hole transformation.
A first consequence of Eq. (42) is that the matrix λ has the
same form in the original-natural and in the original-original
representation. In fact,

P ≡
∑
��′

λ��′ |�〉〈�′| =
∑
�n

(λU )�n |�〉〈n|, (43)

and from Eqs. (40) and (42) we have that

[λU,R(g)] = 0 ∀g ∈ G. (44)

Notice that from the assumed invariance of |�0〉 respect to G

we have that, ∀g ∈ G,

P��′ ≡ 〈�0| |�′〉〈�| |�0〉
= 〈�0| |g �′〉〈g �| |�0〉
= (R†(g) P R(g))��′ . (45)

Using Eq. (41) we can easily express P in terms of P 0 as
follows

P = UP 0U †, (46)

where

P 0
ij ≡ 〈�0| |nj 〉〈ni | |�0〉, (47)

so, combining Eqs. (45) and (46), we obtain that

P 0 = (U †R†(g)U)P 0(U †R(g)U). (48)

Equation (48) is equivalent, because of Eq. (42), to the
following invariance relation for P 0:

[P 0,R(g)] = 0 ∀g ∈ G. (49)

From the above considerations and Eq. (23) we can
conclude that φ satisfies the same invariance relation of the λ

coefficients of the Gutzwiller projector in the original-original
basis, i.e., that

[φ,R(g)] = 0 ∀g ∈ G. (50)

In other words, we have proven that φ has the same form
of λ expressed in the original-original Fock representation
[Eq. (4)].

The set of all the φ matrices that satisfy Eq. (50) is a linear
space Vφ . Consequently, there exists a basis of matrices {φk}
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such that

[φk,R(g)] = 0 ∀g ∈ G (51)

φ =
∑

k

ck φk. (52)

In this work we assume that ck and φk are real. This means
that Vφ is a linear space over the field of real numbers. Notice
that this does not restrict the variational freedom as long as the
local interaction Ĥloc is real. This excludes, for example, the
spin-orbit coupling.

A. Calculation of {φk}
In order to calculate {φk} it is convenient to apply a

similarity transformation V to R(G)

RV (g) = V R(g)V † ∀g ∈ G (53)

with the property to decompose R(G) in irreducible
representations.37 More precisely, we need to calculate a
unitary matrix V such that RV (G) is of the form

RV (g) =

⎛
⎜⎜⎝

RV
1 (g) · · · 0
...

. . .
...

0 · · · RV
s (g)

⎞
⎟⎟⎠ ∀g ∈ G, (54)

where (i) the representations RV
i (G) are irreducible for all i ∈

{1, . . . ,s} and (ii) if two representations RV
i ,RV

j are equivalent,
then they are also equal. In Appendix A we derive a possible
procedure to calculate explicitly the similarity transformation
V utilized in this section for a general geometry group G.

Let us consider the linear space V̄V
φ (over the real field) of

the complex matrices φ̄V that satisfy the following equation:

[RV (g),φ̄V ] = 0 ∀g ∈ G. (55)

It can be easily proven by means of the Schur lemma37 that
the most general φ̄V ∈ V̄V

φ is of the form

φ̄V =

⎛
⎜⎜⎝

pV
1 · · · 0
...

. . .
...

0 · · · pV
r

⎞
⎟⎟⎠ , (56)

where the blocks k ∈ {1, . . . ,s} correspond to inequivalent
representations of G and each block is of the form

pV
k =

⎛
⎜⎜⎝

r111dk
· · · r1nk

1dk

...
. . .

...

rnk11dk
· · · rnknk

1dk

⎞
⎟⎟⎠ , (57)

1dk
being identity matrices of size dk × dk , dk being the dimen-

sion of each one of the irreducible equivalent representations
of G repeated in the k-th block and rij being independent
complex numbers. Equations (56) and (57) allow to define
straightforwardly a basis {φ̄V

k } of V̄V
φ .

Let us define now the linear space of real matrices V̄φ

generated by the set of matrices {φ̄k} obtained as

φ̄k ≡ V †φ̄V
k V . (58)

The linear space Vφ that we need, see Eq. (50), is obtained as

Vφ = V̄φ ∩ WR, (59)

where WR is the linear space of all real matrices. It is
convenient, finally, to orthonormalize the basis set {φk} of
Vφ in order to have

Tr(φ†
i φj ) = δij . (60)

B. Independent variational parameters

All the relevant quantities that define the variational energy,
i.e., (i) the Gutzwiller constraints [Eqs. (25) and (26)], (ii) the
R matrices [Eq. (29)], and (iii) the local-interaction energy
[Eq. (27)], can be expressed in terms of quadratic forms in the
ck coefficients defined in Eq. (52) as follows:

Rαβ =
∑
ij

cicj

Tr(φ†
i f

†
αφjfβ )√

n0
β

(
1 − n0

β

)

≡
∑
ij

cicj

M
ij

αβ√
n0

β

(
1 − n0

β

)

=
∑
ij

cicj

1

2

M
ij

αβ + M
ji

αβ√
n0

β

(
1 − n0

β

)

≡ 〈c| MS
αβ√

n0
β

(
1 − n0

β

) |c〉, (61)

n0
αβ ≡

∑
ij

cicj Tr(φ†
i φj f †

αfβ )

≡
∑
ij

cicjN
ij

αβ =
∑
ij

cicj

1

2

(
N

ij

αβ + N
ji

αβ

)

≡ 〈c| NS
αβ |c〉, (62)

〈�0|P† Ĥloc P |�0〉 =
∑
ij

cicj Tr(φ†
i U φj )

≡
∑
ij

cicj Uij ≡ 〈c| U |c〉. (63)

Notice that the tensors MS , NS , and U are fully determined
by the symmetry of the wave function [Eq. (1)] and the
number of orbitals. For this reason, it is generally convenient to
precalculate them before starting the numerical minimization
of the variational energy. This point will be further discussed
in Sec. VII D.

C. Simplified variational ansatz

The complexity of the numerical problem is considerably
reduced if the mixing of different atomic configurations is
neglected in the Gutzwiller projector. This amounts to assume
that the matrix φ defined in Eq. (23) has the form

φ =
∑

h

cint
k φint

h , (64)

φint
h ≡ P int

h /

√
Tr

([
P int

h

]2)
, (65)
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where P int
h are the orthogonal projectors onto the eigenspaces

of the local atomic interaction Ĥint. Although the variational
parameters neglected in Eqs. (64) and (65) can play a crucial
role in some case,33 this simplified ansatz merits mention for
at least two reasons. (i) It still allows us to solve exactly the
problem in the atomic limit and (ii) the number of independent
variational parameters is generally extremely lower in this ap-
proximation, allowing us to perform calculations not feasible
otherwise. Furthermore, once a variational result

φ0 ≡
∑

h

cint
0 h φint

h (66)

is obtained assuming Eqs. (64) and (65), it can be used as a
good starting point c for the self-consistent search of the energy
minimum with the more general variational space discussed
before, see Eq. (52),

ck = Tr(φ†
kφ0), (67)

with the result to speed up the calculation. Notice, in fact, that
[Ĥint,G] = 0, implying that

[φ0,R(g)] = 0 ∀g ∈ G, (68)

i.e., that φ0 ∈ Vφ .

V. NUMERICAL OPTIMIZATION OF THE VARIATIONAL
ENERGY

In this section we discuss in detail the self-consistent
numerical strategy to minimize the energy [Eq. (27)] fulfilling
the Gutzwiller constraints [Eqs. (25) and (26)].

Notice that the formulation of the Gutzwiller problem
through Eqs. (25)–(27) is formally analog to the constrained
formulation of DFT derived by Levy38,39 and Lieb.40 In fact,
the variational energy can be expressed as a functional of the
variational density matrix n0, see Eq. (36),

Evar[n
0] = min

n0
Evar [c,�0] , (69)

where minn0 denotes the minimum over the set of variational
parameters c and |�0〉, satisfying the Gutzwiller constraints
[Eqs. (25) and (26)] at fixed n0. In this work the Gutzwiller
problem is solved by calculating the density functional Evar[n0]
and minimizing it with respect to n0.

For clarity reasons we have structured the rest of this section
as an exposition of the numerical procedure, omitting the
mathematical proofs. The mathematical details can be found
in the Appendices.

A. Preliminary calculation

Let us consider the Gutzwiller renormalized nonlocal tight-
binding operator

T̂ G =
∑
αβ

∑
R�=R′

t̃
αβ

RR′ d
†
RαdR′β, (70)

where

t̃
γ δ

RR′ ≡
∑
αβ

t
αβ

RR′ RαγRβδ. (71)

For later convenience, we consider a general one-body
Hamiltonian

ĤG = T̂ G + �Ĥ =
∑
kn

εG
kn η

†
knηkn, (72)

where �Ĥ is a given local operator.
Let |�0〉 be the ground state of ĤG. It can be easily verified

that

∂〈�0| T̂ G[R] |�0〉
∂Rαβ

= 2
∑

k

[tkRUkfkU
†
k]αβ, (73)

where

(fk)nm = θ
(−εG

kn

)
δnm, (74)

η
†
kn =

∑
i

(Uk)αn d
†
kα . (75)

Equation (73) will be used in the following subsections,
where two important inner parts of our numerical scheme are
described in detail.

B. Slater determinant optimization step

For later convenience, in this section we solve the problem
of calculating the state |�0〉 that realizes the minimum of the
Gutzwiller variational energy at fixed c

En0,R = min
|�〉∈Sn0

〈�| T̂ G |�〉
(76)

Sn0 ≡ {|�〉 t.c. 〈�| d†
RαdRβ |�〉 = δαβn0

α

}
,

where T̂ G is given by Eqs. (70) and (71). Note that the
functional En0,R depends on c only indirectly throughR, which
is given by

Rαβ = 〈c| MS
αβ |c〉√

n0
β

(
1 − n0

β

) ; (77)

see Eqs. (29) and (61).
It is convenient to account for the Gutzwiller constraints

employing the Lagrange multipliers method. We introduce

ĤG[R,λ] = T̂ G + �Ĥ, (78)

where

�Ĥ =
∑

R

∑
αβ

λαβ d
†
RαdRβ. (79)

Notice that ĤG has the same form of Eq. (72). Finally, we
calculate the ground state |�0〉 of ĤG[R,λ] for λαβ such that
the Gutzwiller constraints [Eqs. (25) and (26)] are satisfied.
Once the Lagrange multipliers λαβ are known we compute
Eq. (73).

In summary, the calculations described in this section
associate the input variables n0

β and Rαβ to the output matrix

Dαβ ≡ ∂〈�0| T̂ G |�0〉
∂Rαβ

; (80)

see Fig. 1.
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Tn0 [Ri] = Ri+1

|Ψ0 φ

Ri D = ∂ T̂ G

∂R Ri+1

FIG. 1. (Color online) Flow chart representing the numerical
calculation of the functional Tn0 .

C. φ-matrix optimization step

In this section we derive the numerical procedure to
minimize the Gutzwiller energy functional

E�0 [c] = 〈�0| T̂ G |�0〉 + 〈c| U |c〉, (81)

where T̂ G is given by Eqs. (70) and (71) and R depends on
c through Eq. (77), keeping the Slater determinant |�0〉 fixed
and respecting the Gutzwiller constraints

〈c|c〉 = 1, (82)

〈c| NS
αβ |c〉 = δαβ n0

α. (83)

In order to solve this problem we adopt the following
linearization procedure, which is based on Appendix B. We
consider the Hermitian matrix

F [D,λ] = H [D] + L[λ], (84)

where Dαβ is defined by Eq. (80), and

H [D] = U +
∑
αβ

Dαβ

MS
αβ√

n0
β

(
1 − n0

β

) , (85)

L[λ] =
∑
αβ

λαβ NS
αβ. (86)

We then calculate the ground state c of F [D,λ] for λ such that
the Gutzwiller constraints [Eqs. (82) and (83)] are satisfied.
The obtained vector c is used to define a new R through
Eq. (77).

Notice that the matrixDαβ entirely encodes the dependency
of the problem on |�0〉 in Eq. (84). In summary, the above
calculations associate to the input variables n0

β and Dαβ the
output renormalizaton matrix Rαβ ; see Fig. 1.

D. Fixed-point formulation

A very important observation in our implementation is
that the composition of the two optimization steps derived
in Secs. V B and V C can be described as a functional Tn0

that associates a given renormalization matrix Ri to a new
renormalization matrix Ri+1

Ri+1 = Tn0 [Ri]; (87)

see Fig. 1. This operation lead to a reduction of the variational
energy unless, by definition, R solves the equation

Tn0 [R] − R = 0. (88)

In this case, R defines a stationary point of the energy
functional. This observation results in a formulation of the

minimization of the variational energy at fixed n0 as a fixpoint
problem, that can be solved in several ways.41 A first possibility
is to useRi as an input to obtainRi+1 and iterate the procedure
up to convergence. This procedure is commonly referred to as
forward recursion method.6,42 However, as it will be shown in
Sec. VII D, the application of the Newton method is generally
much more efficient.

We underline that the size of R is equal to the number of
orbitals and that the number of independent parameters that
define it is often reduced by symmetry. For this reason the
solution of Eq. (88) generally requires a few Newton steps
to converge; see Sec. VII D. The problem of the exponential
scaling of the local many-body space affects the numerical
algorithm exclusively through the solution for the ground state
of F [D,λ]; see Eq. (84). The size of the matrix F [D,λ] is, in
fact, equal to the dimension of the vector c. Nevertheless, the
calculation of the ground state of F [D,λ] is not numerically
problematic for two reasons. (i) The dimension of c is reduced
by symmetries, as will be shown in Sec. VII D. (ii) The
calculation of the ground state of F [D,λ] does not require a full
diagonalization. Less computationally demanding algorithms,
such as the power method or the Lanczos method, can be
employed. See Sec. VII D for further details.

We remark that the self-consistent numerical algorithm
derived in this paper requires, as a starting point, only a initial
“guess” for the variational density matrix n0 and the matrix
R. It is not necessary to construct a good initial guess for
the whole Gutzwiller wave function, i.e., for the matrix φ,
while this would be necessary in order to perform a direct
constrained minimization of the energy functional [Eq. (27)].
This implies that the stability of the algorithm is not affected by
the exponential scaling of the number of parameters involved
in the calculation. This point will be further discussed in
Sec. VII D.

VI. APPLICATION TO LDA + GUTZWILLER

In this section we briefly discuss how to combine the
Gutzwiller scheme with a first-principles calculation of the
uncorrelated electron structure as an input, applying
the DFT scheme with LDA. This combined scheme is named
LDA + G. We also outline how the Gutzwiller solver has to
be modified in order to account for the double counting.21

The double counting appears as a mean-field contribution
in the exchange-correlation taken into account in the LDA
calculation.

As a starting point we consider the Kohn-Sham reference
system obtained within a converged LDA calculation

ĤLDA =
∑

k

∑
n

εKS
kn η

†
knηkn, (89)

η
†
kn|0〉 ≡ ∣∣ψKS

kn

〉
. (90)

In order to be able to apply LDA + G the tight-binding
Hamiltonian [Eq. (89)] must, first, be expressed in terms of
a proper localized basis set20 |χkα〉, where α labels both spin σ

and orbital a. This can be done by means of the overlap matrix

[Sk]nα = 〈
ψKS

kn

∣∣χkα

〉
, (91)
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giving

ĤLDA =
∑

k

∑
αβ

ε
αβ

k c
†
kαckβ, (92)

ε
αβ

k =
∑

n

[S†
k]αn εKS

kn [Sk]nβ, (93)

c
†
kα|0〉 ≡ |χkα〉. (94)

In order to express ĤLDA in the same form of Eq. (2) we
separate ĤLDA in a nonlocal part T̂ and in a local part (the
crystal fields) as follows:

ĤLDA = T̂ + L̂, (95)

T̂ =
∑

k

∑
αβ

t
αβ

k c
†
kαckβ, (96)

L̂ =
∑

R

∑
αβ

lαβ c
†
RαcRβ, (97)

where

lαβ = 1

�

∑
k

ε
αβ

k , (98)

t
αβ

k = ε
αβ

k − lαβ, (99)

and � is the number of sites R. The on-site electron interaction
can be modeled by the Slater-Kanamori rotationally invariant
atomic interaction24

Ĥint =
∑

R

Ĥ R
int, (100)

Ĥ R
int = U

∑
a

n̂Ra↑n̂Ra↓ + U ′

2

∑
a �=b

∑
σσ ′

n̂Raσ n̂Rbσ ′

− J

2

∑
a �=b

∑
σ

c
†
Raσ cRa−σ c

†
Rb−σ cRbσ

− J ′

2

∑
a �=b

c
†
Ra↑c

†
Ra↓cRb↑cRb↓. (101)

We underline that the form [Eq. (101)] for Ĥint is obtained
by implicitly assuming that the single-particle basis |χkα〉 is
given by real orbitals, i.e., the cubic (crystal) harmonics. It
can be proven that the condition U = U ′ + J + J ′ ensures
the rotational invariance in the orbital space. The additional
condition J = J ′ can be assumed whenever the spin-orbital
coupling is negligible.20

Our model is now defined in the form of Eq. (2), with T̂

given by Eq. (96) and Ĥloc = Ĥint + L̂. An additional on-site
term, the double counting, needs to be added to Eq. (27) as
the average orbital-independent interaction energy is already
included in LDA. A common choice of the double counting
term is21,22

Edc[ρ] = Ū

2
n(n − 1) −

∑
σ

J̄

2
nσ (nσ − 1), (102)

Ū = U + 2lJ

2l + 1
,

(103)
J̄ = Ū − U ′ + J,

where l is the angular-momentum quantum number of the
considered localized basis set,

n ≡
∑

σ

nσ ≡
∑
aσ

naσ ,

(104)
nα ≡ ραα,

see Eq. (35), and nα is the mean value of c
†
RαcRα with respect

to the Gutzwiller wave function, which is given by

nα =
∑
ij

cicj Tr(φ†
i f †

αfα φj ),

≡
∑
ij

cicj P ij
αα ≡ 〈c| Pαα |c〉. (105)

The presence of the double counting term gives rise to the
following additional term in Eq. (84):

D[c] =
∑

α

∂Edc

∂nα

Pαα. (106)

When the self-consistent Gutzwiller calculation is con-
verged the result can be fed back to the LDA code. By
calculating the density matrix

[ρk]αβ ≡ 〈�0|P†c†kαckβP |�0〉 (107)

and representing it in the Kohn-Sham basis
[
ρKS

k

]
nm

=
∑
αβ

[Sk]nα [ρk]αβ [S†
k]mβ, (108)

it is possible to get a prescription how to transform the Kohn-
Sham eigenfunctions and occupancies in order to reproduce the
physical Gutzwiller electron density.20 To the new total density
corresponds a new effective potential for the Kohn-Sham
reference system that, in turn, defines a new tight-binding
Hamiltonian.

The procedure is iterated until self-consistency is reached.

VII. RESULTS

This section has two purposes. (i) As a proof of concept
we present some numerical result in comparison with other
calculations based on different methods. (ii) We outline
several technical details of the calculations and the speed of
convergence of the algorithm.

Test calculations have been performed on multiorbital
model Hamiltonians of the form

Ĥ =
∑
kσ

∑
ab

tab
k c

†
kaσ ckbσ +

∑
Rσ

∑
ab

lab c
†
Raσ cRbσ + Ĥint,

(109)

where the structure of Ĥint was defined in Eq. (101). A
paramagnetic Gutzwiller wave function has been assumed in
all the calculations shown in this section. The hopping matrix
has been set up as either (i) nearest-neighbor hopping on a
three-dimensional cubic lattice, giving a noninteracting DOS
with cusps close to half the bandwidth, or (ii) nearest-neighbor
hopping on a Bethe graph with infinite coordination number,
corresponding to a semicircular noninteracting DOS. In both
cases the half bandwidth W is set as the unit of energy.
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FIG. 2. (Color online) Comparison of results for two degenerate
bands on the 3D cubic lattice with rotational-invariant Hunds
interaction, from Gutzwiller (solid lines) and slave-boson43 (dotted
lines), showing the quasiparticle weight Z as a function of U and
(from right to left), J/U = 0, 0.01, 0.02, 0.05, 0.10, 0.20, 0.45.
Additionally, the higher energy fixpoint solutions of Eq. (88) at finite
J/U are reported.

A. Two-bands Hubbard model

First, let us consider the case of two orbitals. In the special
case of half-filling and degenerate bands we compare our
calculations with the available results obtained from Ref. 43 by
means of the rotationally invariant slave-boson technique,43–47

which is equivalent to the Gutzwiller variational method
on the mean field level.48,49 In this case tab

k is set up as
nearest-neighbor hopping on a three-dimensional cubic lattice

tab
k = − t0

ab

1

3

3∑
μ=1

cos(kμ), (110)

with t0
ab = δab. For this specific model, in which the single-

particle energy dispersion of the two bands are identical, we
have that

Rab =
√
Z δab, (111)

where Z can be interpreted as a measure of the quasiparticle
renormalization weight.50 As shown in Fig. 2, the Gutzwiller
calculation gives the same values of Z as a function of U

and J/U as the slave-boson calculations. The Brinkman-
Rice transition11 occurs at a strongly J -dependent critical
U . This well-known fact51 supports the argument that the
spin-exchange on-site interaction needs to be taken into
account to accurately describe strongly correlated systems.
Furthermore, while for J/U = 0 the phase transition is second
order, at finite J/U it becomes first order, with a hysteresis
region characterized by an additional fixpoint solution of
Eq. (88), corresponding to a second stationary point of the
variational energy; see Fig. 2. To our knowledge this solution
has never been reported before in either the Gutzwiller or in
the slave-boson approximation.

Let us consider the more general case of nondegenerate
bands with finite crystal field splitting �,

∑
ab

lab c
†
Raσ cRbσ = � (n̂R1σ − n̂R2σ ). (112)

FIG. 3. (Color online) Filling per spin of orbital 1 for � =
0.2 and different values of J/U . From bottom to top, J/U =
0,0.01,0.02,0.05,0.1,0.15,0.25. The continue lines correspond to our
Gutzwiller results for the metallic phase at half-filling. Open (full)
symbols correspond to metallic (insulating) solutions obtained from
DMFT52 at inverse temperature β = 25.

This model has been studied in detail with DMFT in Ref. 52.
Here we compare our Gutzwiller results with part of the
available DMFT data. This gives an opportunity to discuss
some features of the specific implementation derived in this
work and to introduce some general merits and limits of the
Gutzwiller variational method in itself.

In Fig. 3 the expectation value of the filling per spin n̂1σ is
shown for several values of U and J/U . Following Sec. III,
the expectation value of n̂1σ is given by

n1σ = Tr(φ† f
†
1σ f1σ φ); (113)

see Eq. (24). In the same figure the DMFT results from Ref. 52
are also shown. These calculations were performed assuming
a semicircular density of states.

For the specific crystal field splitting considered, � = 0.2,
the system is metallic at small U and is driven toward a
Mott insulating or an orbitally polarized phase, depending
on the value of J/U , on increasing the interaction strength
U . Notice that the DMFT and the Gutzwiller results are in
very good agreement in the metallic phase, especially away
from the Mott transition. This confirms that the quality of
the Gutzwiller calculations is generally comparable with the
quality of DMFT for the ground-state properties of strongly
correlated metals.20 On the contrary, the Mott-insulating phase
cannot be described correctly by means of a Gutzwiller
approximation. Nevertheless, it is correct to assume that Z
approaching 0 indicates that the metallic phase becomes
unstable, compatibly with the Brinkman-Rice scenario.11

Notice that the critical coupling Uc(J ) of the Mott transition
predicted by the Gutzwiller approximation is not accurate in
general. For instance, at J = 0 the Gutzwiller calculation gives
Uc ≈ 5 for the semicircular density of states, which differs
from the DMFT result,52 UDMFT

c ≈ 4 by 20% (not shown).
Notice that the results of Fig. 2 were obtained assuming a
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FIG. 4. (Color online) Gutzwiller expectation value of Ŝ2 for
different values of J/U and crystal field splittings �, the total filling
is six electrons per site and U = 1. Comparison with DMFT data at
inverse temperature β = 25 from Ref. 53.

three-dimensional cubic lattice and not a semicircular density
of states.

B. Five-band Hubbard model

In this section we study the Hamiltonian of the form
[Eq. (109)] for five bands, describing correlated d electrons
in a cubic crystal. We assume a semicircular density of states
and that the full rotational symmetry is broken by a finite
crystal field splitting � between the three t2g and the two eg

orbitals, i.e., ∑
ab

lab c
†
Raσ cRbσ = �

∑
a∈t2g

n̂Raσ . (114)

This model has previously been used as a benchmark system
in DMFT.53 In our calculation we assume a paramagnetic
Gutzwiller wave function invariant with respect to the sym-
metry point group of the cube. This allows us to reduce con-
siderably the number of variational parameters; see Sec. VII D.

Let us consider the expectation value S2 of the total spin
squared Ŝ2, for which DMFT data are available in Ref. 53.
From Eq. (24) we have that

S2 = Tr(φ† S2 φ), (115)

where

Sk =
∑

a

∑
σσ ′

f †
aσ

σ k
σσ ′

2
faσ ′ (116)

and σ k are the Pauli matrices. In Fig. 4 the behavior of S2

is shown at fixed U = 1 for six electrons per site and several
values of J/U . In the figure our results are compared with the
DMFT data from Ref. 53. Consistently with DMFT, we find
that S2 grows monotonically on increasing J/U and that the
crystal field splitting � = 0.25 slightly reduces S2 compared
to the case of degenerate bands. Notice that the discrepancy
between the Gutzwiller results and the DMFT data becomes
larger on increasing J/U at fixed U . A similar qualitative
behavior could be observed even in the calculation shown in

Fig. 2 for the two-bands model. Nevertheless, the observed
deviation between the Gutzwiller results and the DMFT data
seems to be more substantial in this case.

C. Bilayer Hubbard model

In both the models previously considered the renormaliza-
tion matrix R was diagonal due to symmetry. For complete-
ness, we also consider the bilayer Hubbard model,32,34,43 in
which R have finite off-diagonal elements. In particular, we
consider the Hamiltonian given by Eq. (109), assuming that
the local hybridization term described by the matrix

l =
(

0 V

V 0

)
(117)

with V = 0.25, and a hopping matrix tab
k given by Eq. (110)

as in Sec. VII A. Finally, we assume that the local interaction
Ĥint is given by Eq. (101) with U ′ = J ′ = J = 0. This model
has previously been studied—with the same parameters—in
Ref. 43 with the slave-boson method.

When the bandwidths are equal for the two bands (as in
the present case) the matrix l defined in Eq. (117) can be
diagonalized without modifying the hopping matrix tab

k for
any k.43 This change of basis transforms the hybridization
term l in a crystal field splitting between the bonding (+) and
antibonding (−) orbitals. In the new basis both the effective
renormalization matrix Z0 ≡ [R0]2 and the density matrix are
diagonal

Z0 =
(Z+ 0

0 Z−

)
, n0 =

(
n+ 0

0 n−

)
, (118)

and the coefficients Z+,Z− can be interpreted as the quasipar-
ticle renormalization weights of the bonding and antibonding
orbitals, respectively. In the original basis, instead, R has
nonzero off-diagonal elements and Z ≡ R2 has the form
Z11 = Z22 and Z12 = Z21, where

Z11 = Z+ + Z−
2

(119)

|Z12| = |Z+ − Z−|
2

. (120)

In order to compare with the slave-boson results of Ref. 43
we have studied the system for N = 1.88 electrons per site.
As seen in Fig. 5, the average of Z+ and Z−, given by Z11,
decreases monotonically as a function of U as expected.
Concomitantly, the difference between Z+ and Z−, given
by |Z12|, progressively increases with U . Our calculations
compare well with the slave-boson results, although we find a
slightly lower renormalization of the antibonding state at large
interactions.

D. Technical remarks

In this section we point out several technical details of
the numerical simulations performed to derive the results
presented above.

The main technical problem of the Gutzwiller method is
that the dimension of c, see Eq. (52), scales exponentially with
the number of correlated orbitals. Fortunately, this number can
be highly reduced by taking into account the symmetries of
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FIG. 5. (Color online) Gutzwiller renormalization matrix Z and
filling of the bonding-antibonding bands for the two-bands bilayer
Hubbard model with equal bandwidths, local hybridization V = 0.25,
U ′ = J ′ = J = 0, and filling N = 1.88 (solid lines). Comparison
with slave-boson results from Ref. 43 (dotted lines).

the system. As an example, the number of matrix elements
of φ (i.e., the dimension squared of the local Fock space) is
compared in Table I with the dimension of the vector c in
the case of a paramagnetic Gutzwiller wave function invariant
with respect to the point symmetry group of the cube. This
simplification is very important, as dim(c) is equal to the size of
F [D,λ], see Eq. (84), whose ground state needs to be evaluated
many times during the calculations. To compute the ground
state of F [D,λ], i.e., its eigenvector with the lowest eigenvalue,
we have used the iterative Arnoldi based solver provided by
the ARPACK library. This calculation is further speeded up
by exploiting the sparsity of F [D,λ], effectively reducing the
cost of the necessary matrix-vector multiplications.

As anticipated in Sec. IV B, it is generally convenient to
precalculate φk and the tensors M

ij

αβ , N
ij

αβ , and Uij in order to
further speed up the calculations. This reduces the construction
of the matrix F to the sums in Eqs. (85) and (86) but increases
the memory requirements. In fact, the total number of elements
NT in the tensors scales as

NT = (
2N2

orb + 1
)
N2

c + NcN
2
� , (121)

where Nc is the dimension of the vector c, Norb is the number
of orbitals, and N� = 22Norb is the dimension of the local
space. However, the number of stored matrix elements can
considerably reduced by exploiting the sparsity of the tensors.
For instance, the number of nonzero elements in the tensors
was reduced by around three orders of magnitude for the
five-band Hubbard model of Sec. VII B. Eventually, in more

TABLE I. Dimensions of the variational space for one, three,
and five atomic orbitals (corresponding to s, p, and d electrons).
The number of matrix elements of φ, 24Norb , is compared with the
dimension of the vector c, which is reduced by the point group
symmetry of the cubic lattice.

l Norb 24Norb dim(c)

s 0 1 16 3
p 1 3 4096 16
d 2 5 1048576 873

FIG. 6. (Color online) Convergence of the forward recursion
scheme (circles) and of the Newton method (squares) for five bands at
N = 5, J = 0, and � = 0. The quasiparticle weight Z ≡ R2

αα goes
to zero as U goes to the critical coupling Uc ≈ 10 . Simultaneously,
the leading eigenvalue λ of the Jacobian of the recursion function goes
to 1, and the number of forward iterations required to reach a fixed
relative precision (here |Ri − Ri+1| � 10−6 is used) diverges. On the
contrary, the number of Newton iterations is almost independent of
U . The matrix [R0]αβ = δαβ is used as initial condition of both the
forward recursion series and the Newton method ∀U .

complicated calculations, it may happen that the number of
variational parameters is so large that the tensors cannot be
stored in memory. In this case, it is still possible to calculate
the traces “on the fly.” This operation is trivially parallelizable.

It is well known that the speed of convergence of the forward
recursion method [Eq. (87)] is limited by the magnitude of
the largest eigenvalue λ of the Jacobian of the transformation
Tn0 in the fixed point R. In particular, if |λ| → 1 the rate of
convergence displays a critical slowing down. We have found
that this situation actually occurs in our simulation when U

approaches the Brinkman-Rice critical value. This is shown
in Fig. 6, where the convergence of R is shown for different
values of U at half-filling (N = 5), J = 0, and � = 0. The
value of λ was obtained as

λ = lim
i→∞

(Ri+1 − R)/(Ri − R)
(122)

R = lim
i→∞

Ri ,

where Ri was obtained from the forward recursion series
[Eq. (87)] starting from the initial condition

[R0]αβ = δαβ ∀U. (123)
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In DMFT the self-energy � is obtained as the solution of a
fixed point problem,6 analogously to the matrix R, which is
the solution of Eq. (88). It is known that also in DMFT the
rate of convergence of the forward recursion method displays
a critical slowing down in the vicinity of the Mott transition.
This behavior has recently been shown to be related to the fact
that the maximum eigenvalue of the Jacobian λ approaches
1 as U approaches the critical value,54 as in our Gutzwiller
calculations. In this case the convergence problem has been
cured by employing quasi-Newton methods instead of the
forward recursion scheme.54,55 The same strategy is applicable
to solve Eq. (88). As shown in Fig. 6, this strategy is very
efficient. While the forward recursion algorithm slows down as
U approaches its critical value, the number of required Newton
iterations is essentially independent of U . The time required
to calculate the results shown in Fig. 6 with the Newton
method is less than 1 min for every single U . Nevertheless,
the forward recursion method could be more stable in some
case, as every forward recursion step leads to a decrease in total
energy. In fact, see Sec. V, every evaluation of Tn0 corresponds
to a minimization of the energy with respect to the Slater
determinant followed by a minimization with respect to the
Gutzwiller projector. This guarantees that the fixed points
calculated by the forward-recursion method are local minima,
while the Newton method can converge also to fix points with
one or more Jacobian eigenvalues |λ| > 1, i.e., to stationary
points of the energy that are not local minima.

We remark that the numerical procedure proposed in
this paper is divided into two steps. (i) Construction of the
functional Evar[n0] optimizing the variational energy for a
fixed variational density matrix n0. This optimization can
be reduced to the fixed point problem [Eq. (88)] and solved
with the methods discussed above. (ii) Direct minimization of
Evar[n0] with respect to n0. For completeness, this procedure
is illustrated explicitly here for the bilayer Hubbard model

FIG. 7. (Color online) Sweep in the filling of the antibonding
orbital n− for the two-bands bilayer Hubbard model with equal
bandwidths, local hybridization V = 0.25, filling N = 1.88, U ′ =
J ′ = J = 0, and U = 2.5. Renormalization matrix Z (top panel) and
total energy (bottom panel).

discussed in Sec. VII C. For each value of U the total energy
Evar[n0] was optimized with respect to the variational density
n0 using a bound minimization routine. An example is shown
in Fig. 7, where the renormalization factors and the total
energy are shown for fixed U = 2.5 and total filling per site
N = 1.88 as a function of the antibonding orbital filling n−.
For each n− the fixpoint problem of Eq. (88) was solved
employing a quasi-Newton method with convergence criterion
|Ri − Ri+1| � 10−12 in less than 40 steps.

Finally, we point out that the presence of finite off-diagonal
terms in R is due to the generality of the variational ansatz
considered in this work. In fact, R is always diagonal if
Eqs. (30) and (31) hold, as it was assumed in Ref. 20; see
Sec. III C.

VIII. CONCLUSIONS

In this article we have derived a numerically efficient
self-consistent implementation of the Gutzwiller variational
method. The method proposed was obtained as a combination
of the self-consistent numerical procedure recently derived
by Deng et al. in Ref. 20 and the mathematical formula-
tion of the Gutzwiller problem developed by Fabrizio and
collaborators.30,32–36 This formalism allows us to overcome the
restriction to density-density interaction, which was assumed
in Ref. 20, without increasing the complexity of the numerical
algorithm. The approach drastically reduces the problem of
the high-dimensional Gutzwiller minimization by mapping it
to a minimization only in the variational density matrix, in the
spirit of the Levy38,39 and Lieb40 formulation of DFT. For fixed
density the Gutzwiller renormalization matrix is determined
as a fixpoint of a proper functional of R, whose evaluation
only requires ground-state calculations of matrices defined in
the Gutzwiller variational space. We have compared different
methods to solve the fixpoint problem, finding that the Newton
method is generally more efficient than the forward iteration
method. The formalism also allows us to reduce the number of
independent variational parameters in a well-controlled way
using symmetries. As a proof of concept we have performed a
few numerical calculations for two- and five-band Hubbard
models with full rotationally invariant interaction, finding
good agreement with available DMFT and slave-boson data.
This analysis shows that the numerical approach derived is
very stable and efficient. For these reasons this scheme is
promising for first-principles studies of real materials, e.g., in
combination with DFT (LDA + G).

It is noteworthy that the numerical implementation pre-
sented in this work allows for straightforward extensions
in two directions of interest. (i) The variational freedom of
the Gutzwiller wave function can be generalized in order to
describe superconducting32,34 and magnetic systems.33 (ii) The
assumption that the coefficients λ of the Gutzwiller projector
[Eq. (4)] are real can be dropped and generalized to complex
values. This allows, for instance, to account also for spin-orbit
corrections to the on-site interaction.
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APPENDIX A: IRREDUCIBLE REPRESENTATION
FOR A PARAMAGNETIC WAVE FUNCTION

In this Appendix we explain how to calculate the trans-
formation V introduced in Eq. (53) for a general group G.
Let us consider the example in which G is the symmetry
group of a paramagnetic wave function invariant with respect
to a specific discrete group of real (orbital) rotations Gorb,
e.g., the symmetry group of the cube. The problem consists
in the definition of the most general φ matrix that commutes
with the number operator N̂ , the representation of the spin Ŝ
and the representation Ĝorb of Gorb.

[φ,N̂ ] = [φ,Ŝ] = [φ,ĝ] = 0 ∀ĝ ∈ Ĝorb. (A1)

In order to achieve our purpose, the first step is to
diagonalize simultaneously N̂ and Ŝ2. Each simultaneous
eigenspace of these operators is the basis of a representation of
the symmetry group G identified by the eigenvalues (N,S). We
denote such a space VN,S . Let us decompose VN,S in irreducible
representations of the spin rotations. In order to do this we
consider the kernel of the spin lowering operator Ŝ− in VN,S

and denote it by VN,S,−S . We then calculate an orthonormal
basis of VN,S,−S in which, for later convenience, L̂2 and L̂Z

are also diagonal,

VN,S,−S = Span
({

ψ
L,mL,i
N,S,−S

})
. (A2)

To each value of L, mL, and i corresponds, by applying the
raising Ŝ+ operator to ψ

L,mL,i
N,S,−S up to 2s times, a set of states

labeled as {ψL,mL,i
N,S,mS

}. Each subset V
L,mL,i
N,S is defined as

V
L,mL,i
N,S = Span

({
ψ

L,mL,i
N,S,mS

∣∣ms = −S,...,S
})

(A3)

and is a basis of an irreducible representation of the spin group.
It is clear that, in order to commute with N̂ and Ŝ2, φ is

decomposed in uncoupled blocks, each of them acting on the
corresponding subspace VN,S . In each block we group together
the vectors {ψL,mL,i

N,S,mS
} with the same mS . The Schur lemma37

ensures that, if the above order convention is used, the (N,S)
block of φ has the general form

φ|VN,S
=

⎛
⎜⎜⎝

pN,S · · · 0
...

. . .
...

0 · · · pN,S

⎞
⎟⎟⎠ . (A4)

The structure of the matrix p in Eq. (A4) is further reduced
by the condition [φ,Ĝorb] = 0. The vector space VN,S,mS

generated by {ψL,mL,i
N,S,mS

}L,mL,i is the basis of a representation of
Gorb, which can be decomposed in irreducible representations
using standard methods. Notice, in fact, that a state ψ

L,mL,i
N,S,mS

transforms exactly as the spherical harmonic function YL
mL

under rotations. Each one of the obtained irreducible represen-
tation of Gorb is labeled by its characters.37 We group together
all the equivalent representations with equal characters χ .
This amounts to express VN,S,mS

as the direct sum of V
χ

N,S,mS
.

The Schur lemma37 ensures that each one of the pN,S blocks
defined in Eq. (A4) has the general form

pN,S =

⎛
⎜⎜⎝

qN,S
χ1

· · · 0
...

. . .
...

0 · · · qN,S
χnch

⎞
⎟⎟⎠ , (A5)

where nch is the number of inequivalent representation in
VN,S,mS

.
The final step is to identify the nk states of each subspace

V
χk

N,S,mS
that belong to the same row37 of the corresponding

(equivalent) irreducible representations of Gorb. The Schur
lemma37 restricts the structure of each qN,S

χk
block of Eq. (A5)

as in Eq. (57), i.e.,

qN,S
χk

=

⎛
⎜⎜⎝

r
N,S,χk

11 1dk
· · · r

N,S,χk

1nk
1dk

...
. . .

...

r
N,S,χk

nk1 1dk
· · · r

N,S,χk
nknk

1dk

⎞
⎟⎟⎠ , (A6)

where 1dk
are identity matrices of size dk × dk and dk is

the dimension of each one of the irreducible equivalent
representations of Gorb repeated in V

χk

N,S,mS
.

1. Proof of the assumption [Eq. (42)]

Let us prove that Eq. (42) is verified for every group G that
does not mix configurations belonging to different eigenspaces
of the number operator N̂ . We need two preliminary observa-
tions. (i) By assumption our uncorrelated wave function |�0〉
is invariant respect to the action of G, i.e.,

g|�0〉 = eiφg |�0〉 ∀g ∈ G. (A7)

(ii) From Eq. (37) we have that

D†(g)ρ̄0D(g) = ρ̄0 ∀g ∈ G, (A8)

where

ρ̄0
αβ ≡ 〈�0| c†αcβ |�0〉 (A9)

is the variational density matrix expressed in the original basis;
see Eq. (10). The density matrix ρ̄0 has exactly the same form
of Eqs. (A4)–(A6) because of Eq. (A8). For this reason it can
be diagonalized by means of a matrix U of the same form, i.e.,

D†(g)UD(g) = U ∀g ∈ G. (A10)

The single-particle transformations induced by the matrices U
and D(g) into the Fock many-body space evidently commute
as a consequence of Eq. (A10). This concludes the proof of
Eq. (42).

APPENDIX B: SELF-CONSISTENT FORMULATION
OF THE φ-MATRIX OPTIMIZATION

We need to minimize the energy functional defined in
Eq. (81) respect to the vector c fulfilling the Gutzwiller
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constraints [Eqs. (82) and (83)]. The Gutzwiller constraints
can be ensured by means of the following Lagrange functional

L[c,λ] =
∑
αβ

λαβ〈c| NS
αβ |c〉. (B1)

The variation of E�0 [c] is given by

δE[c] = 〈δc|
∑
αβ

∂〈�0| T̂ G[�0,c] |�0〉
∂Rαβ

MS
αβ√

n0
β

(
1 − n0

β

) |c〉

+ 〈c|
∑
αβ

∂〈�0| T G[�0,c] |�0〉
∂Rαβ

MS
αβ√

n0
β

(
1 − n0

β

) |δc〉

+ 〈δc|U |c〉 + 〈c|U |δc〉, (B2)

and the variation of the Lagrange functional [Eq. (B1)] is given
by

δL[c,λ] = 〈δc|
∑
αβ

λαβNS
αβ |c〉 + 〈c|

∑
αβ

λαβNS
αβ |δc〉. (B3)

The condition that the variation of

δF�0 [c,λ] ≡ δE�0 [c] + δL[c,λ] = 0 ∀δc ⊥ c (B4)

is equivalent to the following “nonlinear eigenvalue problem”

F�0 [c,λ]|c〉 = E|c〉, (B5)

where

F�0 [c,λ] = U +
∑
αβ

∂〈�0| T̂ G[�0,c] |�0〉
∂Rαβ

MS
αβ√

n0
β

(
1 − n0

β

)
+

∑
αβ

λαβNS
αβ. (B6)

In principle, the minimization of E�0 [c] could be performed
recursively, starting from a given “guess” c0 and iterating the
following eigenvalue problem

F�0 [cn,λn]|cn+1〉 = En+1|cn+1〉, (B7)

where En+1 is the lowest eigenvalue of F�0 [cn,λn] and λn are
the Lagrange multipliers such that cn+1 satisfies the Gutzwiller

constraints. The minimum of E�0 [c] is realized in

cmin = lim
n→∞ cn. (B8)

Instead, to calculate cmin, it is convenient to approximate cmin

with c1. This approximation can be considered as the result
of a “linearization” of the functional E�0 [c] around the initial
guess c0.

APPENDIX C: NUMERICAL IMPLEMENTATION
OF THE TIGHT-BINDING PROBLEM

Let us consider a general translational invariant noninter-
acting tight-binding Hamiltonian

Ĥ = T̂ + �Ĥ, (C1)

where

T̂ =
∑
αβ

∑
R�=R′

t
αβ

RR′ d
†
RαdR′β, (C2)

�Ĥ =
∑
αβ

δαβ
∑

R

d
†
RαdRβ. (C3)

The translational invariance of the system

t
αβ

RR′ = t
αβ

R+R0 R′+R0
∀ R0, α,β (C4)

allows us to express Ĥ in k space

Ĥ =
∑
αβ

∑
k

(
t
αβ

k + δαβ
)
d
†
kαdkβ, (C5)

where

t
αβ

k =
∑

R

e−ikR t
αβ

R0 . (C6)

From Eq. (C5) Ĥ can be easily diagonalized numerically and
expressed in terms of its eigenoperators as follows:

Ĥ =
∑
kn

εkn η
†
knηkn. (C7)

Notice that the overlap matrix

(Uk)αn = 〈0| dkαη
†
kn |0〉 (C8)

appears in Eq. (75).
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