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1. Electron-Phonon coupling



Electron-Phonon Coupling (EPC)

I Fundamental interest

I Damping of vibrational excitations and electronic friction

I Lifetime of electronic excitations

I Photoinduced surface reactions

I Superconductivity
(BCS theory: I. Eremin, Max-Planck Institut

[https://www.pks.mpg.de/ ieremin/teaching/wroclaw1.pdf])



Fundamentals

Many important chemical and physical phenomena are in�uenced by
inherent dissipative processes which involve energy transfer between
the electrons (electron-electron scattering) and between the
electrons and the ionic motion (electron-phonon scattering) - EPC.

Non-adiabatic interaction between the valence electrons and the ion
motion in a solid reveals the break down of the Born-Oppenheimer
approximation � Electrons are not in�nitely fast !

ωplasmon
ωphonon

≈ 103



Electron-phonon coupling in�uences e.g vibrational damping of
adsorbates and lifetime of excited surface states.

Several experimental techniques, e.g. HREELS, IR and ARPES are
able to give information about the importance of EPC

Combined with advanced theoretical calculations it is possible to
sort out the relative importance of EPC and to point out key
parameters.

Graphene has recently surprised us with a strong electron-phonon
coupling. Utilizing this property to modify graphene to become a
superconductor is a challenge.



Calculations within Density functional theory (DFT)

Damping of a vibrationally excited H atom near a metal

I H/Jellium:
· · · · · Al (rs = 2.07)
x x x Ag (rs = 3.00)
��- �Local density
approximation�

B.Hellsing and M. Persson, Physica Scripta. Vol. 29. 360-371, 1984



Electronic friction at surfaces

I The friction coe�cient in terms of the stochastic force

η =
1

kB
Re

∫ ∞
0

dt < F st(t)Fst(0) > =
M

~
Γ

A thermal H atom approaching a Jellium surface

B.Hellsing and M. Persson, Physica Scripta. Vol. 29. 360-371, 1984



Lifetimes of surface states

I Photo emmision experiment - photo
electron and photo hole created

I EPC - phonon absorption and emission

A. Eiguren, B. Hellsing et al., Phys. Rev. Lett. 88(2002)066805-1

A. Eiguren, B. Hellsing et al., Phys. Rev. B 67(2003)235423

B. Hellsing, A. Eiguren et al., J. Phys. Cond. Mat. 14(2002)5959



Experiment and Calculations

Cu(111) and Ag(111):

I T = 0 : (⇒ nB = 0)

Γnk = 2π

∫ ωmax

0
α2Fki(ω)dω

I high T : kBT >> ~ωmax

Γnk(T ) = 2πλnkkBT

A. Eiguren, B. Hellsing, F. Reinert et al.,

Phys. Rev. Lett. 88(2002)066805-1



Mini many-body course

The Greens' function related to a state |a〉 is written

Ga(ε) =
1

ε− εa − iδ
With this construction of the Greens' function the imaginary part
will give the spectrum

1

π
ImGa(ε) =

1

π

δ

(ε− εa)2 + δ2
= δ(ε− εa)

Now if we consider this pure state coupled to some other degrees of
freedom, e.g. phonons we replace the iδ in the denominator of the
Greens' function of the pure state |a〉 by a complex so called
self-energy Σa(ε).



Ga(ε) =
1

ε− εa − Σa(ε)

where

Σa(ε) = ReΣa(ε) + iImΣa(ε)

Taking again the imaginary part of the Greens' function we get the
spectrum or what is also called the Spectral function Aa(ε).

Aa(ε) =
1

π
ImGa

In the band picture we label the states with n and k and we get

An(ε,k) =
1

π

ImΣn(ε,k)

(ε− εn(k)−ReΣn(ε,k))2 + (ImΣn(ε,k))2



ImΣn(ε,k) ∼ ImΣ(εn(k),k) ∼ ∆nk

ReΣn(ε,k) ∼ ReΣ(εn(k),k) ∼ Λnk

A Lorentzian shaped spectral function:

An(ε,k) =
1

π

∆nk

(ε− εn(k)− Λnk)2 + ∆2
nk



Spectral function - Photo Emission Spectroscopy (EPS)

In the sudden approximation the spectral function An(ε,k)
corresponds to the photoemission peak.

Line width = Lifetime broadening (FWHM): Γnk = 2∆nk

We sum up all phonon induced electron scattering processes from
occupied states to the photo-hole (nk), requiring momentum and
energy conservation. The temperature is below any characteristic
phonon energy ⇒ only phonon emission takes plays.



Γnk from ARPES

ARPES = Angular Resolved PhotoEmission Spectroscopy

Lindwidth Γnk ↔ Hole lifetime τnk

Heisenberg : ∆E∆t ≥ ~ ⇒ τnk ≥
~

Γnk

Intra-band scattering Inter-band scattering



Experiment - ARPES

I ARPES investigation of the σ band in graphene [1]

1. Frederico Mazzola, Justin Wells et al. Phys Rev Lett. 111 (2013) 249902



2. Lifetime broadening



Linewidth of an electronic state εnk
We consider electron scattering from occupied states to the empty
state, the hole state εnk, created in the photoemission
experiment. The temperature is below any characteristic phonon
energy ⇒ only phonon emission takes plays.



Electron scattering with phonon emission can take place from
electron states n′k′ to the photo hole state nk.
Momentum conservation:

k = k′ + q±G

q is a phonon wave vector, G is a reciprocal lattice vector.
Energy conservation (phonon emission):

εnk = εn′k′ − ~ωνq

~ωνq is a phonon energy of mode ν and momentum q.



According to the Heisenberg uncertainty relation the decay rate
times ~ gives the so called lifetime broadening or linewidth.

We are aiming the EPC contribution to the width of the peak
(linewidth) of the spectral function recorded in the photoemission
experiment.

Applying �rst order time dependent perturbation theory - Golden
Rule - the lifetime broadening can be calculated.



Perturbation theory
Perturbation theory: Q = ion displacement and x = electron
coordinate :

H(Q, x) ≈ H(0, x) +
δH

δQ
Q = H(0, x) +

δV

δQ
Q

V is the one-electron potential. In the harmonic approximation

〈I = 1, n|H(Q, x)|I = 0,m〉 = 〈1|Q|0〉〈n|δV
δQ
|m〉 =√

~
2MΩ

〈n|δV
δQ
|m〉, (1)

εm = εn + ~Ω



Fermi Golden Rule

Γnk = 2π
∑
n′νq

|〈nk|δV ν
q |n′k + q〉|2δ(εn′k+q − εnk − ~ωνq) (2)

δV = ∇ ~QV · ~Q , n is electronic band index, k electron wave vector,
ν vibrational mode index and q the phonon wave vector.

The delta function takes care of the energy and momentum
conservation.



In the harmonic approximation we have

δV ν
q (r) =√

~
2Mων(q)

∑
R[eν(q) · v′(R + rs; r)]e−iq·(R+rs) , (3)

R denotes location of unite cells, eν(q) is a Ns×3 dimensional
polarization vector with components eνsi(q), where s labels the
atoms in the unit cell (s =1,2,3 ,..,Ns, where Ns is the number of
atoms in the unite cell). Index i refers to the three cartesian
coordinates, x, y and z.

v′(R; r)

is the deformation potential with Ns×3 components
v′si(R + rs; r) = ∂Vs

∂Qi
(r− (R + rs)) where index i refers to the

displacement vector ( Qi = {Qx, Qy, Qz} ).



One-electron model potential

I chose a spherically symmetric smooth attractive Gaussian shaped
e�ective one-electron potential with two parameters.

V (r) = V (r) = −V0e−(
r
α
)2 (4)

V0 and α represents the strength (depth) and the real space
extension (screening length), respectively.
The phonon induced perturbation to �rst order

δVν =
∂V

∂Qν
Qν ,

where Qν is the ionic displacement coordinate of the vibrational
mode ν.



Deformation potential

We apply the Rigid ion approximation (RIA). RIA corresponds to an
approximation when the electron potential is rigidly displaced with
the ionic displacement. This is a reasonable approximation if the
screening is su�cient to yield a perturbation which is not felt by
neighboring ions. We then have

V (Q, r) = V (r−Q)



If we for example consider an ionic displacement along the
x-direction, the deformation potential is

δVx(r) =
∂V

∂Qx
·Qx = −∂V

∂x
·Qx = x · 2V0

α2
e−(

r
α
)2 ·Qx

In the harmonic approximation the squared magnitude of the mean
ionic displacement is

|〈0|Qν(q)|1〉|2 =
~

2Mων(q)



Γ⇐⇒ λ
At zero temperature (T=0) we have

Γnk = 2π~
∫ ∞
o

α2Fnk(ω)dω

and the local electron-phonon coupling constant λnk

λnk = 2

∫ ∞
o

α2Fnk(ω)

ω
dω

where α2Fnk(ω) is the Eliashberg function. This function can be
seen as the phonon density of states weighted by the
electron-phonon coupling. The integration is over all phonon
frequencies.

λ(ε) =
∑
nk

λnkδ(ε− εnk) , λ = λ(εF) (5)



3. Electrons in graphene



Electrons in graphene - a Tight Binding Model

In the tight-binding model the one-electron wave function is written

ψnk(r) =
∑
js

cnsj(k)Φsj(k, r) (6)

Bloch orbitals

Φsj(k, r) =
1√
N

∑
R

φj(r− (R + rs))e
ik·(R+rs)

s = {A,B} denotes the two non-equivalent sites of the carbon
atoms. R is a lattice vector connecting the unit cells. N is the
number of unit cells we sum over. rA and rB are the position of
the A and B atom relative the center of the unit cell.



The local atomic basis hydrogen-atom-like wave functions are

φj = {φ2s, φ2px , φ2py , φ2pz}

The radial part of the carbon atom basis according to Slater [Slater
et al. Physical Review 36, 57 (1930)]

Rn = R2 ∼ re−Z
∗r/2 , r =

√
x2 + y2 + z2

where Z∗ = 3.25 a.u. is the screened e�ective charge seen by the
2s and 2p electrons in carbon atom.



The normalized basis functions in cartesian coordinates are:

φ2s =
(Z∗)5/2√

96π
re−Z

∗r/2 , φ2pz =
(Z∗)5/2√

32π
ze−Z

∗r/2

φ2px =
(Z∗)5/2√

32π
xe−Z

∗r/2 , φ2py =
(Z∗)5/2√

32π
ye−Z

∗r/2



Figure: The unit cell of graphite



The generalized eigenvalue problem:

H ~ψ = εS ~ψ

where H and S is the Hamiltonian and overlap matrix

We have to diagonalize a (8X8) matrix to solve∑
s′j′

〈sj|H − εS|s′j′〉cs′j′ = 0

(I do this using the LAPAK subroutine ZHEGV)

⇒ (εnk, cnsj(k))⇒ (εnk, ψnk)



We consider nearest neighbour hopping

Figure: Nearest neighbour hopping



Details:

For a given electron momentum k:

〈sj|H − ε(k)S|s′j′〉 =

c∗sj(k)cs′j′(k)

∞∑
l=1

〈φsj(r−Rs
0)|H − ε(k)S|φs′j′(r− (Rs

l
′ −Rs

0))〉×

eik ·(R
s′
l −R

s
0) ≈

(Nearest neighbour interaction: A has three B neighbours and B has

three A neighbours)

c∗sj(k)cs′j′(k)

3∑
l=1

〈φsj(r−Rs
0)|H − ε(k)S|φs′j′(r− (Rs

l
′ −Rs

0))〉×

eik ·(R
s
l
′−Rs

0)



Parameters:

ε2s, ε2p, Vssσ, Vspσ, Vppσ, Vppπ and Sssσ, Sspσ, Sppσ, Sppπ

With d = nearest C-C distance. For exmple:

ε2p = 〈φ2px(r|H|φ2px(r)〉 = 〈φ2py(r|H|φ2py(r)〉 = 〈φ2pz(r|H|φ2pz(r)〉

Vspσ = 〈φ2s(r|H|φ2px(r− dx̂)〉

Vppσ = 〈φ2px(r|H|φ2px(r− dx̂)〉

Vppπ = 〈φ2pz(r|H|φ2pz(dx̂− r)〉
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Tight binding parameters (B. Gharekhanlou et al, "Graphene:

Properties, Synthesis and Applications", 2011, Editor Zhiping Xu):.

ε2s = -8.70 eV, ε2p = 0, Vssσ = -6.70 eV,
Vspσ = 5.50 eV, Vppσ = 5.90(5.10) eV, Vppπ = -3.10 eV

The value of Vppσ is adjusted to �t DFT (Mazolla et al. Phys. Rev.

B 95, 075430 (2017)) results.

Parameters of the overlap matrix S :

Sssσ = 0.20, Sspσ = -0.10, Sppσ = -0.15, Sppπ = -0.12



4. Phonons in graphene



Phonons in graphene - a Force Constant Model

We consider all six phonon modes, three optical and three acoustic;

The optical phonon modes are: longitudinal optical (LO),
transversal optical (TO) and out-of-plane optical (ZO).

The acoustic phonon modes are: longitudinal acoustic (LA),
transversal acoustic (TA) and the out-of-plane acoustic
(ZA).applying a constant force model.

Setting up the Dynamical matrix we include up to third order
nearest neighbor interactions. I apply the nine force constant model
by Falkovsky (L.A. Falkovsky, Phys.Lett. A 372, 5189 (2008)) and (B.
Hellsing et al., Phys. Rev. B 98, 205428 (2018)).



Figure: Third order neighbour interaction



The dynamical matrix D is calculated including up to third order
nearest neighbor interactions. The force constants ΦAs

ll′ are de�ned
by

DAs
ll′ (q) =

∑
Rs

ΦAs
ll′ (Rs)e

−iq·Rs , (7)

Rs labels the vectors from a center A atom to the three nearest B
atom, the six next-nearest A atoms and the three next-next-nearest
B atoms.

l denotes the components of a complex vector (ξ, η).

ξ = X + iY and η = X − iY ,

X‖ = Xx̂+ Y ŷ is the atomic in-plane displacement vector.



We transform the dynamical matrix D from the (ξ, η)
representation to the cartesian representation (X,Y ) (B. Hellsing,
Phys. Rev. B 98, 205428 (2018)) and include also the out-of-plane
dispalcement Z.

Dss′
ll′ (q) ⇒ Dss′

ii′ (q),

where the subscript i labels the three components X, Y and Z of
the Cartesian displacement vector X = Xx̂+ Y ŷ + Zẑ.



The Newtonian equation of motion:

Mẍ = −kx

Time Fourier transform: x̃(ω) = x(t)eiωt

[
k

M
− ω2]x̃ ≡ [D − ω2]x̃ = 0



The equation of motion give us an eigenvalue problem to solve:

∑
s′i′

[Dss′
ii′ (q)− ω2

ν(q)δss′δii′ ]e
ν
s′i′(q) = 0 , (8)

The solutions give us the dispersion of the six eigen modes ων(q).
eν is the 6-dimensional phonon polarization vector for each
vibrational.
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Interaction with the substrate

Figure: EELS Experiment [T. Aizawa et al., PRB 42, 469 (1990) ]



I introduce a spring between all the carbon atoms and a rigid
substrate.

The spring constant is set to �t the �nite frequency of the ZA
model at q=0. According to experiments [T. Aizawa, R. Souda, S.
Otani, Y. Ishizawa, and C. Oshima, Phys. Rev. B 42, 469 (1990) ],
~ωZA(q = 0) ≈ 35 meV for four di�erent transition metal carbide
substrates.



s
ks

k

B

B

A

B

k

k

k

k

A B

z

x

x

y

Figure: Graphene attached to a rigid substrate



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

120

140

160

180

200

m
eV

Phonon bands

KM

"ZA"

LO

TO

ZO

TA
LA

z
=-1.45 cm -2

'
z
=0.085 cm -2

z
=0.171 cm -2

sub
=0.790 cm -2

Figure: Phonon band structure including substrate interaction



5. Lifetime broadening of Graphene bands



EPC matrix element

With the wave functions given in Eq. (6) we have that the EPC
matrix element is given by

〈nk|δV νq |n′k′〉 = 1
N

∑
sj

∑
s′j′ c

∗
nsjcn′s′j′

×
∑

R,R′,R′′〈φj(x− (R+rs))δvνq(x− (R′′+r′′s ))φj′(x− (R′+rs′))〉u.c.

×e−ik·(R+rs)e−iq·(R
′′+r′′s )eik

′·(R′+r′s) ,

where

δvνq(x) =

√
~

2Mων(q)
[eν(q) · v′(x)] , (9)

R is the lattice vectors connecting the centers of the unit cells and and
rA and rB give the position of the A and B atoms relative the center of
the unit cell.



N is the number of unit cells summed over and 〈.....〉u.c. denotes
real space integration over the unit cell.

In the numerical calculation I consider a cluster of 7 unit cells
(N=7), one central and the 6 nearest.

The real-space integration is taken over the central unit cell. This
corresponds to R′′ = 0 and then we multiply with N . This
eliminates N in the denominator in the previous equation.



Phase space e�ects

Consider ~k-space near the Γ point.

The sampling of initial electron states that ful�lls momentum and
energy conservation results in a very di�erent picture when
comparing the intra and inter σ band scattering (σo → σo and
σi → σo) and the interband scattering π → σo.

In the σ band scattering the electron states are found in a tiny
circle around the Γ-point just inside the hole state (see Fig. 9).

For the interband scattering π → σo the situation is the opposite,
the electron states are sampled in a large region (see Fig. 10).
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Linewidth Γ - ARPES experiments



Linewidth Γ - calculation

σo - band
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Γ→ K ⇐⇒ Γ→M

EPC matrix element 〈σo|δVZA|π〉

Γ̄→ K̄: |σo〉 ≈ 1√
2
(|2pAx 〉 − |2pBx 〉)

Γ̄→ M̄ : |σo〉 ≈ 1√
2
(|2pAy 〉 − |2pBy 〉).

⇒

Γ̄→ K̄: EPC matrix element 〈even|oddz|oddz〉 is large.

Γ̄→ M̄ : EPC matrix element 〈oddy|oddz|oddz〉 cose to zero.



All the way Γ̄→ K̄ and Γ̄→ M̄
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Linewidth Γ - calculation

π - band
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π band � TB calculation and ARPES
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λ(ε)

Mazzola et al. PRB 95, 075430 (2017)



λ =⇒ Tc

The σ band lies far from the Fermi level and does not contribute to
graphene's transport properties. What would happen if the σ band
could be shifted to the Fermi level? McMillan formula (W. L.

McMillan PRB 167, 331 (1968) , corrected by Allen (P. B. Allen et al.

PRB 12, 905 (1975) and valid for λ < 1.5),

Tc =
~ωlog

1.20
exp

(
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)
, (10)

E�ective Coulomb repulsion for s and p band superconductors
µ∗=0.1 (D. M. Gaitonde et al., Bull. Mater. Sci.26, 137 (2003)), the
logarithmically averaged phonon frequency ωlog ≈ 91 meV (Chen Si,

et al.Phys. Rev. Lett. 111, 196802 (2013)) and 0.8 < λ < 1.0, we
predict 49 K < Tc < 72 K.



Graphene and BC bandstructure (DFT)
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Remarks

Substrate in�uence on the electron structure ?

We might expect that the π bands would be most strongly
in�uenced by the presence of a substrate, as their wave functions
are built up by the 2pz orbitals pointing towards the substrate.
It is well established that a carbon �bu�er layer� or �zeroth layer�
(which resembles graphene but with a very strong substrate
interaction and modi�ed π band) is formed directly on top of SiC
during graphene growth. Continued growth (as is relevant for our
samples) results in the formation of the �rst true layer of graphene,
which is found to be only weakly bonded to the underlying bu�er
layer (Matthaus et al., PRL 99, 076802 (2007), Varchon et al.,

PRL 99, 126805 (2007) , Kageshima et al., Appl. Phys. Express 2,

065502 (2009) ).



The weak substrate interaction may rigidly shift the electronic
structure of graphene (i.e. as a result of charge transfer), and the
new periodicities present can also create �replica bands� (Nakatsuji
et al., PRB 82, 045428 (2010) ).
First principles band structure calculations show no signi�cant
deviations in comparison with calculated band structure for
unsupported graphene. (Varchon et al., PRL 99, 126805 (2007) ).
Finally, it is worth noting that even in the case of graphene-on
metal, where the substrate interaction can be relatively strong, the
graphene band structure deviates very little from the rigidly shifted
bandstructure of unsupported graphene (Sutter et al., PRB 80,

245411 (2009), Sutter et al., AM. Chem. Soc. 132, 8175 (2010) ).
For these reasons we consider the electron structure for
unsupported graphene to be a reasonable �rst approximation.

Is the parameter setting of the model potential (V0 and α)
rubust ?



Master thesis projects

I Graphene: Find a scheme to optimize the choise of model
one-electron potential and its parameters (presently a
Gaussian: V0 and α) based on the TB parameters from the
litterature or determined from DFT based calculations.
Minimize the error |(Hnm(V0, α)−H0

nm)/H0
nm|, where Hnm

and H0
nm are the calculated and reference two center

Hamiltonian integral, respectively. EPC linewidth calculations.
Collaboration with T. Frederiksen, DIPC, San Sebastian.

I BC: Investigate Boron carbide BC, (every second C atom in
graphene is replaced by a Bohr atom). Find out how the TB
parameters and force constants of graphene should be
changed. Calculate the Lifetime broadening. Collaboration
with T. Frederiksen, DIPC, San Sebastian.



Requirements: Quantum mechanics, Solid State Physics (electron
structure and phonons), Tight binding (TB) method for electron
structure and Force constant model for phonons, some experience
with DFT calculation, some skill in coding; Python, Fortran,
Matlab etc
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