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PACS. 73.20.Hb – Impurity and defect levels; energy states of adsorbed species.
PACS. 73.20.At – Surface states, band structure, electron density of states.
PACS. 68.37.Ef – Scanning tunneling microscopy (including chemistry induced with STM).

Abstract. – The interaction energy of three adsorbates on a surface consists of the sum
of the three pair interactions plus a trio contribution produced by interference of electrons
which propagate the entire perimeter, d123, of the three-adsorbate cluster. Here we investigate
this triple-adsorbate interaction that is mediated by the isotropic Shockley surface-state band
found on noble-metal (111) surfaces. Our experimentally testable result depends on the s-wave
phase shift, δF �= 0, characterizing the standing-wave patterns seen in scanning-tunneling mi-
croscopy (STM) images. Compared with the adsorbate-pair interactions, and in contrast to
bulk-mediated interactions, the trio contribution has a slightly weaker amplitude and asymp-
totically decays slightly faster, ∝ d

−5/2
123 . It also has a distinctive oscillation period dependent

on d123. We finally compare the asymptotic description with exact model calculations.

Progress in scanning-tunneling microscopy (STM) has made possible the study of physical
properties of surface-state electrons in real space, as revealed by standing surface-wave patterns
formed in the vicinity of adsorbates, defects, and steps [1–5]. Most studies of these wave pat-
terns have concerned Shockley-type surface states which on a clean surface are characterized
by a free-particle–like dispersion with effective mass me, in-surface Fermi wave vector qF and
Fermi level εF = (h̄qF)2/2me. The corresponding in-surface Fermi wavelength, λF = 2π/qF,
significantly exceeds the bulk-electron counterpart, and the envelope of the response function
decays far more slowly than for the bulk states. Such slow decay of the response functions
opens the possibility for very-long-range interference and mutual defect-interaction effects me-
diated by the surface-state band. Exciting examples include “quantum corrals” formed by Fe
atoms on Cu(111) [3] and small islands on Ag(111) [4]. Surface waves are strongly scattered
from adsorbates, and most experiments reveal significant surface-state variation in the local
density of state (LDOS) characterized by large Fermi-level phase shift, δF ≈ −π/2 [2, 5].

The oscillatory nature of the indirect interaction between chemisorbed atoms on metal
surfaces [6] has attracted theorical attention for over three decades [7]. Usually, the mediation
is by bulk electronic states which produce anisotropic interactions with a rapid d−5

ij decay
with the adsorbate separation dij [8]. Although qualitative understanding of the features of
the indirect interaction are known since long [8], quantitative agreement between theory and
c© EDP Sciences
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experiment proved elusive due to the complicated nature of the substrate electronic states
and the interplay of all occupied energy levels at small dij [6]. While only states near the
Fermi level εF are important at asymptotically large dij [9], the rapid decay renders these
interactions unmeasurable. Lau and Kohn [10] recognized that when there are surface states
near εF, the decay is much slower, going like d−2

ij . However, only recently did theorists [11,12]
apply these ideas to the surface states on (111) noble metals. These surface states consist of a
single, circularly symmetric band. For two adsorbates, “i” and “j”, at asymptotic separation,
dij � λF/2, the single-adsorbate scattering can then be characterized by the measurable phase
shift δF, leading to a simple expression for the adsorbate-pair interaction energy [11,12]:

∆Epair(dij ; δF) � ∆Easym
pair (dij ; δF) = −εF

(
2 sin(δF )

π

)2 sin(2qFdij + 2δF)
(qFdij)2

. (1)

Recent STM investigations of Cu on Cu(111) [12, 13] and Co on Cu(111) and Ag(111) [13]
have not only revealed that inter-adsorbate distances depend on the period λF/2 = π/qF of
the surface-wave oscillations around the adsorbates, but have also experimentally determined
both the asymptotic decay and strength of this indirect electronic adsorbate-pair interaction.

In this letter, we begin the task of extending the analysis to multiadsorbate interactions
on metal surfaces with isotropic surface-state bands. We investigate the mutual indirect
electronic interaction of three adsorbates, focusing on the recently investigated [12,13] Cu(111)
and Ag(111) surfaces. A simple tight-binding analysis provides the essential formalism [6,14],
which can be adapted to provide a non-perturbative three-adsorbate interaction estimate,

∆Etriple(d12, d23, d31; δF) ≡
3∑

i>j=1

∆Epair(dij ; δF) + ∆Etrio(d12, d23, d31; δF). (2)

Such energies can be important in the formation of dilute superlattices [12,13], in determining
the shape of clusters, can be non-negligible ingredients in a lattice-gas parametrization of
chemisorbed overlayers [15], and can lead to gross asymmetries in temperature-coverage phase
diagrams by breaking the particle-hole symmetry of the lattice-gas Hamiltonian [16].

To leading order in the adsorbate scattering, the trio contribution ∆Etrio(d12, d23, d31; δF)
comes from electrons which scatter at all three adsorbate locations and traverse the perimeter,
d123 ≡ d12 +d23 +d31. We expect the adsorbates to couple to the same local environment and
so assume that identical phase-shifts, δF, (evaluated modulo π) describe them. (Otherwise,
3δF → δ1F + δ2F + δ3F below.) For asymptotic dij we derive the simple analytic result

∆Etrio(d12, d23, d31; δF) � −εF sin3(δF)

(
16
√

2
π5/2

)
γ123

sin(qFd123 + 3δF − 3π/4)
(qFd123)5/2

, (3)

where γ123 ≡ d
3/2
123/

√
d12d23d31 is a shape-dependent dimensionless ratio . For typical three-

adatom configurations (i.e., with comparable d12, d23, d31), γ123 ∼ 5 1
2 [17], and the leading

trio contribution of eq. (3) oscillates distinctly as qFd123 while decaying barely faster than the
asymptotic-pair interaction of eq. (1). However, for an isosceles configuration with one leg, say
ds, much shorter than the other two legs of length d, γ123 � 2(2d/ds)1/2; then ∆Etrio decays
asymptotically with the identical envelope 1/d2 and oscillation period 2qFd of (but different
oscillation phase from) eq. (1), and thus effectively “screens” (or “antiscreens”) ∆Epair.

The magnitude and slow asymptotic decay of the predicted surface-state–mediated trio
interaction (3) can have important effects at finite coverages of the noble-metal surfaces.
While the sum of adsorbate-pair interaction contributions [11], ∆Epair(dij ; δF) dominates the
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Fig. 1 – Schematics of the triple-adsorbate interaction. Three adsorbates couple at positions i = 1, 2, 3,
separated by mutual distances dij , to a metal surface which supports a surface-state band near εF.
The scattering at each adsorbate causes oscillations (concentric rings) in the surface-state density of
state. This scattering is characterized by a finite Fermi-level phase shift, δF ≈ −π/2, corresponding
to significant, slowly decaying Friedel oscillations induced in the surface-state electron gas.

general triple-adsorbate cluster energy (2), the trio interaction ∆Etrio(d12, d23, d31; δF) will
contribute a non-negligible quarter of ∆Etriple(d12, d23, d31; δF) and decays only slightly faster
than the pair interaction [11–13]. Previous attempts to compare theoretical and experimental
values of trio energies have met with marginal success and have considered small separations
between adsorbates [18, 19]. However, impressive agreement between theory and experiment
regarding pair interactions mediated by surface states [12, 13] and preliminary indications of
interactions in addition to those between pairs in multiadsorbate systems inspire us to revisit
the trio interaction at intermediate and larger separations.

The schematic fig. 1 illustrates the experimental situation and identifies the adsorbate-
adsorbate (Friedel) interaction mechanism. Three adsorbates are located above a (noble)
metal surface, on which there is a surface-state band crossing εF. Table I identifies the key
parameters which characterize the Shockley state on the (111) face of Cu, Ag, and Au. Ta-
ble I also includes values for the effective mass meff which relates the Fermi energy to the
Fermi wave vector, qF = h̄−1√2meffεF. Each adsorbate induces scattering and causes spatial
oscillations in the surface-band density of states (DOS). At εF these DOS oscillations suf-
fer a phase shift δF. The interference between such DOS variations produces a Friedel-type
adsorbate-adsorbate interaction, which also oscillates with the mutual adsorbate separation d.
Several theoretical studies have addressed this indirect adsorbate interaction mechanism [6,11].
The theoretical expression for the interaction becomes simple only in the asymptotic regime,
where exclusively states at the Fermi level matter. While state-of-the-art first-principles cal-
culations [23, 24] can compute the total energy of periodic overlayer structures, reaching the
asymptotic regime requires cells bigger than current capabilities. Also, unless the interaction

Table I – Shockley surface-state parameters and Thomas-Fermi (bulk-screening) lengths of the Cu,
Ag, and Au (111) surfaces. The Shockley band is characterized by the effective electron mass meff ,
a Fermi energy εF (measured relative to the bottom of the surface-state band), and a corresponding
in-surface Fermi wave vector qF = h̄−1

√
2meffεF and half wavelength λF/2 = π/qF.

meff/me εF (eV) qF (Å−1) λF/2 (Å) k−1
TF (Å)

Cu 0.44a/0.46b 0.38a/0.39b 0.21a/0.217b 15.0a/14.5b 0.552d

Ag 0.40a/0.53b 0.065a/0.12b 0.083a/0.129b 37.9a/24.4b 0.588d

Au 0.28b 0.41b 0.173b 18.2b 0.588d

Si-Ag
√

3 0.15(7)c 0.25(5)c 0.010(3)c 31(9)c [k−1
DH � λF at 6 K]e

aRef. [20]. bRef. [21]. cRef. [22]. dAdapted from ref. [11]. eTF →Debye-Hückel (DH).
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is transmitted by surface states, the interaction will be weak [24]. In contrast, in a scatter-
ing theory approach, the interaction energy is calculated by computing the propagators for
the clean, high-symmetry surface. Lau and Kohn’s landmark investigation of the asymptotic
regime used a perturbative approach [10] but the LCAO tight-binding formalism produces
equivalent results non-perturbatively [6,9]. Here we use the measured [2,5,12,13] phase shifts
(δF ≈ ±π/2, π/3) for a non-perturbative evaluation of the triple-adsorbate interaction.

Our analysis starts with a Harris functional expression [11,25] and should include an elec-
trostatic correction. However, as for the pair interaction [11], screening by the bulk electrons
should make this correction neglible. Thus, the one-electron contributions determine the
interaction, which, as in the tight-binding approach [6], is given by an energy integral

∆Etriple(d12, d23, d31; δF) = 2
∫ εF

−∞
dε (ε − εF)∆ρtriple(ε; d12, d23, d31) (4)

of the change ∆ρtriple in the DOS of the three adsorbates relative to three isolated adsorbates.
The factor of two comes from spin degeneracy. Adapting previous formalism [6,14], we find

∆ρtriple(ε, d12, d23, d31) = − 1
π

d
dε

Im
∫

dx 〈x| ln[1 −
∑
i>j

K(i,j)
pair −Ktrio]|x〉, (5)

K(i,j)
pair = Taii(ε)G

0
ij(ε)Tajj(ε)G0

ji(ε), Ktrio = 2Ta11(ε)G
0
12(ε)Ta22(ε)G

0
23(ε)Ta33(ε)G

0
31(ε). (6)

The last contribution in eq. (6) contains a factor of 2 because the electrons can traverse the
triple-cluster perimeter clockwise or counterclockwise. As noted above, eq. (5) should be cal-
culated using frozen adsorbate-induced scattering potentials [25]. The screening by bulk elec-
trons justifies an assumption that the adsorbate scattering potentials are non-overlapping. We
express the formal result, eq. (5), in terms of the one-electron (retarded) Green function G0(ε)
for the bare surface and the T -matrices, Taii(ε), which characterize the (non-perturbative)
scattering at adsorbates ai, where i = 1, 2, 3.

Mediation by a Shockley surface-state band greatly simplifies the evaluation of ∆ρtriple of
eq. (5). First, at large adsorbate distances the dominant contribution to ∆ρtriple(ε; d12, d23, d31)
then arises from scattering of surface-state electrons: the amplitude for propagation along the
surface in a 2D surface state has a significantly slower decay with distance than within the
bulk electron bands. Second, the surface-state interaction is then dominated by s-wave scat-
tering contributions because the Fermi wavelength λF = 2π/qF for the Shockley surface states
typically is much larger than the bulk Thomas-Fermi screening length, 1/kTF; cf. table I.

At finite adsorbate separations, the change in the DOS (5) due to the indirect interaction
between the three adsorbates thus becomes dominated by

∆ρtriple(ε; d12, d23, d31) ≈ − 1
π

d
dε

Im ln


1 −

∑
i>j

Kpair(dij ; δF) − Ktrio(d12, d23, d31; δF)


 . (7)

To obtain Kpair(dij ; δF) from K(i,j)
pair and Ktrio(d12, d23, d31; δF) from Ktrio, replace Taii(ε) by

t0(ε; δF) and G0
ij(ε) by g0(qdij), where the Green function g0(qd) describes the propagation

a distance d along the surface at wave vector q = h̄−1√2meffε via the isotropic surface
band. Describing adsorbate scattering of surface-band electrons, the new effective T -matrix,
t0(ε; δF) = −(2h̄/meff) sin{δ0(ε)} exp[iδ0(ε)], is determined by the s-wave phase shift δ0(ε)
which, in turn, is specified by the boundary condition δ0(εF) = δF. The cylindrical Hankel



P. Hyldgaard et al.: Surface-state–mediated three-adsorbate interaction 269

function of the first kind, H
(1)
0 , solves the Helmholtz equation in two dimension, so that

g0(x) = i
meff

2h̄
H

(1)
0 (x) � i

meff

h̄

exp[ix − iπ/4]√
2πx

for x → ∞. (8)

The expansion emphasize the slow amplitude decay for propagation in a 2D surface state;
when only 3D states contribute, the surface Green function typically decays as x−2 [6, 9].

Our simple formulas for the adsorbate interaction (1) and (3) follow from an asymptotic
evaluation of one-electron energy integrals like eq. (4). In the asymptotic region, Ktrio and
Kpair become small, allowing expansion of the logarithm in ∆Etriple. To order t30 we get an
integral of each of three Kpair, corresponding to the asymptotic-constituent-pair interactions
∆Epair of eq. (1), plus the asymptotic limit of the trio contribution ∆Etrio(d12, d23, d31; δF):

− 2
π

Im
∫ εF

0

dεKtrio = − 4
π

Im
∫ εF

0

dε [t0(ε; δF)]3g0(qd12)g0(qd23)g0(qd31). (9)

For parabolic dispersion, the Jacobian for changing the integration variable from ε to q
is simple. The leading asymptotic term comes from simply integrating the phase factor,
which has the generic form exp[iqR], and evaluating it at the upper limit. The result,
−(2/π)ImKtrio(εF)/qR [26], is just our asymptotic trio-interaction contribution, eq. (3).

As described in ref. [11] adsorbate scattering into the bulk band can be addressed by
allowing the phase shift to become complex: δ0(ε) = δ′0(ε) + iδ′0

′(ε). Then eq. (3) becomes

∆Etrio � −εF

(
r sin2{δ′0(εF)} +

(1 − r)2

4

)3/2
(

16
√

2
π5/2

)
γ123

sin(qFd123 + 3θ0 − 3π/4)
(qFd123)5/2

, (10)

where r = exp[−2δ′0
′(εF)] is the intra-surface-band reflection and θ0 (determined by tan(θ0) =

(1/r) csc{2δ′0(εF)} − cot{2δ′0(εF)}) is the phase shift of standing waves around adsorbates.
Thus, for maximal limit of “black” scattering (r → 0), ∆Etrio is reduced by a factor of 1/8.

Figure 2 shows our results for the three-adsorbate interaction energy mediated by the
surface-state band assuming the Fermi-level phase shift δF = −π/2. The top (bottom) panel
compares estimates for the combined triple-adsorbate cluster (for the trio-interaction) energy.
For specificity, we assume an equilateral-triangle configuration. The solid curves show our
analytical asymptotic evaluation obtained using eqs. (1) and (3). The dashed curves show
separate interaction estimates, ∆E3δ

triple and ∆E3δ
trio, which we obtain by numerically evaluat-

ing the adsorbate-induced change in DOS, eq. (7), for g0(x) ∝ H
(1)
0 (x) with the additional

assumption of a zero-range (δ-function) adsorbate potential [11]. This model assumption of
δ-function scattering provides a semiquantitative approximation for describing defects in met-
als [27]. For a two-dimensional free-electron–like band, the s-wave phase shift [27] takes the
simple analytic form given in ref. [11], δ0(ε) = arccot[π−1 ln(ε/εF) + cot(δF)]; thus, δ0(ε) is
uniquely specified by the experimentally observed δF. As for the asymptotic-pair interac-
tion [6, 8–11], the asymptotic trio interaction is determined by the behavior of the integrand
around εF and hence eventually approaches the analytical trio result of eq. (3), as illustrated in
the insert panel. For non-asymptotic d, the numerical ∆E3δ(d) results are still valid, although
they may become outweighed by bulk-state–mediated indirect interactions.

The comparison between ∆Etriple,trio(d) and ∆E3δ
triple,trio(d) (solid and dashed curves) in

fig. 2 documents that our asymptotic evaluations of both the triple-adsorbate energy and of the
trio contributions become adequate for qFd123 > 6π, corresponding to dij > λF. In contrast,
for the simpler two-adsorbate interaction problem, the asymptotic-pair interaction result (1)
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Fig. 2 – Three-adatom indirect interaction mediated by a surface-state band. The figure compares
estimates both for the full interaction energy ∆Etriple of three adatoms (top panel) and for the trio-
interaction energy (bottom panel), i.e. the energy by which ∆Etriple differs from the sum of the three
constituent-pair interactions. Our non-perturbative results use the phase-shift δF = −π/2, consistent
with experimentally observed standing wave patterns of S, Cu, and Co on Cu(111). The solid curves
show our asymptotic results, eqs. (1) and (3). The dashed curves show a numerical determination,
∆E3δ

triple(d), which arises when we base the single-adsorbate scattering approximation, eq. (7), on a
zero-range (δ-function) approximation for the adsorbate potential and obtain the s-wave phase shift
δ0(ε) = arccot[π−1 ln(ε/εF) + cot(δF)]. The insert details the long-range asymptotic variation.

becomes accurate already at d12 > λF/2 [11]. This difference in the onset of validity of the two
asymptotic formulas (3) and (1) reflects the intrinsic complexity of the multiterm logarithmic
integrand which defines ∆Etriple and hence ∆Etrio in eqs. (2)-(6). There is, in general, no
simple way to express the trio-interaction result without an explicit subtraction; unlike for the
pair interaction problem [6,11], there is no concise expression for a ∆ρtrio that can be inserted
into eq. (4) to obtain the trio interaction. It is the single-integral approximative result (9)
itself which only becomes applicable at qFd123 > 6π.

Isotropic, free-electron-like, partially filled surface states are also found on semiconductor
surfaces with partial overlayers of metals, e.g., Si(111)-

√
3×√

3-Ag [22]. The relevant param-
eters are included in table I. STM measurements at 6 K reveal a remarkable ordered adsorbate
phase with interatomic spacings much smaller than the asymptotic limit. The absence of bulk
screening, however, makes it unclear if the concepts developed here and/or in preceding works
and resting on a Harris functional analysis can be directly applied.

In summary, we have presented results for the triple-adsorbate interaction energy mediated
by an isotropic Shockley surface-state band, as found on noble-metal (111) surfaces. We derive
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a general formalism for this energy expressed in terms of experimentally accessible parameters.
We also provide an explicit numerical evaluation for the equilateral-triangle configuration on
Cu(111). While the sum of pair interaction contributions dominates the triple-adsorbate
interaction energy, our work indicates that the additional trio contribution accounts for about
a quarter of the interaction and exhibits only a marginally slower asymptotic decay. We
also derive a simple analytic expression for the asymptotic limit of the trio interaction. It
depends essentially only on the perimeter of the three-adsorbate “triangle” and so has its own
characteristic oscillation wavelength and decay envelope. We assess its range of validity. The
trio and analogous quarto and higher-order interaction contributions can play an important
role for larger clusters and affect the total interaction energy of relatively dense (ordered)
overlayers for which adsorbate interactions are mediated primarily by surface states.
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